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ABSTRACT
Recently, a maximum likelihood estimate has been proposed
for road vehicle speed based on two omnidirectional micro-
phones. We undertake a broadband analysis in a stochastic
setting in order to expose the effect of input SNR, target
speed, bandwidth, and observation time in the SNR at the
output of the modified crosscorrelator on which the estimate
is based. The use of 1-bit quantized signals, which provides
an important hardware simplification, is also considered and
seen to result in mild performance degradation.

1. INTRODUCTION

Effective traffic management systems require accurate esti-
mation of parameters such as traffic density and flow, for
which a sensor infrastructure capable of automatic monitor-
ing of traffic conditions must be deployed. The design of
a transit data collecting system must include the choice of
sensor type as well as the development of adequate signal
processing and parameter estimation methods.

Several sensor technologies are commercially available
at present, differing in terms of robustness, cost, safety reg-
ulations, etc. A desirable system would be passive, cheap,
easy to install and maintain and operational in all-weather
day-night conditions. These goals can be achieved with mi-
crophone based schemes; however, available systems tend
to be expensive since they use arrays based on highly di-
rective microphones. We address the problem of directly
estimating vehicle speed from the acoustic signals received
at a pair of omnidirectional microphones located next to the
traveling path.

Our previous work [6, 8] presented an approximate
maximum likelihood (ML) vehicle speed estimate for such
a setting, as well as an analysis under a narrowband de-
terministic framework. One advantage of this estimate is
that it requires neither modeling or knowledge of the acous-
tic source (thus being effectively “blind”), nor intermediate
time delay estimation steps, which are potentially trouble-
some in real applications [3, 7]. In this paper we embrace a
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broadband stochastic setting for the analysis, and also study
the effects of using 1-bit quantized signals in the estimation
process. Such drastic quantization is attractive if estimation
is done in situ at the sensor location, in order to simplify the
required sampling and processing hardware. Cost reduction
becomes especially significant if a large sensor network is
to be deployed.
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Figure 1: Geometry of the problem

2. APPROXIMATE ML ESTIMATE

Figure 1 illustrates the setting. The microphones M1, M2

are separated 2b m and placed at D m from the lane center.
The acoustic source is assumed to travel at constant speed
v0 on a straight path along the road, parallel to the array.
The time reference is set at the closest point of approach
(CPA), i.e. t = 0 when the source is equidistant to M1

and M2. The propagation time τi(t; v0) from the source to
microphoneMi is given by

τ1,2(t; v0) =
1
c

√
D2 + (v0t± b)2,

with c = 340 m/s, the speed of sound (assumed constant for
simplicity). Define also the angle and distance between the
source and the array center

α(t; v0) = arctan
v0t

D
, d(t; v0) =

D

cosα(t; v0)
.



Let the sound wave emitted by the vehicle be s(t). Tak-
ing into account the attenuation of sound with distance,
the signal received at Mi within the observation window
[−T/2, T/2] is

ri(t) = si(t) + wi(t)

=
s(t− τi(t; v0))
(d(t; v0)/D)

+ wi(t), |t| ≤ T/2, (1)

with w1(·), w2(·) additive noise processes, assumed sta-
tionary, independent, zero-mean jointly Gaussian with psd
N0/2 W/Hz in the band |f | < fs/2 (fs = sampling fre-
quency). The problem is to estimate v0 given the observed
signals ri(t), and without knowledge of the sound wave s(t)
or its power spectrum.

In [6, 8] an approximate ML estimate was derived. It is
given by v̂0 = argmaxv ψ(v), where

ψ(v) ∆=
1
T

∫ T/2

−T/2

r1(t− δτ(t; v))r2(t)dt, (2)

with the differential time delay (DTD) δτ(t; v) defined as

δτ(t; v) ∆= − 2b
c

sinα(t; v)
1 − v

c sinα(t; v)
. (3)

This estimate is based on the fact that, taking into ac-
count source motion, s2(t) ≈ s1(t − δτ (t; v0)) is satisfied.
It exploits knowledge of the DTD parametric dependence
with v to accordingly time-compand the signal r1(t) before
performing the crosscorrelation (2), which must be com-
puted over the whole observation window for each candi-
date speed.

3. UNQUANTIZED SIGNALS

We proceed to derive expressions of the mean and variance
of the crosscorrelator output for a broadband acoustic sig-
nature, assuming no quantization.

