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Abstract—In this work, the problem of resampling factor
estimation for tampering detection is addressed following the
maximum likelihood criterion. By relying on the rounding
operation applied after resampling, an approximation of the
likelihood function of the quantized resampled signal is obtained.
From the underlying statistical model, the maximum likelihood
estimate is derived for one-dimensional signals and a piecewise
linear interpolation. The performance of the obtained estimator is
evaluated, showing that it outperforms state-of-the-art methods.

I. INTRODUCTION

In the last few years, an increasing number of passive

forensic techniques have emerged with the aim of furnishing

information about the authenticity, integrity or processing

history of a multimedia content. In the field of digital image

forensics, many works have been oriented to the detection and

localization of tampered regions. A well-known problem in

this research area is the detection of resampling traces as a

means to unveil the application of a geometric transformation

and the estimation of the resampling factor for specifying the

parameters of the applied transformation.

Seminal works addressing this topic [1]-[3], were focused

on the detection of the particular correlation introduced be-

tween neighboring pixels by the resampling operation inher-

ently present when a spatial transformation (e.g., scaling or

rotation) has been performed.

Since the resampling operation can be modeled as a time-

varying filtering that induces periodic correlations, links be-

tween this problem and the cyclostationarity theory have been

established in [4] and [5], providing a theoretical framework

for the estimation of the parameters of the transformation.

Within this framework, two different approaches have been

proposed for finding the optimum prefilter that might be ap-

plied to a resampled image for achieving the best performance

in the estimation of the resampling factor [6], [7].

At some point, all the mentioned approaches perform an

analysis in the frequency domain for the detection or estima-

tion of this periodic behavior, by looking at spectral peaks

corresponding to underlying periodicities. Nevertheless, the

frequency analysis presents some drawbacks: 1) a considerably

large number of samples is needed to obtain reliable results; 2)

the presence of periodic patterns in the content of the image
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usually misleads the detector and the estimator; and 3) the

windowing effect impairs the performance of the mentioned

methods when slight spatial transformations are employed

(i.e., with a resampling factor near 1).

With these shortcomings in mind, in this work we will

address the estimation of the resampling factor following the

Maximum Likelihood (ML) criterion. The approximation of

the likelihood function of the resampled signal will rely on the

rounding operation applied after the resampling. Therefore, by

correctly modeling the relationship between the distribution of

the quantization noise and the quantized resampled signal, an

optimum estimator of the resampling factor will be provided.

The proposed approach will only consider one-dimensional

(1-D) signals, but the idea can easily be extended to the two-

dimensional case, to be applied to images. The three discussed

drawbacks of the previous methods will be sorted out with the

proposed estimator.

The rest of the paper is organized as follows: In Section II,

the formalization of the problem we want to solve is intro-

duced, while the description of the method for estimating the

resampling factor based on the ML criterion is considered in

Section III. Experimental results with synthetic and real signals

are reported in Section IV for evaluating the performance

of the estimator. Finally, conclusions and future work are

discussed in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A digital image forgery can be done in many different ways,

but it usually involves cropping some region from a particular

image and pasting it into a different one. The adjustment of

this new content to a specific scene is commonly carried out by

applying geometrical transformations (e.g., rotation or scaling)

that inherently need to perform a resampling operation. Since

the tampering should not introduce visible distortions, only

slight transformations will be applied, thus requiring that the

resampling estimator should achieve good performance for

resampling factors near 1. This work just studies the case

where the resampling factor is larger than 1. Of course, the

use of resampling factors smaller than 1 are commonly used;

however, the analysis is formally quite different, so we leave

the study of such case for a future work.

The problem of resampling estimation is addressed for 1-

D signals because the derivation of the Maximum Likelihood

Estimate (MLE) of the resampling factor is more tractable and



affordable than considering directly the two-dimensional (2-

D) case. However, we will see in Section III that the obtained

method following the ML criterion can be easily extended to

the 2-D case. The same holds for the considered interpolation

filter. The use of a piecewise linear interpolation scheme is

a clear limitation of our work, which should be considered

in this regard as a first attempt to introduce MLE principles

in the resampling estimation problem. We notice that the

methodology here introduced can be extended to include more

general filters.

A. Notation

A time-dependent 1-D signal will be represented as x(n).
Random variables will be denoted by capital letters (e.g., X)

and their realizations by lowercase letters (e.g., x). Random
vectors will be represented with bold capital letters (e.g., X),

their outcomes with lowercase letters (e.g., x) and each ith
component will be denoted as xi. The length of a vector x

will be expressed as Lx ∈ N
+ and, for convenience, the index

i to identify each component of the vector will satisfy i ∈
{0, . . . , Lx − 1}. A vector of length N starting from the nth
component, will be denoted by xn = (xn, . . . , xn+N−1)

T .

