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ABSTRACT

Detecting the presence of a white Gaussian signal distorted by a
noisy time-varying channel is addressed by means of three differ-
ent detectors. First, the generalized likelihood ratio test (GLRT) is
found for the case where the channel has no temporal structure, re-
sulting in the well-known Bartlett’s test. Then it is shown that, un-
der the transformation group given by scaling factors, a locally most
powerful invariant test (LMPIT) does not exist. Two alternative ap-
proaches are explored in the low signal-to-noise ratio (SNR) regime:
the first assigns a prior probability density function (pdf) to the chan-
nel (hence modeled as random), whereas the second assumes an un-
derlying basis expansion model (BEM) for the (now deterministic)
channel and obtains the maximum likelihood (ML) estimates of the
parameters relevant for the detection problem. The performance of
these detectors is evaluated via Monte Carlo simulation.

Index Terms— Detection theory, time-varying channels, basis
expansion model, generalized likelihood ratio, locally most powerful
invariant.

1. INTRODUCTION

The detection of signals in noisy channels is an important problem
arising in a wide variety of applications such as sonar [1], radar [2]
or spectrum sensing for Cognitive Radio [3]. Although most exist-
ing detection rules assume that the channel is time-invariant, such
assumption may be unrealistic in many scenarios. For example, in
narrowband communications the symbol period can be comparable
to the coherence time of the channel. In acoustic communications,
such as those for underwater environments, transmissions are af-
fected by large Doppler spreads [1]. Other applications where de-
tectors must operate at very low Signal-to-Noise Ratio (SNR) condi-
tions, e.g. spectrum sensing for Cognitive Radio, require long obser-
vation windows within which the channel may change significantly,
especially in environments affected by mobility.

Previous work on time-varying channels has addressed estima-
tion, coding, prediction, etc. (see e.g. [4]); however, to the best of
our knowledge, little effort has been devoted to activity detection.
Works of this kind include [5], where a known constant-magnitude
signal is to be detected after propagating through a channel that fol-
lows a basis expansion model (BEM) [6]. Nevertheless, the fact that
the signal is seldom known in practice calls for different approaches
not relying on this prior knowledge.
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To sidestep this issue, we adopt a white Gaussian signal model
and present three detectors based on three alternative formulations of
the problem. Firstly, the generalized likelihood ratio test (GLRT) [7]
is derived for the case where the flat-fading channel is regarded as
deterministic with no temporal structure. Secondly, it is shown that,
even in the low SNR scenario, the optimal invariant (under scaling
operations) detector depends on unknown parameters, and therefore
we can conclude that a locally most powerful invariant test (LMPIT)
does not exist. In order to avoid this dependency, we propose two
different approaches. The first one assigns a prior probability den-
sity function (pdf) to the channel, resulting in a test following the
Bayesian philosophy [7]. The second approach adopts a BEM for
the deterministic channel with unknown parameters, whose invari-
ant component is estimated in a GLRT-like fashion.

The paper is structured as follows: Sec. 2 introduces the data
model and states the problem. Sec. 3 derives the GLRT for tem-
porally unstructed (i.e., fast fading) channels. Sec. 4 shows that the
LMPIT does not exist and presents two alternative detectors. Finally,
some numerical examples illustrate the performance of the proposed
detectors in Sec. 5, whereas conclusions are summarized in Sec. 6.

2. DATA MODEL AND PROBLEM FORMULATION

Let us consider an analog waveform, which is bandpass filtered and
downconverted to baseband. At the ADC output, N samples are
gathered in the vector y ∈ CN . Under the null hypothesis H0,
only noise is present: y = w, where w ∼ CN (0, σ2I) repre-
sents a circularly complex white Gaussian noise with zero mean and
variance σ2. Under the alternative hypothesis H1, a signal passing
a frequency-flat time-varying (TV) channel is also received: y =
Hx+w, where H .

= diag {h}, h = [ h0 h1 · · · hN−1 ]T

collects the TV channel gains, and a Gaussian signal model is
adopted, so that x ∼ CN (0, I).

