Technical Report TSC/SO/02052014:
 Derivation of the Mean Squared Error of the Least Squares Estimator in a Timed Pool Mix with Dummy Traffic

Simon Oya
Carmela Troncoso
Fernando Pérez-González

May 2, 2014

In this report, we derive an expression for the Mean Squared Error (MSE) per transition probability $p_{j, i}$ of the least-squares estimator presented in [1], defined as $\operatorname{MSE}_{j, i} \doteq\left|\hat{p}_{j, i}-p_{j, i}\right|^{2}$. Please refer to [1] for the thorough description of the system and adversary model considered, as well as the notation used in this document.

We start by showing that this estimator is unbiased: using the law of total expectation together with $\mathrm{E}\left\{\mathbf{Y}_{j} \mid \mathbf{U}\right\}=\hat{\mathbf{U}}_{s} \cdot \mathbf{p}_{j}$,

$$
\begin{equation*}
\mathrm{E}\left\{\hat{\mathbf{p}}_{j}\right\}=\mathrm{E}\left\{\mathrm{E}\left\{\hat{\mathbf{p}}_{j} \mid \mathbf{U}\right\}\right\}=\mathrm{E}\left\{\left(\hat{\mathbf{U}}_{s}^{T} \hat{\mathbf{U}}_{s}\right)^{-1} \hat{\mathbf{U}}_{s}^{T} \mathrm{E}\left\{\mathbf{Y}_{j} \mid \mathbf{U}\right\}\right\}=\mathbf{p}_{j} \tag{1}
\end{equation*}
$$

Therefore, computing the MSE per transition probability is equivalent to computing the variance of the estimator, Var $\left\{\hat{p}_{j, i}\right\}$. In order to do so, we look for the i-th element in the diagonal of the covariance matrix of $\hat{\mathbf{p}}_{j}$, denoted $\boldsymbol{\Sigma}_{\mathbf{p}_{j}}$. Using the law of total variance and $\operatorname{Var}\left\{\mathrm{E}\left\{\hat{p}_{j, i} \mid \mathbf{U}\right\}\right\}=0$ (which is straightforward from (1)), we can write the covariance matrix as

$$
\begin{align*}
\boldsymbol{\Sigma}_{\mathbf{p}_{j}} & =\mathrm{E}\left\{\boldsymbol{\Sigma}_{\mathbf{p}_{j} \mid \mathbf{U}}\right\}=\mathrm{E}\left\{\left(\hat{\mathbf{U}}_{s}^{T} \hat{\mathbf{U}}_{s}\right)^{-1} \hat{\mathbf{U}}_{s}^{T} \boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathbf{U}} \hat{\mathbf{U}}_{s}\left(\hat{\mathbf{U}}_{s}^{T} \hat{\mathbf{U}}_{s}\right)^{-1}\right\} \tag{2}\\
& =\mathbf{P}_{\lambda}^{-1} \mathrm{E}\left\{\left(\mathbf{U}^{T} \mathbf{B}^{T} \mathbf{B} \mathbf{U}\right)^{-1} \mathbf{U}^{T} \mathbf{B}^{T} \boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathbf{U}} \mathbf{B U}\left(\mathbf{U}^{T} \mathbf{B}^{T} \mathbf{B U}\right)^{-1}\right\} \mathbf{P}_{\lambda}^{-1}
\end{align*}
$$

In order to develop this expression, we need to assume that $\rho \rightarrow \infty$ and use the Law of Large Numbers to make ($\left.\mathbf{U}^{T} \mathbf{B}^{T} \mathbf{B U}\right)$ approximately independent from the observed inputs \mathbf{U}. This is, given that the input process X_{i}^{r} is stationary and memoryless, we can write

$$
\begin{equation*}
\lim _{\rho \rightarrow \infty}\left(\mathbf{U}^{T} \mathbf{B}^{T} \mathbf{B U}\right) / \rho \rightarrow \hat{\mathbf{R}}_{x s} \tag{3}
\end{equation*}
$$

where the (m, n)-th element of $\hat{\mathbf{R}}_{x s}$ is

$$
\begin{equation*}
\left(\hat{\mathbf{R}}_{x s}\right)_{m, n}=\frac{1}{\rho} \sum_{k=1}^{\rho} \sum_{r=1}^{k} \sum_{s=1}^{k} \mathrm{E}\left\{X_{m}^{r} X_{n}^{s}\right\} \alpha^{2}(1-\alpha)^{2 k-r-s} \tag{4}
\end{equation*}
$$