3.1. Expected value of ψ(v)

Modeling the acoustic wave s(·) as a realization of a
WSS stochastic process with autocorrelationRs(τ) and psd
Gs(f), the expected value of ψ(v) is given by

E[ψ(v)] =
1
T

∫ T/2

−T/2

E[r1(t− δτ (t; v))r2(t)]dt

≈ 1
T

∫ T/2

−T/2

Rs[∆2τ (t; v0, v)]
d2(t; v0)/D2

dt (4)

where

∆2τ (t; v0, v)
∆= − 2b

c
[sinα(t; v0) − sinα(t; v)] (5)

and a first-order approximation of τ1(t − δτ(t; v); v0) has
been used, as in [6]. It is also shown in [6] that (5) can be
accurately approximated as

∆2τ (t; v0, v) ≈ q sin[2 arctan(zt)], (6)

where

q
∆=
b(v − v0)
c
√

2v0v
, z

∆=
√

2v0v
D

. (7)

Writing Rs[∆2τ ] in terms of Gs(f) in (4), changing the
order of integration and using the expansions

f(r sinx) =
∑

k

Jk(r)f(kx),

where f(·) is either sin(·) or cos(·) and Jk is the k-th order
Bessel function, then after retaining only the dominant term
in the summation one obtains

E[ψ(v)] ≈ 2α0

tanα0

∫ ∞

0

Gs(f)J0(2πfq)df, (8)

where
α0

∆= α(T/2; v0)

is the angular aperture. Thus E[ψ(v)] can be seen as the
scaled Hankel transform [5] of Gs(f)/f evaluated at q.

Assume that s(·) is a bandpass process centered in fc

and with bandwidth B, i.e.

Gs(f) =
{
S0/2, |f ± fc| < B/2,

0, otherwise. (9)

The corresponding integral (8) has no closed-form solution.
However, since Rs(τ) = S0B sinc(Bτ) cos(2πfcτ), then
from (6),

Rs[∆2τ (t; v0, v)]

≈ S0B
sin[πBq sin(2 arctan zt)]
πBq sin(2 arctan zt)

× cos[2πfcq sin(2 arctan zt)]

= S0B

∞∑
k=−∞

Jk(πBq)
πBq

sin(2k arctan zt)
sin(2 arctan zt)

×
∞∑

n=−∞
Jn(2πfcq) cos(2n arctan zt). (10)

Retaining only the dominant terms in the summations (n =
0 and k = ±1), substituting back in (4) and integrating, one
obtains

E[ψ(v)] ≈ α0

tanα0
S0B somb(Bq)J0(2πfcq), (11)

where

somb(x) ∆=
2J1(πx)
πx



is the sombrero function [5]. (11) depends on v and v 0 via
q; it peaks at v = v0 since in that case q = 0. The somb and
J0 factors reflect the influence of bandwidth B and central
frequency fc respectively. As fc increases, the main lobe of
the J0 factor becomes narrower. The somb factor has the ef-
fect of attenuating the lateral lobes, more so as B increases.
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Figure 2: Output SNR vs. target speed. Lowpass signal and
noises with B = 5 KHz and σ2

s/σ
2
w = −10 dB.

3.2. Variance of ψ(v0)

If the signal and noise processes are lowpass Gaussian with
bandwidth B and powers σ2

s , σ2
w, then the variance of

ψ(v)|v=v0 can be determined following the approach in [2]:

var[ψ(v0)] ≈ α0

tanα0

σ2
s(σ2

s + σ2
w)

BT
+

σ4
w

2BT
(12)

This expression is more accurate for smaller α0. The corre-
sponding output SNR of the correlator is given by

SNRo
∆=

E2[ψ(v0)]
var[ψ(v0)]

=

(
α0

tan α0

)2

BT(
α0

tan α0

)(
1 + σ2

w

σ2
s

)
+ 1

2

(
σ2

w

σ2
s

)2 (13)

SNRo is plotted in Fig. 2 vs. target speed, for several
values of the observation interval T , and in two settings:
D = 10 m (array far from road) and 3 m (array close to
road). A degradation in SNRo is observed as v0 increases,
for fixed T ; this is due to the signal attenuation which be-
comes more pronounced at a given time separation from the
CPA as the target moves faster. Increasing T improves the
output SNR, even though the factorα0/ tanα0 is decreased,
since its influence in the time-bandwidth product BT out-
weighs this effect. It is also seen that placing the array closer
to the source trajectory improves the output SNR for low
speed values, but decreases it for high speeds.

4. 1-BIT QUANTIZED SIGNALS

If the received signals ri(t) are quantized to a single bit be-
fore performing the crosscorrelation (2), then for Gaussian
s(·), following [4] one obtains

E[ψ(v)] ≈ 2
πT

∫ T/2

−T/2

arcsin

(
Rs[∆2τ (t; v0, v)]

σ2
s + σ2

w
d2(t;v0)

D2

)
dt.

(14)
Note the dependence ofE[ψ(v)] with the input SNR σ2

s/σ
2
w

in this case. For high SNR, the denominator of the arcsin
argument in (14) is close to σ2

s .
For a bandpass process with Gs(f) as in (9), we can

mimick the development in section 3.1 to arrive at

E[ψ(v)] ≈ 2
π

arcsin [somb(Bq)J0(2πfcq)] . (15)

On the other hand, for low SNR, the arcsin argument is com-
fortably less than one, so that one can approximate

E[ψ(v)] ≈ 2
πσ2

w

1
T

∫ T/2

−T/2

Rs[∆2τ(t; v0, v)]
d2(t; v0)/D2

dt, (16)

a scaled version of the expression for the unquantized case.
Computation of var[ψ(v0)] in the 1-bit case involves the

computation of a set of 4-variate orthant probabilities for
which no closed-form expression is known [1]. For low in-
put SNR, we can approximate this variance by the variance
obtained when the signal is absent. Using the fact that, for
x, y jointly Gaussian zero-mean random variables with cor-
relation coefficient ρ,

E[sign(x) sign(y)] =
2
π

arcsinρ,

this variance computes to

var[ψ(v)] ≈ (2/π)2

BT

∫ ∞

0

[arcsin(sinc x)]2dx

=
4
π2

0.78
BT

, (17)

given a large time-bandwidth product BT . To obtain (17),
use has been made of the integral identity∫ T/2

−T/2

∫ T/2

−T/2

f(x− y)dxdy =

T

∫ T

−T

f(x)dx −
∫ T

−T

|x|f(x)dx.

