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Abstract—Image forensics aims at detecting clues regarding
the history of a digital image. However, many forensic techniques
present some limitations in real life scenarios, where the appli-
cation of post-processing operators may alter the characteristic
footprints exploited by forensic tools. In this paper we study
the combination of JPEG compression and full-frame linear
filtering, analyzing their impact on the statistical distribution of
the Discrete Cosine Transform (DCT) coefficients of the image.
We extract characteristic features from the DCT distributions
and build an effective classifier able to jointly disclose the
applied compression quality factor and the filter kernel. The
proposed technique is computationally efficient and effective, as
demonstrated by the extensive experimental analysis.

I. INTRODUCTION

Increasingly sophisticated and cheap digital technologies,
coupled with the wide spread of Internet, have made it possible
to easily acquire, copy, share and manipulate digital images
with very little effort. This has led to problematic issues con-
cerning multimedia authenticity and reliability. Digital image
forensics has emerged as a new discipline to help regaining
some trust in digital photographs, by detecting clues about the
history of a content [1]. In the absence of any form of digital
watermarks or signatures, this field works on the assumption
that most forms of tampering will disturb some properties
of the image. To the extent that these perturbations can be
quantified and detected, they can be used to authenticate a
photo. Techniques in digital forensics can be categorized as:
(1) Pixel-based, detecting statistical patterns at the pixel level
[2]; (2) Format-based, detecting statistical patterns specific to
an image compression format (e.g., JPEG or GIF) [3]; (3)
Camera-based, exploiting artifacts introduced by the camera
lens, sensor or on-chip post-processing [4]; (4) Physically-
based, modeling and measuring the interactions between phys-
ical objects, light and the camera [5]; and (5) Geometry-based,
exploiting the principles of image formation as governed by
projective geometry [6].

A vast amount of forensic techniques have been proposed
in the literature so far, mainly aimed at detecting the specific
processing operators an image went through [7], but little
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attention has been paid to collecting information about pro-
cessing chains of operators. Indeed, the application of multiple
post-processing may seriously affect the forensic analysis of
a content, altering or even erasing the characteristic inherent
properties left by previous processing and exploited by existing
forensic detectors [8].

Since the JPEG standard describes the image compression
scheme that is currently most widely used, this compression
represents a forensically interesting operation to be studied.
Indeed, several forensic works in the literature exploit the
characteristic footprint left in the DCT coefficients distribution
of an image during compression, aiming at discovering traces
of previous JPEG compression and estimating the employed
quantization step [3][9][10]. Recent results show that even
multiple instances of JPEG compression can be detected
[11][12][13]. Unfortunately, the above mentioned techniques
have some limitations in real life scenarios, where chains
of operators may have been applied to the content [14]. In
our previous work [15], we demonstrated that linear image
processing, such as filtering, often applied to the entire image
(full-frame) as post processing for image enhancement, but
possibly also for forensic footprints removal, may alter the
characteristic artifacts introduced by the JPEG compression
scheme. In [15] an accurate mathematical model was proposed
to theoretically characterize the probability distribution of the
DCT coefficients of JPEG full-frame linearly filtered images.
Assuming the quantization step to be known, such knowledge
can be exploited in order to retrieve the applied filter kernel
by measuring the difference between the derived models (each
model depends on the applied filter kernel) and the actual
distribution of a to-be-tested image.

In this work, we relax the quite strong assumption we made
in [15] about the knowledge of the compression quantization
step and propose a simple yet very effective forensic tool
which is now able to jointly detect the filter kernel and the
quality factor of the JPEG compression that have been applied
to an image, so to retrieve the entire processing history of
the content. We extract a set of significant features of the
DCT distributions of the compressed and filtered image and
build a linear classifier able to effectively discriminate different
combinations of filtering and compressions. To the best of our
knowledge, the presented work represents a first approach to
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Fig. 1: Shown is the block scheme of the considered application scenario. Panel (a) shows the original DCT histogram for
frequency (0, 1) for uncompressed images and its curve fitting. In panel (b), the same distribution after JPEG quantization
with step ¢(0,1) = 10 is presented. Panel (c) shows the given distribution when a linear average filter of size 3 x 3 has been
further applied to the image, together with the derived model for such distribution (red line).

jointly disclose traces of chain processing operators such as
JPEG compression and full-frame linear filtering.