Floor and ceiling functions will be represented by ⌊·⌋ and ⌈·⌉,
respectively. To denote the set of all integer numbers multiple

of a given integer value n, we will use the notation nZ. For a
compact notation, we will use mod(a, b) to denote the modulo

operation: a mod b.

B. Problem formulation

In the following, we will mathematically describe all the

steps involved in the change of the sampling rate of a 1-

D signal x(n), by a resampling factor denoted by ξ. This

description will allow us to set out an approach based on the

ML criterion in Section III, for the estimation of the applied

resampling factor.

Let us start by defining the resampling factor ξ as the ratio

between the applied upsampling factor L and downsampling

factor M , i.e., ξ , L
M with L ∈ N

+ and M ∈ N
+. To ensure

a unique representation of ξ, we will consider that L and M
are coprime, but note that this is not a limitation. As it was

stated above, the possible range of values for the resampling

factor will be ξ > 1. For this range of resampling factors, the

general expression for a resampled signal y(n) is given by the

following relation with the original signal x(n):

y(n) =
∑

k

x(k)h

(

n
M

L
− k

)

,

where h(t) with t ∈ R represents the interpolation filter.

As it was previously indicated, the interpolation filter used

during the resampling process will be assumed linear, with

the following impulse response

h(t) =

{

1− |t|, if |t| ≤ 1

0, otherwise
.

Therefore, considering this interpolation filter, each compo-

nent of the resampled vector can be computed as the linear

combination of at most two samples from the original signal,

y(n) =















x
(⌊

nM
L

⌋) (

1−mod
(

nM
L , 1

))

+x
(⌊

nM
L

⌋

+ 1
)

mod
(

nM
L , 1

) , if n /∈ LZ

x
(

nM
L

)

, if n ∈ LZ

.

Regarding the set of values that the original signal can take,

we will consider that all the samples x(n) have already been

quantized by a uniform scalar quantizer with step size ∆, in

order to fit into a finite precision representation. Even though

the interpolated values y(n) will be generally represented

with more bits, a requantization to the original precision is

often done prior to saving the resulting signal. This quantized

version of the resampled signal, denoted by z(n), will be

expressed as

z(n) =















Q∆

(

x
(⌊

nM
L

⌋) (

1−mod
(

nM
L , 1

))

+x
(⌊

nM
L

⌋

+ 1
)

mod
(

nM
L , 1

)) , if n /∈ LZ

x
(

nM
L

)

, if n ∈ LZ

.

(1)

where Q∆(·) represents a uniform scalar quantization with

step size ∆ (i.e., the same one used for the original signal).
From the second condition in (1), it is evident that some of

the original samples are “visible” in the quantized resampled

version. On the other hand, the remaining values of the resam-

pled signal are the combination of “visible” and “non-visible”

samples from the original signal that are later quantized. This

fact will help to define the likelihood function of the quantized

resampled signal.

III. ML APPROACH TO RESAMPLING ESTIMATION

For the definition of the MLE of ξ, the original signal

will be represented by the vector x with Lx samples and the

corresponding quantized resampled signal by the vector z with

Lz samples. For convenience, we will assume that the length

of the original signal is Lx = N + 1 with N a multiple of

M , and so, the corresponding length of the resampled signal

will be Lz = ξN + 1. We will find it convenient to model

vectors x and z as outcomes of random vectors X and Z,

respectively.
Based on the above analysis, the estimation of the resam-

pling factor ξ̂ following the ML criterion relies on finding the

value of ξ that makes the observed values of the quantized

resampled vector z most likely. Nevertheless, given a vector

of observations, their components zi could be misaligned with

the periodic structure of the resampled signal in (1). Hence,

a parameter φ must be considered to shift the components of

the vector, in order to align the periodic structure of zi with

z(n). The possible values of φ lie in the range 0 ≤ φ ≤ L−1.
Therefore, the MLE of ξ becomes

ξ̂ = argmax
ξ>1

max
0≤φ≤L−1

fZ|Ξ,Φ(z|ξ, φ).

Note that we are not considering a set of possible parameters

for the interpolation filter because in the case of a piecewise



linear interpolation, once we fix the resampling factor, then the

filter is automatically determined (cf. Eq. (1)). On the other

hand, given that the shift φ is not a determining factor for the

derivation of the target function, for the sake of simplicity, we

will assume that the vector of observations is correctly aligned

and, thus, the MLE can be written as

ξ̂ = argmax
ξ>1

fZ|Ξ(z|ξ).

