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Abstract—The problem of resampling factor estimation as a
means for tampering detection has been largely investigated.
Most of the existing techniques rely on the analysis of cyclic
correlations induced in the resampled signal. However, in this
paper, a new direction is explored by addressing the same
problem in terms of the set-membership estimation theory. The
proposed technique constructs a model of the problem using
available a priori knowledge and in consonance with a finite
number of observations that comes from the resampled signal
under study. With this information, the proposed technique is
able to provide an estimate of the resampling factor applied to
the original signal and, if required, an estimate of such signal and
an estimate of the interpolation filter. The performance in terms
of accuracy and MSE of the proposed approach is evaluated and
comparative results with state-of-the-art methods are reported.

I. INTRODUCTION

Multimedia contents, such as digital images, audio or

video, have become the most extensively used vehicle for

communication during last years. The massive proliferation

of these digital contents over the Internet, across all of the

media or through social networks has converted them on an

appreciated and valuable asset. At the same time, the rapid

growth of editing tools that enable an unskilled person to easily

manipulate any of these multimedia contents, has boosted

an important concern about their authenticity. In particular,

when a multimedia file is used as a proof of facts in a legal

proceeding, it is imperative to know its origin and also to be

able to trace back the processing history of its content, in order

to justify whether the file can be admitted as a legal evidence.

In the past few years a number of techniques have been

developed to verify the authenticity or integrity of multimedia

contents in a blind way, i.e., without using any known signal

like a digital watermark. These tools rely on the analysis

of traces left by the capturing device during the acquisition

process or any other operation applied after its creation, such

as compression and/or edition. These traces, also known as

digital footprints, have been broadly investigated in the case

of images [1], and increasing attention is given to audio [2],

and video [3]. Therefore, nowadays, a forensic analyst can find

a considerably large set of tools to determine the processing

history of a multimedia content.

One of the widely known methodologies to detect forgeries

on multimedia contents consists in the analysis of the resam-
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pling factor of small portions across the whole content, which

should be constant if no manipulation has been performed

[4-8]. For instance, when an image splicing is carried out,

it is very likely that one of the pasted regions has been

transformed geometrically to adapt the content to the scene,

thus introducing an inconsistency on the resampling factor in

that part of the image. In the same way, when two audio

signals with different sampling rates are mixed, then at least

the sampling rate of one of them must be adjusted in order to

avoid audible distortions.

The proposed techniques in [4-8] work remarkably well

when uncompressed signals are used, but the corresponding

detectors can be easily deluded when a post-processing or

simply a lossy-compression is applied to their content, as

it is described in [9]. Furthermore, all these approaches are

based on the study of the periodic correlation that is inherently

induced in the resulting signals after applying a resampling

operation. The main drawbacks of the frequency analysis

for resampling factor estimation were pointed out in [10].

Despite the unavoidable ambiguity in the identification of the

resampling factor due to frequency aliasing, the main issues

are: 1) a considerably large number of samples are necessary

to circumvent the windowing effect in the frequency domain;

2) the presence of periodic patterns in the content usually

leads to a wrong detection or estimation. By relying on the

rounding operation applied after resampling, the estimator

derived in [10] is able to sort out these problems. However,

its applicability is quite limited since only a fixed linear

interpolation filter is considered through the definition of the

estimator.

To overcome these deficiencies and pursuing the idea behind

the work in [10], which gave important insights about how to

perform resampling factor estimation, a new approach for the

identification of resampled signals is provided in this paper.

The procedure derived in [10], where a vector of observations

coming from a linearly resampled signal is tested against a set

of plausible resampling factors to find the correct one, is able

to quickly discard the tested resampling factors that lead to an

empty feasible set for the original signal. This formulation of

the problem can be linked to the set-membership estimation

theory (a.k.a., set-theoretic estimation), which is well known

in the field of automatic control and also in certain signal

processing areas [11,12].