We can easily find a matricial expression for $\hat{\mathbf{R}}_{x s}$. First, using the hypotheses described in Sect. 4 of [1],

$$
\mathrm{E}\left\{X_{m}^{r} X_{n}^{s}\right\}= \begin{cases}\left(\lambda_{m}+\delta_{m}\right)^{2}+\lambda_{m}+\delta_{m}, & \text { if } m=n, r=s \tag{5}\\ \left(\lambda_{m}+\delta_{m}\right)\left(\lambda_{n}+\delta_{n}\right), & \text { otherwise. }\end{cases}
$$

Then, if we assume that $\rho \gg 1 / \alpha$ and define $\alpha_{q}=\alpha /(2-\alpha)$, we can approximate this autocorrelation matrix by

$$
\begin{equation*}
\hat{\mathbf{R}}_{x s} \approx\left(\mathbf{F}_{\lambda}+\mathbf{F}_{\delta}\right)\left[\mathbf{1}_{N \times N}+\alpha_{q}\left(\mathbf{F}_{\lambda}+\mathbf{F}_{\delta}\right)^{-1}\right]\left(\mathbf{F}_{\lambda}+\mathbf{F}_{\delta}\right) \tag{6}
\end{equation*}
$$

where $\mathbf{F}_{\lambda} \doteq \operatorname{diag}\left\{\lambda_{1}, \cdots, \lambda_{N}\right\}$ and $\mathbf{F}_{\delta} \doteq \operatorname{diag}\left\{\delta_{1}, \cdots, \delta_{N}\right\}$. Its inverse, computed by applying the Sherman-Morrison formula, is

$$
\begin{equation*}
\hat{\mathbf{R}}_{x s}^{-1} \approx \frac{1}{\alpha_{q}}\left(\left(\mathbf{F}_{\lambda}+\mathbf{F}_{\delta}\right)^{-1}-\frac{1}{\alpha_{q}+\operatorname{tr}\left(\mathbf{F}_{\lambda}+\mathbf{F}_{\delta}\right)} \mathbf{1}_{N \times N}\right) \tag{7}
\end{equation*}
$$

where $\operatorname{tr}(\cdot)$ denotes the trace operation. Going back to (2), our problem is to compute the i-th element of the diagonal of

$$
\begin{equation*}
\boldsymbol{\Sigma}_{\mathbf{p}_{j}}=\mathrm{E}\left\{\boldsymbol{\Sigma}_{\mathbf{p}_{j} \mid \mathbf{U}}\right\} \approx \frac{1}{\rho^{2}} \mathbf{P}_{\lambda}^{-1} \hat{\mathbf{R}}_{x s}^{-1} \mathrm{E}\left\{(\mathbf{B U})^{T} \boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathbf{U}} \mathbf{B U}\right\} \hat{\mathbf{R}}_{x s}^{-1} \mathbf{P}_{\lambda}^{-1} \tag{8}
\end{equation*}
$$

We follow three steps:

1. Compute $\boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathbf{U}}$.
2. Compute $\frac{1}{\rho} \mathrm{E}\left\{(\mathbf{B U})^{T} \boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathbf{U}} \mathbf{B U}\right\}$.
3. Get the i-th element of the diagonal of $\boldsymbol{\Sigma}_{\mathbf{p}_{j}}$.

Computation of $\boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathbf{U}}$.