For the calculation of that joint probability density function

(pdf) we will exploit the fact that some samples of the

interpolated signal exactly match the original (cf. Eq. (1)),

and also the linear relation established between the remaining

samples.

A. Derivation of fZ|Ξ(z|ξ)

Along the derivation of the joint pdf fZ|Ξ(z|ξ), for the sake
of notational simplicity, we will refer to this one as fZ(z),
considering implicitly that we are assuming a particular resam-

pling factor ξ. From the dependence between the quantized

resampled signal and the original one, the joint pdf can be

written in a general way as

fZ(z) =

∫

RN+1

fZ|X(z|x)fX(x)dx.

We assume that no a priori knowledge on the distribution of

the input signal is available. This is equivalent to considering

that fX(x) is uniform and, consequently, the joint pdf can be

approximated by the following relation

fZ(z) ≈

∫

RN+1

fZ|X(z|x)dx.

Equation (1), indicates that every L samples of the observed

vector z, we have a visible sample from the original sig-

nal. This implies that the random variable Zi, given Xk,

is deterministic whenever i ∈ LZ and k ∈ MZ. For this

reason, the previous joint pdf can be obtained by processing

(Lz − 1)/L = N/M distinct and disjoint blocks, i.e.,

fZ(z) ≈

N/M−1
∏

j=0

∫

RM

fZLj |XMj
(zLj |xMj)dxMj , (2)

where ZLj and XMj (and also their corresponding outcomes)

are vectors of size L and M , respectively.

The calculation of the contribution of each block of L
samples from the vector of observations zLj in (2), will depend

on its relation with the corresponding M samples of the vector

of the original signal, i.e., xMj . This relation is determined

by the assumed resampling factor ξ.
Therefore, considering an arbitrary sample zi that will be

linearly related with at most two original samples xk and xk+1,

with k ,
⌊

iML
⌋

(cf. Eq. (1)), three cases are possible:

• zi is a visible sample, thus deterministic. Consequently

fZi|Xk
(zi|xk) = δ(zi − xk),

where δ(·) represents the Dirac delta.
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Fig. 1. Illustrative example, showing the last two possible cases for zi. Pdfs
obtained are shown graphically. Note that ∆ = 1.

• zi is the only sample between two original ones as it

is shown in Fig. 1(a). In this case, if the variance of

the original signal is large enough with respect to the

variance of the quantization noise, then the quantization

error can be considered uniform (we will call this the

“fine-quantization assumption”), and the obtained pdf is

fZi|Xk,Xk+1
(zi|xk, xk+1) = Π

(

aixk + bixk+1 − zi
∆

)

,

where Π(t) denotes a rectangular pulse that is 1 if

t ∈
[

− 1
2
, 1
2

]

and 0 otherwise. In this case, for the

sake of clarity, we have used ai , (1 − mod(iML , 1))

and bi , mod(iML , 1), obtained from (1). A graphical

representation, depicted in Fig. 1(b), shows how the

rectangular pdf is derived from zi.
• zi is one of several resampled values between two original

samples, as it is shown in Fig. 1(c). As before, the

following pdf is valid if the fine-quantization assumption

holds, hence

fZi|Xk,Xk+1
(zi|xk, xk+1)

=
∏

m

Π

(

amxk + bmxk+1 − zm
∆

)

,

where m will increase from i to the number of resampled

values located between the two original samples. Fig. 1(d)

shows the resulting pdf for the considered example.

Each time we obtain the pdf for a particular zi (or a

group of them), the corresponding integral in (2) must be

evaluated with respect to the corresponding original sample

xk. Intuitively, we can observe that the calculation of (2) will

finally be the convolution of several rectangular functions,



leading to a feasible and easy implementation. Note that those

uniform distributions are obtained only if the fine-quantization

assumption holds. Given the importance of this assumption,

its effect on the performance of the MLE will be analyzed in

Section IV.

B. Method description

For a better understanding on how the obtained MLE can

be easily implemented, we will exemplify the calculation of

the target function fZ|Ξ(z|ξ) when a particular resampling

factor ξt is tested. In this illustrative example we will consider

a vector of observations z (already aligned), corresponding

to a signal that has been resampled by a factor ξ = 5
3
. In

Fig. 2(a), an example of this vector of observations is shown,

along with the corresponding vector of original samples x. In

the mentioned figure, solid lines are used for representing the

resampled values (consequently, also the original samples that

are visible), while dashed lines are used for representing the

non-visible samples of the original signal.

Since the calculation of the target function fZ|Ξ(z|ξ) can be

split by processing blocks of L samples of the observed vector,

in this example, we will show how to process a single block.