Set-membership estimation is commanded by the concept of

feasibility and provides solutions whose singular characteristic



is to be consistent with all information arising from the

observed data and the a priori knowledge about the problem

to solve. As it was stated above, frequency-based methods

cannot always provide reliable solutions. Indeed, such so-

lutions could infringe known constraints about the problem.

However, when the problem is approached in set-membership

terms, the provided solution will be consistent with all the

known constraints, according to the observed data. This is

very important from the point of view of a forensic analyst that

must always provide objective judgements on the identification

of forgeries, basing his decision on evidences, i.e., on the

observed data, and on the prior knowledge about the problem

under analysis.

To this extent, by relying on the set-membership theory and

generalizing the work carried out in [10] to any interpolation

filter and also to a wider range of resampling factors, we

propose a new methodology for resampling factor estimation.

The structure of the paper is as follows: Section II describes

the formulation of the problem in mathematical terms and

following the set-membership framework; Section III intro-

duces a practical implementation to solve the derived problem;

Section IV shows the experimental results obtained under

different settings; and finally, Section V concludes the paper

and future lines of work are pointed out.

II. PROBLEM FORMULATION

Before introducing the set-membership formulation, the

description of all the steps involved in the sampling rate

conversion by a factor ξ of a 1-D signal will be presented.

Note that we will only focus the analysis on 1-D signals to

keep the definition of the problem more tractable, but the 2-D

extension can be straightforwardly obtained. The following

notational conventions will be used along the paper: boldface

capital letters will denote matrices, while boldface lowercase

letters will represent column vectors. Non-boldface letters will

refer to scalar variables and, finally, calligraphic letters will be

only used for denoting sets.

Let x(0) be a column vector that contains N
(0)
x samples

from the original signal before being resampled. The applied

resampling factor is defined as ξ , L
M
, i.e., the ratio between

the upsampling factor L ∈ N
+ and downsampling factor M ∈

N
+. Regarding the interpolation filter, denoted by the column

vector h(0), we consider a freely designed low-pass FIR filter

of order N
(0)
h − 1 with cutoff frequency ωc = min

(

π
M
, π
L

)

in

order to avoid aliasing. Under these premises, the resampled

version of x(0), can be written as

y(0) = X(0)h(0),

where X(0) is a matrix of size N
(0)
z × N

(0)
h with

N
(0)
z = L

M
N

(0)
x ,1 which is constructed from the samples of

x(0), i.e., x
(0)
i with i = 0, . . . , N

(0)
x − 1, and as a function of

the employed resampling factor ξ. Each element (i, j) of the

1Without loss of generality and for the sake of simplicity, we will assume

that N
(0)
x is a multiple of M and also that N

(0)
h

is an odd number.

matrix X(0) is denoted by X
(0)
ij and is defined as:

X
(0)
ij ,

{

x
(0)
iM+k−j

L

, if iM+k−j

L
∈
(⌈

iM−k
L

⌉

,
⌊

iM+k
L

⌋)

∩ Z

0, otherwise,
(1)

with k ,
N

(0)
h

−1

2 , i = 0, . . . , N
(0)
z −1 and j = 0, . . . , N

(0)
h −1.

In the above expression, ⌈·⌉ and ⌊·⌋ denote the ceiling and floor
functions, respectively.

The interpolated values of y(0) will be generally represented

with more bits than for the original signal x(0), hence a

requantization to the original precision is commonly done prior

to saving the resulting signal. This quantized version of the

resampled signal, denoted by z(0), is expressed as

z(0) = Q∆

(

y(0)
)

= Q∆

(

X(0)h(0)
)

, (2)

where Q∆ (·) represents a uniform scalar quantization with

step size ∆ (i.e., the same one used for the original signal).2

A. Set-membership formulation

As it was pointed out in the Introduction, the set-

membership theory is governed by the concept of feasibility;

hence, once applied to a particular problem, its main goal is to

find a solution that satisfies simultaneously all the constraints

defined through the observed data and the a priori knowledge

about the problem. In those cases where there exists no

solution fulfilling all the requirements at the same time, the

problem does not have a feasible solution.