Given h and σ2, the data y follow a circular complex Gaussian
distribution with zero mean and covariance matrix E[yyH |g, σ2] =
diag(g) + σ2I , where g = [ g0 g1 · · · gN−1 ]T with gk

.
=

|hk|2 is the vector of instantaneous channel power gains. Thus, the
pdf of the observations is

p(y|g, σ2) =
1

πN
∏N−1
n=0 (gn + σ2)

e
−

∑N−1
n=0

|yn|2

gn+σ2 . (1)

We assume that both the channel h and the noise power σ2 are
unknown. The detection problem can be stated as:

H0 : g = 0, H1 : g 6= 0. (2)

In the sequel, in order to take into account any potential structure
in the time variation of the channel, we will follow two different
approaches. On the one hand, a BEM [6] is used when the channel



is modeled as an unknown deterministic vector, which allows us to
represent the channel as h = Fc, where F ∈ CN×K is known
and has K ≤ N orthonormal columns (basis functions), and the
vector of coefficients c ∈ CK is unknown. On the other hand, when
the channel is modeled as a stochastic process, the only assumption
about the sequence of instantaneous channel power gains {gn} is
that it is a wide-sense stationary process, i.e. ḡ = E[g] ∝ 1, and
R = E[(g − ḡ)(g − ḡ)T ] is a Toeplitz matrix1. Note that for time-
invariant channels, one has g ∝ 1 and the two hypotheses become
indistinguishable, due to the fact that both g and σ2 are unknown.

3. GENERALIZED LIKELIHOOD RATIO TEST

The GLRT is a well-known approach in which the unknown param-
eters are replaced by their maximum likelihood (ML) estimates [7].
For the hypothesis testing problem (2), the GLRT is given by

L(y) =
max
σ2

p(y|g = 0, σ2)

max
g∈G,σ2

p(y|g, σ2)

H0

≷
H1

γ, (3)

where G denotes the set of feasible channel power gain vectors g
(such as those which can be achieved from the BEM h = Fc).

The ML estimate of σ2 under the null hypothesis H0 is given
by σ̂2 = 1

N

∑N−1
n=0 |yn|

2. The ML estimation problem under the
alternative hypothesisH1 can be written as

minimize
g∈G,σ2

N−1∑
n=0

[
log(gn + σ2) +

|yn|2

gn + σ2

]
, (4)

which is not convex and therefore difficult to solve in general. Al-
though we could resort to iterative numerical methods, possibly af-
fected by local minima, we will not follow that approach here. In-
stead, we will focus on the limiting case without any particular tem-
poral structure, i.e., G = RN+ . (This can be obtained from the BEM
if we chooseK = N , thus modeling fast time variations in the chan-
nel). In that scenario, the ML estimates of g and σ2 satisfy

ĝn + σ̂2 = |yn|2, n = 0, . . . , N − 1, (5)

which results in the following GLRT statistic2

LGLRT(z) =

(∏N−1
n=0 |yn|

2
)1/N

1
N

∑N−1
n=0 |yn|2

∝
N−1∏
n=0

zn, (6)

where zn
.
= |yn|2/

∑N−1
n=0 |yn|

2, and z = [ z0 · · · zN−1 ]T .
That is, the GLRT statistic is given by the geometric over arithmetic
mean of the instantaneous power of the observations. This test is
the well-know Bartlett’s test [8] for homoscedasticity (equality of
variances). Ratios of geometric to arithmetic means (of periodogram
samples) also appear in other contexts under the names of spectral
flatness measure or Wiener entropy [9]. Note that the GLRT rejects
the null hypothesisH0 for low values ofLGLRT in (6), which satisfies
0 ≤ LGLRT ≤ 1. Moreover, the exact and asymptotic distributions
of LGLRT can be obtained as particular cases of the results in [10].

1Clearly, these conditions are satisfied under the realistic assumption of a
wide-sense stationary TV channel {hn}.

2From now on, we will use∝ to denote equality up to monotone increas-
ing transformations not depending on the observations.