The structure of the paper is the following: in Section II we
describe the considered processing operators and their effect
on the probability distributions of the DCT coefficients of an
image, while in Section III we present our forensic approach
to jointly disclose traces of compression and linear filtering;
Section IV deals with the experimental results, and finally in
Section V some conclusions are drawn.

II. APPLICATION SCENARIO

In this work, we study the case of JPEG compressed images
that have been further post-processed with a full-frame linear
filter, as shown in Fig.l. The main goal is to disclose the
quality factor used for compression, together with the filter
kernel employed to post-process the JPEG image.

Nowadays, JPEG standard is the most widely used com-
pression scheme for digital images. In its most commonly
used format, it is well known to be a lossy scheme, i.e., some
information is lost during the process, mainly due to a quanti-
zation operation. JPEG compression is based on a 8 X 8 non-
overlapping block-by-block DCT frequency decomposition. In
order to quantize each DCT coefficient, a 8 x 8 quantization
table is used, consisting of 64 integer-valued quantization steps
q(i,7), where (i,5) € {0,...,7} indicates to the (i,7)-th
frequency within each block. The JPEG standard provides
standard quantization tables, which correspond to specific
compression Quality Factors QF and have to be properly
selected in order to achieve a good trade-off between visual
quality and compression rate. The quantized DCT coefficients
are finally entropy-encoded (Huffman coding) and stored in
the JPEG file format. Decompression can be performed by
applying all the steps in reverse order.

The JPEG compression scheme forces the DCT coefficients
to be mapped to integer multiples of the quantization step,
resulting in specific artifacts in the frequency domain. In
Fig. 1, panel (a) shows the histogram of the DCT coefficients at
frequency (0, 1) collected from a set of 1338 of un-compressed
images [16], while panel (b) depicts the distribution of the
same data after quantization, with ¢(0,1) = 10. It becomes
clear that the structure of such histogram is related to the
employed quantization step. For the sake of presentation we

disregarded in the picture the round-off and truncation errors,
introduced in the pixel domain by the compression scheme.

However, certain post-processing is very likely to be applied
to the compressed image (e.g., to remove blocking artifacts,
or to remove the JPEG quantization footprints) and this may
perturb or even delete the characteristic artifacts left by JPEG
compression. In such a scenario, existing forensic tools which
exploit JPEG footprints to disclose the compression history
of a content may become ineffective. In this work we study
the case where a full-frame linear filtering is applied to a
JPEG compressed image. Linear filtering is a very common
and useful tool applied for image enhancement, such as edge
sharpening, noise removal, illumination correction and deblur-
ring. The convolution between an image and a linear filter
kernel produces a filtered image whose pixels are the weighted
sum of a certain number of neighboring pixels. Panel (c) in
Fig. 1 shows the histogram of the DCT frequency coefficients
of panel (b) after filtering the image in the pixel domain with a
linear Average 3 x 3 filter. The characteristics of the histogram
of the quantized coefficients are clearly perturbed, but new
patterns appear, depending both on the employed compression
quality factor and the filter kernel.

In our previous work [15], we studied such artifacts in order
to estimate the filter operator an image has gone through,
assuming that the compression quality factor (specifically,
the quantization table) used at the encoder is known by the
estimator. We analyzed the DCT statistical properties of a
JPEG compressed and linearly-filtered image and mathemati-
cally established the relationship between the DCT coefficients
before and after filtering, as follows:

yissJs (Z,j) = - X808 (273) 4 Nis:Js (273) @))

where X and Y are the L; x Lo size JPEG image and its
filtered version, respectively, in the 8 x 8 DCT domain. So
“i8:J8 (4, §) stands for the (i,5) DCT coefficient at the (is, jg)
block, where 7,5 € {0,...,7}, ig € {0,...,(L1/8) —1}, and
Js €40,...,(Ly/8)—1}." Moreover, 7; j and N*®75 (i, j) € R
are a frequency dependent scaling factor and noise term,
respectively. By exploiting the statistical properties of the
distribution of DCT coefficients in JPEG images X8 (i, j),