Let us first introduce the set-membership formulation of a

general problem whose solution belongs to a space Ξ. Each
piece of information from the observed data, i.e., each i-th
observation, is associated with a property set Si in the solution

space Ξ and can be defined as follows

Si = {a ∈ Ξ : a satisfies Ψi} ,

where Ψi represents a constraint of the problem and a is

an arbitrary point of the solution space Ξ. Each subset Si

represents all the estimates that are consistent with the i-th
observation. Therefore, the feasible set of solutions for the

problem will be composed by the intersection of all the prop-

erty sets that are obtained with N available observations, thus

having S = ∩N−1
i=0 Si, where S is also commonly known as the

solution set. If the solution set is empty, i.e., ∩N−1
i=0 Si = ∅,

then the problem is designated as infeasible. Otherwise, the

problem is feasible and a set-membership estimate consists in

choosing any point â ∈ S .
Set-membership theory allows us to define a feasibility

problem for checking whether a vector of observations z

of length Nz has been resampled or not with a candidate

resampling factor ξc , Lc

Mc
, with Lc,Mc ∈ N

+. Note that,

in this case, we will assume that Nz is a multiple of Lc

for the sake of simplicity and without loss of generality. To

characterize this problem in set-membership terms, we need

to define the solution space Ξ, which in this case turns out to

2Note that having the same quantization step size in both cases is not a
limiting condition, since the problem can be reformulated if it is not so.



be the Cartesian product of two sets, i.e., Ξ = X ×H, where

the set X represents the domain of the original signal, and the

set H specifies the domain of the interpolation filter.

Prior knowledge about the problem helps us define these

two sets. For the original signal, we know that each sample xi

has been quantized with step size ∆, so we could assume that

xi ∈ ∆Z, but this assumption would make the resolution of the

subsequent optimization problem notably more complicated.

In order to lighten the consequent computational burden, we

assume without loss of generality that each sample lies in a

real interval [xmin, xmax], thus having

X =
{

x ∈ R
Nx : xmin ≤ xi ≤ xmax, i = 0, . . . , Nx − 1

}

,

where Nx represents the dimension of the set and is defined

as a function of the number of observations and the candidate

resampling factor, i.e., Nx = Nz
Mc

Lc
. Regarding the interpo-

lation filter, we assume that each coefficient falls in a real

interval [hmin, hmax], hence

H =
{

h ∈ R
Nh : hmin ≤ hi ≤ hmax, i = 0, . . . , Nh − 1

}

,

where the dimension of the set comes from the order of the FIR

filter, which is assumed to be Nh−1. The interval [hmin, hmax]
can be specified according to any particular filter, for instance,

for a linear interpolator we could presume hi ∈ [0, 1], ∀i.
In order to check if each component zi of the vector of

observations has been generated through the sampling rate

conversion of a vector x ∈ X by a candidate resampling factor

ξc and using an interpolation filter h ∈ H, we must rely on

the quantization applied to the resampled signal in (2). Since

we assume as known the size of the quantization step, i.e.,

∆, we have information about the interval where the values

of the resampled signal y = Xh will lie on.3 Therefore, any

pair (x,h) from the solution space must generate values of

the resampled signal y with the candidate resampling factor

ξc inside the interval defined by the quantization error of the

scalar quantizer with step size ∆, that can be written as

zi −
∆

2
< yi ≤ zi +

∆

2
, for i = 0, . . . , Nz − 1.

