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In this report, we derive an expression for the Mean Squared Error (MSE) per transition probability pj,i
of the least-squares estimator presented in [1], defined as MSEj,i

.
= |p̂j,i− pj,i|2. Please refer to [1] for the

thorough description of the system and adversary model considered, as well as the notation used in this
document.

We start by showing that this estimator is unbiased: using the law of total expectation together with
E {Yj |U} = Ûs · pj ,

E {p̂j} = E {E {p̂j |U}} = E
{

(ÛT
s Ûs)

−1ÛT
s E {Yj |U}

}
= pj (1)

Therefore, computing the MSE per transition probability is equivalent to computing the variance of
the estimator, Var {p̂j,i}. In order to do so, we look for the i-th element in the diagonal of the covari-
ance matrix of p̂j , denoted Σpj . Using the law of total variance and Var {E {p̂j,i|U}} = 0 (which is
straightforward from (1)), we can write the covariance matrix as

Σpj
= E

{
Σpj |U

}
= E

{
(ÛT

s Ûs)
−1ÛT

s ΣYj |UÛs(Û
T
s Ûs)

−1
}

= P−1λ E
{

(UTBTBU)−1UTBTΣYj |UBU(UTBTBU)−1
}

P−1λ
(2)

In order to develop this expression, we need to assume that ρ→∞ and use the Law of Large Numbers
to make (UTBTBU) approximately independent from the observed inputs U. This is, given that the
input process Xr

i is stationary and memoryless, we can write

lim
ρ→∞

(UTBTBU)/ρ→ R̂xs (3)

where the (m,n)-th element of R̂xs is

(R̂xs)m,n =
1

ρ

ρ∑
k=1

k∑
r=1

k∑
s=1

E {Xr
mX

s
n}α2(1− α)2k−r−s (4)

We can easily find a matricial expression for R̂xs. First, using the hypotheses described in Sect. 4 of [1],

E {Xr
mX

s
n} =

{
(λm + δm)2 + λm + δm, if m = n, r = s

(λm + δm)(λn + δn), otherwise.
(5)

Then, if we assume that ρ � 1/α and define αq = α/(2 − α), we can approximate this autocorrelation
matrix by

R̂xs ≈ (Fλ + Fδ)[1N×N + αq(Fλ + Fδ)
−1](Fλ + Fδ) (6)
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where Fλ
.
= diag{λ1, · · · , λN} and Fδ

.
= diag{δ1, · · · , δN}. Its inverse, computed by applying the

Sherman-Morrison formula, is

R̂−1xs ≈
1

αq

(
(Fλ + Fδ)

−1 − 1

αq + tr(Fλ + Fδ)
1N×N

)
(7)

where tr(·) denotes the trace operation. Going back to (2), our problem is to compute the i-th element
of the diagonal of

Σpj = E
{
Σpj |U

}
≈ 1

ρ2
P−1λ R̂−1xs E

{
(BU)TΣYj |UBU

}
R̂−1xs P−1λ (8)

We follow three steps:

1. Compute ΣYj |U.

2. Compute 1
ρE
{

(BU)TΣYj |UBU
}

.

3. Get the i-th element of the diagonal of Σpj
.

Computation of ΣYj |U.

Our aim to compute E
{

(Yj − E {Yj |U})(Yj − E {Yj |U})T |U
}

. Since the variables Y rλ,j and Y rδ,j are
independent, we can split this computation into two subproblems:

1. Using the law of total variance, it can be shown that

Var
{
Y rλ,j |U

}
=

r∑
m=1

N∑
i=1

xmi

(
Pλipj,iα(1− α)r−m − P 2

λi
p2j,iα

2(1− α)2(r−m)
)

Cov
{
Y rλ,j , Y

s
λ,j |U

}
= −α2(1− α)r−s

s∑
m=1

(
(1− α)2(s−m)

N∑
i=1

xmi P
2
λi
p2j,i

)
r ≥ s

(9)

2. On the other hand, since the variables Y rδ,j and Y sδ,j are independent for r 6= s, we get

Var
{
Y rδ,j |U

}
= δMIXpj,MIX

Cov
{
Y rδ,j , Y

s
δ,j |U

}
= 0

(10)

We can therefore write ΣYj |U in matricial form as:

ΣYj |U = diag{BUPλPj1N} −B · diag{UP2
λP

2
j1N} ·BT + δMIXpj,MIXIρ (11)

where Pj
.
= diag{pj,1, · · · , pj,N}.

Computation of 1
ρ
E
{

(BU)TΣYj |UBU
}
.

Using (11), we can obtain 1
ρE
{

(BU)TΣYj |UBU
}

by performing matrix multiplications. We omit
the full description of these steps for practicality issues and indicate that the result is:

1
ρE
{

(BU)TΣYj |UBU
}
≈

(Fλ + Fδ)
{

(λ′j − λ′′j + δMIXpj,MIX)1N×N + αq
(
1N×N (PjPλ −P2

jP
2
λ) + (PjPλ −P2

jP
2
λ)1N×N

)}
(Fλ + Fδ)

+(Fλ + Fδ)

{
αq(λ

′
j − λ′′j + δMIXpj,MIX)IN + αsPjPλ − α2

qP
2
jP

2
λ −

(
αq
αr
− 1

)
αqλ

′
jIN

} (12)

where λ′j
.
=
∑N
i=1 λipj,i, λ

′′
j
.
=
∑N
i=1 λiPλip

2
j,i, αr

.
=

α(2− α)

2− α(2− α)
and αs

.
=

α3

1− (1− α)3
.
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Computation of a single element in the diagonal of Σpj
.

The next step is plugging (12) and (7) into (8) and performing laborious matrix multiplications.
We omit writing the whole expression that is obtained after this process and point out that the
i-th element in the diagonal of Σpj , which is Var {p̂j,i} or, equivalently, MSEj,i, is:

MSEj,i ≈ 1

ρ
· 1

λi
·
(

1 +
δi
λi

)
·

(
1− λi + δi∑N

k=1(λk + δk)

)
·

(
1

αq

(
N∑
k=1

λkpj,k + δMIXpj,MIX

)
− 1

αr

N∑
k=1

λkPλk
p2j,k

)

+
1

ρ
· 1

λi

(
pj,i − Pλip

2
j,i

)
(13)

where we have assumed that λi + δi �
(∑N

k=1(λk + δk)
)

. Finally, since we can assume pj,i �∑N
k=1 λkpj,k, we get the expression

MSEj,i ≈
1

ρ
· 1

αq
· 1

λi
·
(

1 +
δi
λi

)
·

(
1− λi + δi∑N

k=1(λk + δk)

)
·

(
N∑
k=1

λkpj,k + δMIXpj,MIX −
αq
αr

N∑
k=1

λkPλk
p2j,k

) (14)
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