For the sake of simplicity, we will assume L; and Lo to be integer
multiples of 8.
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Fig. 2: In panel (a) is the distribution of DCT coefficient at
frequency (0,1) of an image that has been compressed with
q = 10 and linearly filtered with a linear average filter of
size 3 x 3. The black dot marks the first positive peak in
the distribution, located at A. Panel (b) shows the modulo-A
reduced version of the histogram.

we derived a model to theoretically characterize the probability
distribution of the DCT coefficients of a JPEG image filtered
with a given filter kernel. Note that the effect of the filtering
is not purely multiplicative on the transform domain, mainly
due to two reasons: 1) we are using the block-based DCT,
not the Fourier Transform, 2) due to the block-based nature
of the considered transform, the full-frame filtering introduces
interference from neighboring blocks, which tends to scatter
the original comb-shaped histogram. Indeed, we have shown
in [15] that the characteristic peaks in the DCT distribution of
JPEG compressed and filtered images are located at integer
multiples of scaled versions of the employed quantization
steps, namely, 7, ; - ¢(i,7) plus the mean of the noise term
in (1). Finally, in order to identify the applied linear filter,
a distinguishability measure (the chi-square measure) was
employed to quantify the difference between the derived
models (each model depends on the applied filter kernel) and
the actual histogram of the tested image. The minimum value
of this distinguishability measure was taken as evidence for
the identification of the applied filter. We refer to [15] for
further details.

In this work we remove the assumption on the quantization
step to be fixed and known, proposing a novel forensic
technique able to detect clues about the history of the content,
i.e., in this context, the compression quality factor and the filter
kernel that have been applied to the image. This technique is
based on a set of novel metrics, which, to the best of authors’
knowledge, are used for the first time in forensic applications.

III. PROPOSED APPROACH

As described in Section II, we have at hand a well-
established model for the probability distribution of the DCT
coefficients of a JPEG compressed and linearly filtered image.
The characteristic peaks of the DCT distribution, as shown in
Fig. 1(c) and formalized in (1), are located at integer multiples
of a scaled version of the corresponding quantization step. It
becomes clear that both the location and the shape of these
peaks strongly depend on the applied compression factor and

the kernel used to filter the image.

In this work, we exploit such knowledge for defining a set
of significant features that characterize the compressed and
filtered images. Given a to-be-tested JPEG-compressed and
filtered image, let us define Y (i,7) as the vector containing
the 8 x 8 DCT frequency (,j) coefficients and whose k-th
element is Y'[8%/L2l.k=L218k/L2] (5. furthermore, H (w, &)
denotes the histogram of a vector w with bin width §,
H(w,d,k) its value at bin k, and A(4,5) > 0 the location
of the characteristic peaks in H(|Y (4,7)|,0(¢,)). Note that
the peak location depends on the analyzed (i,j)-th DCT
frequency coefficient. For the sake of notational simplicity, in
the following we will avoid to explicitly express the frequency
dependency of both the histogram and peak location, and will
drop the indices (7,j). Fig. 2(a) serves as an example to
show the detected peak (black dot) in the distribution of the
(0,1) DCT coefficients of an image that has been quantized
with step ¢(0,1) = 10 and post-processed with a linear
average filter of size 3 x 3. Different peak detection algorithms
may be employed. In the current work we seek those points
whose neighbors on both sides are smaller by, at least, a
given threshold T'; then, based on the typical monotonically
decreasing nature of the DCT coefficients distribution about
the origin, from the resulting set we get the point with the
largest histogram value. Mathematically,

S = {k eNt:H(|Y|,0,k) > H(|Y|,6,k +1)+ T,
A = § H(|Y],6,k).

arg max H(|Y], 6, k)
This algorithm has been proven to be computationally very
efficient and accurate.