Consequently, we assume that the feasible region imposed by

each observation zi of the signal under analysis is limited by

two hyperplanes that yield the following property sets

Si = Xi ×Hi =

{

(x,h) ∈ Ξ : −
∆

2
< xT

i h− zi ≤
∆

2

}

,

(3)

for i = 0, . . . , Nz−1, and where xi is a column vector built up

with the Nh elements of the i-th row of matrix X. Finally, the

feasible solution set for our problem will be the intersection

of these Nz property sets: S = ∩Nz−1
i=0 (Xi × Hi). If such

intersection leads to S = ∅, then there exists no x ∈ X
and h ∈ H that would generate the vector of observations

z with such candidate resampling factor ξc. Otherwise, an

estimate of the original signal x̂ together with an estimate of

the interpolator ĥ can be obtained by taking any (x̂, ĥ) ∈ S .

3Note that the matrix X with size Nz ×Nh is generated according to (1)
but with the elements of the vector x.

III. PRACTICAL ALGORITHMS

One of the widely-known methods for solving feasibility

problems in terms of set-membership theory is the Optimal

Value Ellipsoid (OVE) algorithm [13]. However, this method

can only be applied when constraints are convex and, in our

particular case, the modeling of the resampling identification

problem requires nonconvex terms. As it can be observed from

the definition of the property sets in (3), the constraints of our

problem are actually bilinear, due to the product between the

variables x and h. Under these conditions, the feasible solution

set is not necessarily convex, leading us to consider nonlinear

programming algorithms as a way to solve the problem.

Before explaining the particular strategy we have designed,

we formally introduce the feasibility problem (derived from

Section II-A) that is addressed for the identification of resam-

pled signals: given a vector of observations z, a candidate re-

sampling factor ξc, and a particular length for the interpolation

filter Nh, we want to

find x,h,
subject to x ∈ R

Nx ,h ∈ R
Nh ,

xmin ≤ xi ≤ xmax, i = 0, . . . , Nx − 1,
hmin ≤ hj ≤ hmax, j = 0, . . . , Nh − 1,
−∆

2 < xT
k h− zk ≤ ∆

2 , k = 0, . . . , Nz − 1.
(4)

If the problem proves to be feasible, then the forensic analyst

could also be interested in finding an estimation of both the

original signal and interpolation filter that have generated the

vector of observations z. This can be done by considering an

objective function that measures the squared error between the

resampled signal y = Xh and the vector of observations z,

leading us to the following optimization problem

minimize ‖Xh− z‖22,
subject to x ∈ R

Nx ,h ∈ R
Nh ,

xmin ≤ xi ≤ xmax, i = 0, . . . , Nx − 1,
hmin ≤ hj ≤ hmax, j = 0, . . . , Nh − 1,
−∆

2 < xT
k h− zk ≤ ∆

2 , k = 0, . . . , Nz − 1,
(5)

where ‖ · ‖22 denotes the squared Euclidean norm. We remark

that since this is a nonconvex problem, the resulting estimates

x̂ and ĥ will probably correspond to local minima. Given

this situation, we have first considered global optimization

techniques (e.g., branch-and-bound strategies), to solve this

optimization problem. However, we have found difficulties

handling large-scale problems (with a few hundreds of vari-

ables), thus deciding to use a local optimization method as a

practical way to solve our problem.

A. Solver based on local optimization

The main goal of local optimization is not the search for

a globally optimal solution of the problem, but only the

pursuit of a locally optimal point that minimizes the objective

function among a feasible region close to it. Local optimization

has been deeply studied with the aim of solving nonlinear

problems, and many different algorithmic approaches can be

found in the literature. In our case, we have selected an



interior-point method, that is available through the function

fmincon of MATLAB.

In general, local solvers are less computationally demanding

than global solvers and, consequently, they can handle in a

more suitable way large-scale problems. Nevertheless, local

solvers require a good starting point for the optimization

variable in order to work properly. The selection of the starting

point is crucial since it affects the final result provided by the

solver. For instance, by choosing a starting point that is far

from a feasible region, the solver could wrongly classify a

feasible problem as infeasible. This could lead the forensic

analyst to wrongly declare that the observed signal was not

resampled by a factor ξ when it actually was so.