In the case s(·) is lowpass with bandwidthB, the output
SNR that results is

SNRo ≈ 1.28
(

α0

tanα0

)2 (
σ2

s

σ2
w

)2

BT. (18)

Comparing (18) to (13) for σ 2
w/σ

2
s � 1, it is seen that the

asymptotic loss in output SNR due to 1-bit quantization for
low input SNR is 10 log(2/1.28) = 1.9 dB.
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Figure 3: Standard deviation of the speed estimate using
double-precision (solid) and 1-bit quantized (dashed) sig-
nals. 2b = 1 m, B = 5 KHz.

5. NUMERICAL RESULTS

In order to gain more insight into the speed estimator per-
formance, Monte Carlo simulations based on 2000 inde-
pendent trials were conducted. Fig. 3 shows the standard
deviation σ(v̂0) for both double-precision and 1-bit quan-
tized signal cases, assuming an array separation 2b = 1 m,
c = 340 m/s, and observation windows of T = 1 and 0.25
s, for two settings: D = 10 m and D = 3 m. The acoustic
signature was modeled as a lowpass Gaussian process with
bandwidth B = 5 KHz, sampled at fs = 10 KHz. The
delayed values required to generate the synthetic received
signals were computed via interpolation.

The standard deviation of the estimate increases with
target speed v0, as expected in view of the degradation of
the output SNR given by (13) with v0 seen in Fig. 2. The
effect of a larger T is also seen to be more beneficial for
slower targets.

The degradation in terms of variance incurred when us-
ing 1-bit quantization is seen to be mild. Notice from Fig. 4
that the relative loss, defined as

σ(v̂0)|1bit − σ(v̂0)|double

v0

is higher for low target speeds. Also, increasing T from
0.25 s to 1 s perceptibly reduces this loss for lower values
of v0, but not so much for higher ones.
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Figure 4: Relative loss of the 1-bit based w.r.t. the double-
precision based estimator.

T (s) 1.5 1.0 0.75 0.5 0.4 0.3 0.2 0.1

16-bit 43 44 44 44 48 48 50 31
1-bit 43 43 44 44 44 38 44 47

Table 1: Estimated speed (km/h) with varying T .

Last, we present the results obtained with real traf-
fic signals, sampled at fs = 14.7 KHz and recorded
with 16 bit precision with omnidirectional microphones
in a setting similar to that of Fig. 1 with 2b = 0.9
m and D ≈ 14.5 m. (The signals are available at
http://www.gts.tsc.uvigo.es/˜valcarce/traffic.html). Fig. 5
shows the waveform and spectrogram of the acoustic sig-
nature of a compact car traveling at ≈ 40 km/h. Observe
the presence of time-localized disturbances of impulsive na-
ture as well as lowpass background noise with no significant
spectral content beyond 1 KHz.

Fig. 6 shows ψ(v) computed with 16- and 1-bit quan-
tized signals. The CPA was taken at t = 3.45 s, determined
from the short-time signal variance estimate using a sliding
window of length 70 ms after highpass filtering the recorded
signals (also shown in Fig. 5). Note how the main lobe
widens as T is reduced. Table 1 gives the speed estimates
for several T . It is apparent that a window of T ≥ 0.5 s is
required, and that using 1-bit quantization is a viable option.
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Figure 5: Acoustic signature of a passing car: waveform
(top), spectrogram (middle), and short-term power estimate
at both channels after highpass filtering (bottom).

6. CONCLUSIONS

Under a broadband Gaussian model for the signal and the
noises, we have developed expressions for the expected log
likelihood function for the speed estimation problem, as
well as for the output SNR of the modified crosscorrelator
on which the estimate is based. The influence of parame-
ters such as true speed, time-bandwidth product, and angu-
lar aperture has been highlighted. The case of 1-bit quan-
tized estimation and its subsequent output SNR degradation
has also been examined. From this analysis, together with
numerical results from synthetic signals as well as real traf-
fic data, single bit quantization appears as a very attractive
choice in order to reduce hardware complexity at the sensor
location with a moderate loss in performance.

The estimate analyzed requires knowledge of the CPA
location. In practice this parameter must be estimated as
well, jointly or otherwise. Also, the robustness of the esti-
mate to uncertainties in the array parameter values (mostly
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Figure 6: ψ(v) computed with signals quantized to 16
(solid) and 1 bit (dotted): T = 1 s (left) and 0.2 s (right).

c and D) has to be assessed. Ongoing work is aimed along
these directions.
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