Once we have determined the peak location A, we are
interested in computing a peakiness measure of the histogram
of Y around the integer multiples of A. In order to do that,
we define the modulo-A reduced version of Y, specifically

Y £ YmodA,

which returns values in (—A/2, A/2]L1L2/64 and compute
the empirical variance of Y, i.e.,
(y/kl,sz.

please note that we have assumed Y to be zero-mean, based
on the symmetry of X with respect to the origin. Figure
2(b) shows the result of modulo-A reduction of the histogram
from panel (a). Given 02, we measure the peakiness of the
histogram of Y as

64 L1/8—1Ly/8—1
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It is clear that if the values in Y are clustered around the
integer multiples of A, then the values in Y, which take values

in (—A/2,A/2], will be clustered around the origin; therefore
the empirical variance of the latter will be small in comparison
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feature l description
A peak location
B measure for histogram peakiness (2)
|Z] number of zero DCT coefficients
Uf, empirical variance of Y

TABLE I: Features used to train the classifier, extracted from
the histogram of the DCT coefficients for each frequency.

with A2, and consequently a low value of 3 will be a clue of
a peaky histogram of Y.

Typically, in the quantization tables provided by the JPEG
standard, larger quantization steps are employed for high-
frequency DCT coefficients, since they have little visual sig-
nificance. As a consequence, in some images the coefficient
values of certain high-frequency DCT subbands might be
all quantized to zero. According to [17], the number of
zero quantized DCT coefficients mainly contributes to the
compression performance. Correspondingly, no peaks would
be detected in this case. However, it could also be the
case that the image just does not contain high frequencies,
because it was, for example, low-pass filtered. Let us define
Z;; = {is, js : Y*®I8(i,j) = 0} as the set of indices of zero-
quantized coefficients for each DCT frequency subband (4, j);
in the sequel we will avoid the (¢, ) indices for the sake of
notational simplicity. We compute the cardinality |Z| of such
a set and take it as another significative feature to characterize
the behavior of DCT coefficients at high frequencies.

Similarly, we calculate also the empirical variance of Y as

L1/8—1Ls/8—1

64 .
oy = LiLy Z Z (Ykl7k2)27

k1=0 ko=0

in order to take into account the general behavior of each
frequency. This value will depend on the nature of the image
itself, on the applied compression and on the employed filter.

These features, which are extracted for each AC 8 x 8-DCT
frequency and are summarized in Table I, take into account
the location of the peaks, the peakiness of the histogram, and
the variance of the DCT coefficients of the given frequency.
Therefore, they are expected to summarize the properties of the
considered histogram. Consequently, a linear kernel Support
Vector Machine (SVM) [18], fed with these sets of features,
i.e., with a vector of dimensionality 4 x 63 = 252, is used to
classify the considered images in terms of their compression
factor and undergone linear filter.

IV. EXPERIMENTAL RESULTS

The main goal of the proposed approach is to jointly
disclose the compression quality factor and the filter kernel,
if any, applied to an image. We carry out an extensive
experimental analysis in order to verify the effectiveness of
the proposed approach.

We start considering 600 uncompressed images present in
the UCID dataset [16], and compress them using compression
quality factors QF € {40, 50, 60, 70, 80, 90}. We then convolve

1. LP Average [3 X 3]
2. LP Average [5 X 5]
group 1 - 5
4. LP Gaussian [3 x 3], 0% =1
6. LP Gaussian [5 X 5], 02, = 1
3. LP Gaussian [3 x 3], 02 = 0.
group 2 ) 5
5. LP Gaussian [3 X 3], 0% = 0.5
7. HP Laplacian, o = 0.2
group 3 .
8. HP Laplacian, o = 0.7
9. LP Laplacian, o = 0.2
group 5 .
10. LP Laplacian, o = 0.7
aroup 4 11. HP Average [3 X 3]
12. HP Average [5 X 5]
group 6 | 13. Identity filter

TABLE 1II: Filters selected to be in the filter dictionary,
grouped according to the similarity of their frequency re-
sponse.