In the following, we focus on the process we have designed

to obtain a starting point near the feasible region of our

problem (whenever the problem is actually feasible). Thus,

given a vector of observations z, a candidate resampling factor

ξc, and the length of the filter Nh, the following steps are

taken:

1) An approximation x̃ of the original signal is first

obtained. To that end, the vector of observations z

is resampled by a factor equal to the inverse of the

candidate resampling factor,4 i.e., by ξ−1
c = Mc

Lc
.

2) Since z = Q∆ (Xh) ≈ Xh, an approximation of the

interpolation filter can also be obtained if X is known.

For this purpose, an approximation of matrix X, denoted

by X̃, is obtained according to (1) using the components

of vector x̃ (calculated in the previous step) and using

the considered values for ξc and Nh.

3) After obtaining X̃, an approximation h̃ of the interpola-

tion filter is constructed as h̃ = X̃+z, where X̃+ denotes

the Moore-Penrose pseudoinverse of matrix X̃.

Even though the obtained starting point, composed by x̃ and

h̃, might not strictly belong to the solution space nor satisfy all

the constraints of the problem, it will be sufficiently close to a

feasible region of the problem (again, whenever the problem

is actually feasible) and the local solver will be able to find a

feasible solution after several iterations. Notice that when the

candidate resampling factor ξc does not match the actual one

ξ, the obtained starting point will probably be far from the

true feasible region, thus yielding an infeasible solution.

In practice, for solving the feasibility problem in (4), a con-

stant objective function can be considered. As we will show in

next section, this practical implementation, i.e., the local solver

together with a good starting point, is able to successfully

solve the feasibility problem in (4). Moreover, in those cases

where the resulting solution set is not empty after solving (4),

this practical approach is also able to provide locally optimal

solutions by further addressing the optimization problem in

(5).

IV. EXPERIMENTAL RESULTS

The performance analysis of the proposed technique is

twofold. In the first part, synthetic signals are used to quantify

4The low-pass filter used in this particular case is designed to avoid aliasing

and it is constructed from a spectral Kaiser window, independently of h(0).

TABLE I
DETAILS OF THE INTERPOLATION FILTERS FOR DIFFERENT SCENARIOS.

Scenario 1 Scenario 2

ξ < 1 Kaiser, N
(0)
h

= 2M + 1 Kaiser, N
(0)
h

= 4M + 1

ξ > 1 Linear, N
(0)
h

= 2L+ 1 Cubic, N
(0)
h

= 4L+ 1
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Fig. 1. Illustrative representation of the solutions given by the local solver
to the feasibility problem in (4), for the scenario 1 in Table I. Green boxes
imply feasibility, whereas blue boxes represent infeasibility.

the accuracy solving the feasibility problem in (4) and also to

measure the Mean Square Error (MSE) of the estimates ob-

tained through the optimization problem in (5). In the second

part, a realistic scenario with audio signals is considered.

A. Performance analysis with synthetic signals

For the evaluation of the feasibility problem in (4), we

construct the original signal x(0) using 8-bit precision samples

gathered from a discrete uniform distribution in the interval

[0, 255], thus having xmin = 0, xmax = 255 and ∆ = 1.
We take into consideration a finite discrete set of resampling

factors, obtained by sampling the interval [0.6, 3] with step

sizes 0.1 (from 0.6 to 2) and 0.5 (from 2 to 3). The same

set is used for the true resampling factor ξ and for checking

the feasibility problem with ξc. Regarding the interpolation

procedure, we employ the filters specified under Scenario 1

in Table I: a linear interpolator for ξ > 1, and a low-pass

FIR filter designed through a spectral Kaiser window when

ξ < 1. Note that both filters have their coefficients inside the

interval [−1, 1], thus we assume hmin = −1 and hmax = 1. For
simplicity, Nh is selected according to Table I, but using ξc.
Taking into account all these settings and fixing the number