Our aim to compute $\mathrm{E}\left\{\left(\mathbf{Y}_{j}-\mathrm{E}\left\{\mathbf{Y}_{j} \mid \mathbf{U}\right\}\right)\left(\mathbf{Y}_{j}-\mathrm{E}\left\{\mathbf{Y}_{j} \mid \mathbf{U}\right\}\right)^{T} \mid \mathbf{U}\right\}$. Since the variables $Y_{\lambda, j}^{r}$ and $Y_{\delta, j}^{r}$ are independent, we can split this computation into two subproblems:

1. Using the law of total variance, it can be shown that

$$
\begin{align*}
\operatorname{Var}\left\{Y_{\lambda, j}^{r} \mid \mathbf{U}\right\} & =\sum_{m=1}^{r} \sum_{i=1}^{N} x_{i}^{m}\left(P_{\lambda_{i}} p_{j, i} \alpha(1-\alpha)^{r-m}-P_{\lambda_{i}}^{2} p_{j, i}^{2} \alpha^{2}(1-\alpha)^{2(r-m)}\right) \\
\operatorname{Cov}\left\{Y_{\lambda, j}^{r}, Y_{\lambda, j}^{s} \mid \mathbf{U}\right\} & =-\alpha^{2}(1-\alpha)^{r-s} \sum_{m=1}^{s}\left((1-\alpha)^{2(s-m)} \sum_{i=1}^{N} x_{i}^{m} P_{\lambda_{i}}^{2} p_{j, i}^{2}\right) r \geq s \tag{9}
\end{align*}
$$

2. On the other hand, since the variables $Y_{\delta, j}^{r}$ and $Y_{\delta, j}^{s}$ are independent for $r \neq s$, we get

$$
\begin{align*}
\operatorname{Var}\left\{Y_{\delta, j}^{r} \mid \mathbf{U}\right\} & =\delta_{\mathrm{MIX}} p_{j, \mathrm{MIX}} \\
\operatorname{Cov}\left\{Y_{\delta, j}^{r}, Y_{\delta, j}^{s} \mid \mathbf{U}\right\} & =0 \tag{10}
\end{align*}
$$

We can therefore write $\boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathbf{U}}$ in matricial form as:

$$
\begin{equation*}
\boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathbf{U}}=\operatorname{diag}\left\{\mathbf{B U} \mathbf{P}_{\lambda} \mathbf{P}_{j} \mathbf{1}_{N}\right\}-\mathbf{B} \cdot \operatorname{diag}\left\{\mathbf{U} \mathbf{P}_{\lambda}^{2} \mathbf{P}_{j}^{2} \mathbf{1}_{N}\right\} \cdot \mathbf{B}^{T}+\delta_{\mathrm{MIX}} p_{j, \mathrm{MIX}} \mathbf{I}_{\rho} \tag{11}
\end{equation*}
$$

where $\mathbf{P}_{j} \doteq \operatorname{diag}\left\{p_{j, 1}, \cdots, p_{j, N}\right\}$.

Computation of $\frac{1}{\rho} \mathbf{E}\left\{(\mathbf{B U})^{T} \boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathbf{U}} \mathbf{B U}\right\}$.

Using (11), we can obtain $\frac{1}{\rho} \mathrm{E}\left\{(\mathbf{B U})^{T} \boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathbf{U}} \mathbf{B U}\right\}$ by performing matrix multiplications. We omit the full description of these steps for practicality issues and indicate that the result is:

$$
\begin{align*}
& \frac{1}{\rho} \mathrm{E}\left\{(\mathbf{B U})^{T} \boldsymbol{\Sigma}_{\mathbf{Y}_{j} \mid \mathrm{U}} \mathbf{B U}\right\} \approx \\
& \left(\mathbf{F}_{\lambda}+\mathbf{F}_{\delta}\right)\left\{\left(\lambda_{j}^{\prime}-\lambda_{j}^{\prime \prime}+\delta_{\mathrm{MX}} p_{j, \text { MIX }}\right) \mathbf{1}_{N \times N}+\alpha_{q}\left(\mathbf{1}_{N \times N}\left(\mathbf{P}_{j} \mathbf{P}_{\lambda}-\mathbf{P}_{j}^{2} \mathbf{P}_{\lambda}^{2}\right)+\left(\mathbf{P}_{j} \mathbf{P}_{\lambda}-\mathbf{P}_{j}^{2} \mathbf{P}_{\lambda}^{2}\right) \mathbf{1}_{N \times N}\right)\right\}\left(\mathbf{F}_{\lambda}+\mathbf{F}_{\delta}\right) \tag{12}\\
& +\left(\mathbf{F}_{\lambda}+\mathbf{F}_{\delta}\right)\left\{\alpha_{q}\left(\lambda_{j}^{\prime}-\lambda_{j}^{\prime \prime}+\delta_{\text {MIX }} p_{j, \text { MIX }}\right) \mathbf{I}_{N}+\alpha_{s} \mathbf{P}_{j} \mathbf{P}_{\lambda}-\alpha_{q}^{2} \mathbf{P}_{j}^{2} \mathbf{P}_{\lambda}^{2}-\left(\frac{\alpha_{q}}{\alpha_{r}}-1\right) \alpha_{q} \lambda_{j}^{\prime} \mathbf{J}_{N}\right\}
\end{align*}
$$