the compressed images with a filter kernel chosen among a
fixed set of linear filters. In these experiments, we selected
both low-pass (LP) and high-pass (HP) filters (e.g., Moving
Average, Gaussian, Laplacian), with different settings for the
window size, the variance J% or the scale parameter «, as
reported in Table II. Note that also the case when the identity
filter (i.e., no filter at all) has been applied is taken into
account. As in [15], we notice that some of the selected filters
present a high similarity in their frequency response, thus
being difficult to be distinguished. This issue is not specific
of the presented framework, but a general limitation. In light
of this, we group the filters based on the similarity of their
frequency responses for the analyzed DCT coefficients and
allow them to be classified within the same class. Table II
shows groups based on the similarity of the linear filters
selected to be in the dictionary.

The image dataset is then split into two halves: one for
training and one for testing. In particular, in our experiments
we will have 300 images that will be applying each possible
combination of JPEG compression (6 quality factors QF)
and linear filtering (13 filters). As a result, we have a total
of 300 x 13 x 6 = 23400 images, both for training and
testing. For each image, the set of features in Table I is
extracted and the classifier is trained with them. Given the
6 groups used for representing the filters and the 6 considered
compression factors QF, a total of 36 classes will have to
be discriminated by the SVM classifier. The performance of
the proposed algorithm is verified in terms of the percentage
of correct classification over the image database, jointly for
JPEG compression and image filtering. The accuracy of correct
classification is reported in Fig. 3(a). Results are reported as
bar graphs, where each bar represents one of the combinations
of the 13 filters and the 6 chosen quality factors. For example,
the first 13 bars, starting from the left, correspond to the
classification of images that have been filtered with each
of the filters in the dictionary and compressed with quality
factor QF= 40. The next 13 bars refer to images filtered and
compressed with QF= 50, and so on until QF= 90. Colors
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Fig. 3: Panel (a) shows the classification accuracy when each image in the database has been filtered with each of the 13
selected filters and compressed with different QFs. Each color identifies the class considered during classification (6 groups of
filters with 6 selected quality factors, for a total of 36 classes). Similarly, in Panel (b) is the classification accuracy, but with
a further post-processing JPEG compression with QF= 90. Panel (c) shows the legend.

have been chosen in order to identify the 36 classes considered
by the SVM classifier. The matrix in Fig. 3(c) explains this
color choice. The overall accuracy is 89.2%, indicating that
the proposed method is quite effective in jointly disclosing
the applied JPEG quality factor and linear filter kernel.

If we discarded the frequency response similarity among
the filters, so to have a total of 78 classes (13 filters and 6
different compression factors) we would be able to reach an
average accuracy of just 74.5%, thus confirming the confusion
in the classification introduced by the filters similarity.

The proposed forensic approach results to be very versatile
and could be employed for slightly different purposes. As an
example, it could be also used for detecting only the applied
compression factor, by discarding the detection of the linear
filtering. In such a scenario, the number of classes narrows
down to 6, corresponding to the considered quality factors QF
€ {40, 50, 60, 70,80,90}. Given the same model computed
in the above mentioned study case when 36 classes were
considered (i.e., exactly the same SVM is used), the system
is now able to reach an average accuracy of 89.4%. Please
note that the obtained value is almost identical to the accuracy
achieved for the joint estimation of JPEG QF and linear filter
kernel. Therefore, no advantage is obtained by marginalizing
the classification with respect to the filter kernel estimation;
this seems to indicate that the used SVM is indeed exploiting
with a similar significance the impact of both the QF and the
filter kernel, i.e., the consideration of both parameters is indeed
required even if only one of them wants to be estimated.