4. TOWARDS LOCALLY BEST INVARIANT TESTS

Although the GLRT usually results in simple and intuitive detection
rules with good performance, it is well known that it is not optimal
in the Neyman-Pearson sense [7, 11, 12]. In order to explore the
possibility of deriving optimal tests, we focus now on the class of
tests preserving the invariance of our testing problem under scaling
operations, and we consider the challenging case of very close hy-
potheses (that is, very low SNR). In particular, we obtain the density
ratio of the maximal invariant statistics3 [11,12] with the help of Wi-
jsman’s theorem [13], which ensures that (under mild assumptions)
this ratio can be obtained by integrating over the group of transfor-
mations defining the problem invariances. Thus, the density ratio of
the maximal invariant statistic (z) for our particular problem is

L(z, g) =

∫∞
0
p(ay|g, σ2)a2Nda∫∞

0
p(ay|g = 0, σ2)a2Nda

, (7)

where a ∈ R+ is a scale factor and a2N represents the Jacobian of
the transformation. Since we are considering scale invariant tests,
the density ratio will not depend on σ2, and we can assume σ2 = 1
without loss of generality. Moreover, noting that the density ratio
does not depend on the total power

∑N−1
n=0 |yn|

2, we can get rid of
the denominator in the above expression and write

L(z, g) ∝
∫ ∞
0

N−1∏
n=0

a2

1 + gn
e
− zna

2

1+gn da. (8)

Unfortunately, the right-hand side of (8) still depends on the un-
known parameters g, and therefore we can conclude that there does
not exist a uniformly most powerful invariant test (UMPIT) [11,12].
In order to check whether an LMPIT exists, we focus now on the
case of close hypotheses. A second-order Taylor expansion with re-
spect to g of the integral in (8) yields

L(z, g) '
∫ ∞
0

a2Ne−a
2

Ψ(a,z, g)da, (9)

where

Ψ(a,z, g)
.
= 1 + (a2z − 1)Tg

+
1

2
gT
[
(a2z − 1)(a2z − 1)T − diag

{
a2z − 1

}]
g.

(10)

Since this expression still depends on unknown parameters, we con-
clude that an LMPIT does not exist for this problem. Next we pro-
pose two alternative ways to overcome this difficulty and obtain use-
ful detectors, namely the introduction of a prior pdf on g, and the
ML estimation of the relevant parameters for our testing problem.

4.1. Bayesian Approach (Prior on g)

The introduction of a prior pdf on the channel coefficients h ob-
viously induces a prior pdf on g. Direct application of Wijsman’s
theorem to this case yields the density ratio

L(z) ∝
∫ ∞
0

a2Ne−a
2

Eg[Ψ|z]da. (11)

3A maximal invariant statistic can be informally defined as an invariant
function of the observations containing all the relevant statistical information
for the class of invariant detectors.
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Fig. 1. Probability of detection vs. the number of basis functions
used in the BEM model.

Moreover, taking into account that E[g] ∝ 1, ‖z‖1 = 1, and
that the covariance matrix R is a symmetric Toeplitz matrix, this
test statistic can be rewritten as

LGK(z) ∝ zTRz. (12)

where "GK" stands for generalized kurtosis, whose meaning will
become clear later. Thus, the test rejects the null hypothesis H0 for
large values of LGK. Note that in the limiting case of independent
channel gains hn, the matrix R has the form R = cI , where c is a
positive constant, and the test statistic reduces to

LGK(z) ∝ ‖z‖22 =
‖y‖44
‖y‖42

, (13)

which is always bounded betweenN−1 and 1. Interestingly, this par-
ticular test was obtained in a different context (testing for homogene-
ity of covariance matrices) in [14] following a completely different
approach. The test statistic can be seen as a monotone function of
the sample excess kurtosis [15]. This is as a direct consequence of
the fact that the observations yn follow a Gaussian distribution under
the null hypothesis H0 and a leptokurtic distribution (with kurtosis
γ = 3Var[gn]/E2[gn] > 0) under the alternativeH1.

4.2. Deterministic Approach (Basis Expansion Model)

Another means to avoid the dependency of (9) with the unknown
vector g is to follow a GLRT-like approach. Let us start by decom-
posing the vector h as h = ‖h‖2h̃, or equivalently, g = ‖g‖1g̃,
where obviously ‖g̃‖1 = g̃T1 = 1. Thus, in the low SNR scenario
(‖g‖1 � 1), the quadratic term in Ψ is negligible, and we can write

Ψ(a,z, ‖g‖1, g̃) = 1 + ‖g‖1(a2z − 1)T g̃. (14)

Now, we propose to find the vector h̃ (or equivalently g̃) maximizing
Ψ(a,z, ‖g‖1, g̃), where h̃ = F c̃ and ‖c̃‖2 = 1. To this end, write

Ψ(a,z, ‖g‖1, g̃) ∝ zT g̃ = c̃HFHΛzF c̃, (15)

where Λz = diag(z). Thus, we can see that our problem re-
duces to the maximization of the correlation between the sequences
of instantaneous power observations zn and the instantaneous
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Fig. 2. Probability of detection vs. SNR for two values ofK (number
of basis in the BEM).