of observations to N
(0)
z = 512, the study of the feasibility

problem is carried out with the proposed local solver providing

a starting point (computed as in Section III-A). In Fig. 1, the

obtained results are shown in a graphical manner, where the

horizontal axis represents the true resampling factor ξ, and the

vertical axis contains the tested candidate resampling factor ξc.
Green boxes mean that the problem has a feasible solution for

the pair (ξ, ξc), while blue ones symbolize that there exists no

solution that satisfies all the constraints of the problem.

There are three important aspects that become apparent from

the results shown in Fig. 1:



1) When the feasibility problem is evaluated for a candidate

resampling factor ξc < 1, there is always a feasible

solution regardless of the true resampling factor. We

must remark that this is not an error due to the set-

membership approach; instead, in this case there is not

sufficient information (prior or observed) to rule out such

ξc. In mathematical terms: the number of degrees of

freedom of the problem, which is the dimension of the

solution space, i.e.,Nx+Nh, is larger than the number of

observations Nz , given that Nx = Nz
Mc

Lc
. This problem

could be overcome by adding enough a priori knowledge

about the distribution of the original signal.

2) All the cases where the candidate resampling factor ξc
coincides with the true one ξ have always been catego-

rized as feasible problems. This is an intrinsic property

of the set-membership formulation of the problem and

perhaps the most valuable feature of this method.

3) For several resampling factors ξ > 1 (e.g., ξ ∈
{1.5, 2, 3}), when ξc > 1 the solver is capable of finding

a feasible solution, even if the true resampling factor

is not equal to the candidate factor (e.g., ξ = 1.5 and

ξc = 1.2). This is due to the existence of solutions

that are theoretically feasible. However, given that the

opposite case (e.g., ξ = 1.2 and ξc = 1.5) will not yield
a feasible solution, no ambiguities are possible.

From the last point, we have found that, when an original

signal is resampled by a factor ξ > 1, then the set of all the

possible candidate resampling factors ξc > 1 that lead to a

feasible solution (besides the case ξc = ξ), are:

ξc ∈
{

Lc

Mc
: Lc

Mc
< ξ, (Lc = kL) ∧ (Mc > kM), k ∈ N

+
}

,

(6)

where Lc ∈ N
+ and Mc ∈ N

+ must be coprime, and ∧
represents the logical conjunction operation. This property also

holds for the second scenario in Table I.

As a conclusion, excepting the cases where the resampling

factor ξ < 1, if we have a sufficiently large number of

observations, then we are able to exactly match the resampling

factor applied to the original signal.
1) Accuracy analysis for different numbers of observations:

To quantify the performance of the method solving the prob-

lem in (4) we use the accuracy, defined as the following ratio:

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
,

where TP,TN,FP,FN represent the number of true positives,

true negatives, false positives and false negatives, respectively.

In our problem, a true positive occurs when a feasible solution

is found in (4) and the candidate resampling factor matches

the actual one, i.e., ξc = ξ. On the other hand, a true negative

takes place when no feasible solution is achieved in (4) and the

candidate resampling factor is indeed different from the true

one, i.e., ξc 6= ξ. Note that for those cases where a feasible

solution is theoretically possible even if ξc 6= ξ (i.e., for the

candidate resampling factors in (6) and for ξc < 1 when ξ >
1), we will consider that a true positive case occurs if such

feasible solution is found.
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Fig. 2. Accuracy of the proposed approach achieved by the local solver
under the two scenarios of Table I, for different numbers of observations.