As a particularly interesting case, we can also check the
performance of the proposed scheme when the input images
have been only compressed, i.e., when the identity filter (or
no filter) has been applied. In this scenario, we compress
each of the selected 600 images with different quality factors,

QF € {30, 40,50, 60,70,80,90,100}. Then, the features in
Table I are extracted, and half of them are selected to train
a new classifier, with 8 classes. The reached overall classi-
fication accuracy is 99.1%. This test demonstrates that the
proposed method not only is the first successful approach
to disclose both compression and filtering together, but it
could be effectively applied to detect only compression when
no linear filtering has been applied to the image. Indeed,
the obtained accuracy is comparable with the performance
given by state-of-the-art forensic techniques [3][9][10], yet
being very simple and computationally efficient. It is worth
noticing that techniques in the literature designed to detect
the applied compression factor in JPEG images dramatically
decrease their performance when a linear filtering is applied
as post-processing.

As a last experiment, we want to test the robustness of the
proposed approach with respect to double compression. The
study case here considered will be the same as described in
Fig. 1, but with the addition of a further final operator after
filtering, i.e., another JPEG compression. From a practical
point of view, this problem makes sense in a number of
application scenarios. Just as an example, we can mention
the case where an image seller tries to sell a low-quality
(small JPEG QF) image as a high-quality one (with large
JPEG QF). Since schemes are already available in the literature
for detecting double JPEG compression [11][12][13], in order
to succeed he/she needs to remove the low-quality JPEG
footprints; using a linear filter is a plausible choice. Then,
the image is re-compressed with the new larger QF. To the
best of our knowledge, this scenario has not been considered
previously in the literature. As we have done in the previous
tests, we compress each image in the dataset with each of
the selected QF € {40,50,60,70,80,90} and filter them



’ Detect ‘ # filters ‘ QF range ‘ # classes SVM | Accuracy ‘
Fgroups + QF 13 {40, ...,90} 36 89.2%
F + QF 13 {40, ...,90} 78 74.5 %
QF 13 {40, ...,90} 89.4%
QF 1 {30, ...,100} 8 99.1%
Feroups + QF * 13 {40, ...,90} 36 88.6%

* double compressed with second QFy = 90

TABLE III: Experimental results in terms of classification
accuracy obtained in different application scenarios.

with each one of the selected filters in Table II. Next, each
image is further compressed using a compression quality factor
QFs = 90. The same features as in Table I are extracted
and given as input to the classifier. The accuracy of correct
classification is reported in Fig. 3(b). We remind that each bar
in the graph represents one of the combination of the 13 filters
and the 6 chosen quality factors. For example, the first 13 bars,
starting from the left, correspond to the classification of images
that have been filtered with each of the filters in the dictionary
and compressed with quality factors QF; = 40 and QF», = 90.
Colors identify the 36 classes here considered by the SVM
classifier. The average accuracy that the system reaches is
88.6%, proving that the extracted features are significant for
classification even in presence of a second compression.

The experimental analysis we conducted and the obtained
results are summarized in Table III. The first column contains
the goal of the experiment: to jointly detect the applied filter
kernel and the compression factor, either taking into account
the filters groups in Table II (Fgoups + QF) or not (F + QF),
or to detect only the quality factor QF. The second column
contains the number of tested and applied linear filters, while
the third column contains the range of the applied compression
factors (with step 10). The number of the classes considered
during classification via SVM is reported in the fourth column,
while the average total accuracy is shown in the last column.

The presented experimental analysis demonstrates the ef-
fectiveness and the robustness of the proposed forensic tool,
but also its versatility to be applied for different goals, as the
detection of compression both in JPEG images and in JPEG
linearly filtered images, or to jointly disclose the applied chain
of operators (here, JPEG compression and full-frame linear
filtering).

V. CONCLUSIONS

We have presented a novel and computationally efficient
forensic technique able to jointly detect the applied compres-
sion factor and the undergone linear filter kernel in digital
images. Compared to [15], we do not make any assump-
tions about the knowledge of the compression quantization
step, which is here blindly disclosed together with the filter
kernel. Four characteristic features of the DCT histogram
are proposed; they are used for performing the compression
and filter detection by using a SVM classifier. Experimental
results demonstrated the effectiveness and the versatility of the
proposed approach. This framework may be regarded as a first

approach to analyze and successfully classify JPEG images
that have been further post-processed with a full-frame linear
filtering, opening the door to investigate the effects of other
chain operators.
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