SNRs gn, which resembles the idea of subspace matched detec-
tors [12]. Clearly, the solution is given by the principal eigenvector
of FHΛzF , and this results in the test statistic

LEV(z) = λmax

(
FHΛzF

)
, (16)

which is bounded between N−1 and 1. Note that this test rejects the
null hypothesis H0 for large values of LEV and, in the limiting case
of lack of temporal channel structure (with F a complete basis), the
test statistic reduces to the largest element in z.

5. SIMULATION RESULTS

The performance of the proposed detectors is illustrated in this sec-
tion by means of some numerical examples. In all the experiments,
the signal is generated as a circular complex white Gaussian pro-
cess with zero mean and unit variance, whereas the channel fol-
lows a BEM model whose vector of coefficients c is generated as
CN (0, N

K
IK). This ensures that E[||h||22] = N , and the SNR can

be defined as 1/σ2. The columns in F are the K columns with the
lowest frequencies in the unitary IDFT matrix. Note that this setting
benefits the EV detector, which always uses the actual value of K.

The matrix R used in the GK detector is chosen as [R]ij =
exp{−ρ|i − j|}. For this reason, we will refer to this test as the
GK(ρ) detector. In particular, when ρ is small, R will approach the
all-ones matrix (slow fading), whereas for high ρ, R will resemble
the identity (fast fading). We will denote the latter case as GK(Inf).

Fig. 1 shows the probability of detection (PD) for fixed false
alarm rate PFA = 0.1 vs. the number of basis functions K in the
BEM, which is proportional to the channel Doppler spread. The EV
test is seen to perform better for low values of K, whereas GK(Inf)
has the advantage for larger K. The parameter ρ allows to tune how
quickly the GK test assumes the channel to vary. As it could be
expected, with small ρ the performance is better for slow channels
(low K), whereas a larger ρ improves detection for faster channels.

The dependence of PD with respect to the SNR is depicted in
Fig. 2, with a low K to the left and with a higher one to the right.
Like in Fig. 1, the EV detector exhibits the best performance for
K = 3. However, as seen for K = 32, the GLRT beats the other
detectors for sufficiently high SNR. There are two explanations for
this behavior: first, in the derivation of the GLRT it was assumed
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Fig. 3. Performance of the proposed detectors versus the number of
samples N .

K = N (and in fact, this test is not the true GLRT if K < N ); and
second, the other detectors assume the SNR is low.

It is also noted that PD is bounded away from 1 even as the SNR
approaches infinity. In order to elucidate this effect, in Fig. 3 we
represent PD for fixed PFA vs. N and K, which take on the same
values. The SNR was chosen to be high so that the curves are close to
their asymptotic values when the SNR approaches infinity. In view
of this figure, we can conclude that PD will not approach 1 unless
the data record is long enough. For example, with K = N = 20 ,
PD remains bounded away from 1 for all of the detectors considered,
regardless of the SNR. The GLRT exhibits the highest ceiling due to
the same reasons as in the previous paragraph.

Finally, Fig. 4 highlights the importance of correctly setting the
parameter ρ in the GK detector. Each curve corresponds to a differ-
ent channel model. High values of K demand high values of ρ and
vice-versa. We must also point out that when channel variations are
fast (high K) the sensitivity of PD to the value of ρ is low, provided
that ρ is high enough. Hence, for fast-fading channels, knowledge
of the exact Doppler spread is not as critical as for slow channels.

6. CONCLUSION

Three detectors of Gaussian signals in time-varying channels have
been proposed. The first one follows the GLRT approach, whereas
the other two focus on the low-SNR scenario and are derived from
Wijsman’s theorem introducing a prior pdf or an ML estimate.
Whereas the first test assumes that the channel has no structure,
the other two exploit the available a priori information about the
Doppler spread of the channel by means of a parameter that has to
be properly tuned. Simulation results show that good performance
can be achieved for a wide variety of Doppler spreads. Future work
will be pointed to the theoretical analysis of the detectors as well as
to the derivation of alternative tests.
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