Fig. 2 shows the accuracy obtained in the two scenarios

described in Table I as a function of the true resampling

factor ξ and for different numbers of observations N
(0)
z ∈

{64, 128, 256, 512}. From this plot, we can observe that the

accuracy improves as the number of observations increases,

which is the expected behavior, since with each new piece

of information the feasible set in the solution space generally

gets smaller. Furthermore, by comparing the results gathered

from the two scenarios, the dependence between the number

of observations and the degrees of freedom of the problem

becomes evident, obtaining generally worse performance in

the second scenario where the order of the interpolation filters

is larger. Such dependence also justifies the smaller accuracy

when ξ < 1 in both scenarios.

2) MSE analysis for different numbers of observations:

Concerning the results obtained when the optimization prob-

lem in (5) is solved (after having reached a solution in (4)),

we will only show, for the sake of brevity, the empirical MSE

of ĥ (i.e., (1/Nh)‖h
(0) − ĥ‖2). Taking into account the two

scenarios defined in Table I, the evolution of such empirical

MSE as a function of the resampling factor and for different

numbers of observations N
(0)
z ∈ {128, 256, 512}, is depicted

in Fig. 3. As we can observe, the MSE of ĥ decreases as the

resampling factor increases and, although the differences are

not very significative, smaller values are generally attained

when the number of observations increases. The important

reduction of the estimation error for ξ > 1 is mainly due to the

higher redundancy that is present on those resampled signals.

The noisy shape of the MSE (e.g., ξ = 1.6 in Fig. 3(b)) is

a consequence of the local optimization performed, which in

some cases converges to a local minimum that can be far from

the global optimum point, but still yielding a feasible solution.

B. Performance analysis with real audio signals

For the evaluation of the set-membership approach solving

the feasibility problem in (4) within a real scenario, we use

the “Music Genres” audio database [14], from which we take

a subset of 100 uncompressed audio files with 10 different
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Fig. 3. MSE of ĥ when solving the optimization problem in (5) with the
local solver, under the scenarios of Table I, and for different numbers of
observations.

music styles. Each original audio signal is quantized to a 16-bit

precision per sample, thus having xmin = 0 and xmax = 216−1.
For comparison, the same tests are carried out with two state-

of-the-art methods: the “EM method” proposed in [4], and the

“ML method” in [10]. Given that the ML method has only

been defined for linear interpolators and ξ > 1, we consider

a discrete set of resampling factors in the interval [1.1, 2]
(sampled with a step size of 0.1) and a linear interpolation

filter as the one specified in scenario 1 from Table I.

In this case, we are interested in comparing the percentage

of correct resampling factor estimation for different numbers

of observations: N
(0)
z ∈ {64, 128, 256, 512}. In Fig. 4, we

report the obtained results with each method. The best perfor-

mance is achieved by the ML method, which actually never

fails with any of the considered parameters. These optimal

results are possible due to the complete knowledge of the origi-

nal filter used in the resampling process. Interestingly, a similar

performance is obtained with the proposed set-membership

approach (unless for N
(0)
z = 64), where limited assumptions

are made about the filter, thus increasing the applicability of

the method. On the other hand, the EM method clearly exhibits

some of the shortcomings mentioned in the Introduction, i.e.,

a high dependency on the number of observations and a worse

performance for those resampling factors close to 1 due to the

windowing effect. These limitations are not an issue for the

proposed set-membership technique.

V. CONCLUSIONS

Set-membership estimation theory has proven to be a useful

resource for addressing the problem of resampling factor

estimation. The presented technique provides reliable solutions

that do not violate any constraint of the problem, and thus are

a valuable asset for a forensic analyst, who needs to provide

unquestionable proofs of tampering. Moreover, the evaluation

of the proposed approach in a real scenario with audio signals

has demonstrated its good performance.

As future work, a deeper theoretical analysis of the problem

must be carried out to derive, for instance, the average number
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Fig. 4. Comparison of the correct estimation percentage of the proposed
set-membership technique (dotted lines) versus the ML method (solid lines)
and the EM method (dashed lines).

of observations that are necessary to discard a candidate

resampling factor or the minimum number of observations that

are necessary to converge to an optimal solution.
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