where $\lambda_{j}^{\prime} \doteq \sum_{i=1}^{N} \lambda_{i} p_{j, i}, \lambda_{j}^{\prime \prime} \doteq \sum_{i=1}^{N} \lambda_{i} P_{\lambda_{i}} p_{j, i}^{2}, \alpha_{r} \doteq \frac{\alpha(2-\alpha)}{2-\alpha(2-\alpha)}$ and $\alpha_{s} \doteq \frac{\alpha^{3}}{1-(1-\alpha)^{3}}$.

Computation of a single element in the diagonal of $\Sigma_{\mathbf{p}_{j}}$.

The next step is plugging $\sqrt{12}$ and (7) into (8) and performing laborious matrix multiplications. We omit writing the whole expression that is obtained after this process and point out that the i-th element in the diagonal of $\boldsymbol{\Sigma}_{\mathbf{p}_{j}}$, which is $\operatorname{Var}\left\{\hat{p}_{j, i}\right\}$ or, equivalently, $\operatorname{MSE}_{j, i}$, is:

$$
\begin{align*}
\operatorname{MSE}_{j, i} & \approx \frac{1}{\rho} \cdot \frac{1}{\lambda_{i}} \cdot\left(1+\frac{\delta_{i}}{\lambda_{i}}\right) \cdot\left(1-\frac{\lambda_{i}+\delta_{i}}{\sum_{k=1}^{N}\left(\lambda_{k}+\delta_{k}\right)}\right) \\
& \left(\frac{1}{\alpha_{q}}\left(\sum_{k=1}^{N} \lambda_{k} p_{j, k}+\delta_{\text {MIX }} p_{j, \text { MIX }}\right)-\frac{1}{\alpha_{r}} \sum_{k=1}^{N} \lambda_{k} P_{\lambda_{k}} p_{j, k}^{2}\right) \tag{13}\\
& +\frac{1}{\rho} \cdot \frac{1}{\lambda_{i}}\left(p_{j, i}-P_{\lambda_{i}} p_{j, i}^{2}\right)
\end{align*}
$$

where we have assumed that $\lambda_{i}+\delta_{i} \ll\left(\sum_{k=1}^{N}\left(\lambda_{k}+\delta_{k}\right)\right)$. Finally, since we can assume $p_{j, i} \ll$ $\sum_{k=1}^{N} \lambda_{k} p_{j, k}$, we get the expression

$$
\begin{align*}
\operatorname{MSE}_{j, i} \approx \frac{1}{\rho} \cdot \frac{1}{\alpha_{q}} \cdot \quad & \frac{1}{\lambda_{i}} \cdot\left(1+\frac{\delta_{i}}{\lambda_{i}}\right) \cdot\left(1-\frac{\lambda_{i}+\delta_{i}}{\sum_{k=1}^{N}\left(\lambda_{k}+\delta_{k}\right)}\right) \\
& \left(\sum_{k=1}^{N} \lambda_{k} p_{j, k}+\delta_{\text {MIX }} p_{j, \mathrm{MIX}}-\frac{\alpha_{q}}{\alpha_{r}} \sum_{k=1}^{N} \lambda_{k} P_{\lambda_{k}} p_{j, k}^{2}\right) \tag{14}
\end{align*}
$$

References

[1] Oya, S., Troncoso, C., Pérez-González, F.: Do dummies pay off? limits of dummy traffic protection in anonymous communications. In: 14th Symposium on Privacy Enhancing Technologies. (2014)