For the calculation of the remaining blocks, the same process

should be repeated. Assuming that the resampling factor under

test is ξt =
5
3
, these are the followed steps:

1) The first sample z0 is a visible one, then we know that

z0 = x0 and, thus, fZ0|X0,Ξ(z0|x0, ξt) = δ(z0 − x0).
2) The second sample z1 is located between two orig-

inal samples, i.e., the visible x0 and the non-visible

x1. Hence, we have fZ1|X0,X1,Ξ(z0|x0, x1, ξt) =

Π
(

a1x0+b1x1−z1
∆

)

.

Fig. 2(b) shows with a red line the linear relation

between the interpolated value and the original ones

y1 = a1x0 + b1x1, with the value of x0 fixed, i.e.,

from the previous step x0 = z0. From the value of z1
we obtain the feasible interval of x1 (represented with

dashed black lines). Finally, the resulting pdf after the

convolution of the rectangular function with the delta

obtained in Step 1 is plotted in green.

3) The third and fourth samples, z2 and z3, are located

between the two original samples x1 and x2. In this

case, we have seen that fZ2|X1,X2,Ξ(z2|x1, x2, ξt) =

Π
(

a2x1+b2x2−z2
∆

)

Π
(

a2x1+b2x2−z3
∆

)

.

Fig. 2(c) shows in this case the corresponding two linear

relations for y2 = a2x1 + b2x2 and y3 = a3x1 + b3x2.

Be aware that in this case x1 can take any value in the

range obtained in Step 2, and that is the reason why the

dashed red lines are plotted. From the product of the

two rectangular pdfs, we obtain the feasible interval for

x2 (whose pdf is represented in cyan).

At this point, it is important to note that when the

resampling factor under test does not match the true one,

the previous product of rectangular pdfs could lead to

an empty feasible set for x2. If this happened, then we

would automatically infer the infeasibility of the tested
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Fig. 2. Graphical representation of the method description. Note that ∆ = 1.

resampling factor, so the estimation algorithm would

move to the next resampling factor in the candidate set.

If the factor cannot be discarded, then we must compute

the convolution of the uniform pdf here obtained with

the one resulting from Step 2. The result is plotted in

green in Fig. 2(d).

4) The fifth sample z4 is processed in the same way as

in Step 2, but considering that now the linear relation

y4 = a4x2 + b4x3 must be evaluated with the set of

possible values of x2. Proceeding this way, we obtain

the feasible interval for x3 and the corresponding pdf.

Both are shown in Fig. 2(e).

5) At this point, we have finished processing the L samples

in the block and we have the resulting pdf as a function

of x3. Since the next sample is visible, i.e., z5 = x3,

to determine the contribution of these L samples to the

target function fZ|Ξ(z|ξt), we evaluate the resulting pdf

taking into account the actual value of z5.
As before, if the value of z5 falls outside the possible

range of x3, then the resampling factor under test is

discarded.

Following this procedure, the maximization of the target



function fZ|Ξ(z|ξ) is performed over the set of candidate

resampling factors ξ > 1 that have not been discarded,

achieving the MLE ξ̂. After this qualitative explanation, it is

clear that the 2-D extension of this method is straightforward.

IV. EXPERIMENTAL RESULTS

The experimental validation of the obtained MLE is divided

in two parts. In the first one, the performance of the estimator

is evaluated by using synthetic signals and its behavior in terms

of the fine-quantization assumption is analyzed. In the second

part, natural 1-D signals from the audio database in [8] (which

contains different music styles) are used to test the estimator

in a more realistic scenario. To confirm that the described

method is able to sort out the drawbacks pointed out in the

Introduction, comparative results with a 1-D version of the

resampling detector proposed by Popescu and Farid in [1] are

also provided.

A. Performance analysis with synthetic signals

In this case, we consider as synthetic signal a first-order

autoregressive (AR) process, parameterized by a single cor-

relation coefficient ρ. The AR(1) model is commonly used

for characterizing the correlation between samples of natural

signals, where the value of ρ adjusts the model. Typically,

close to 1 values are considered for modeling natural signals,

as it is done with images [9]; hence, ρ = 0.95 will be

used in the following simulations. The AR(1) process has the

following form

u(n) = w(n) + ρu(n− 1),

where w(n) is a Gaussian process with zero mean and variance

σ2
W . Note that in this case, the process w(n) is actually the

innovation from one sample to another of the AR(1) process,

so results will be drawn as a function of σ2
W to evaluate the

validity of the fine-quantization assumption.

To reproduce the conditions of the considered model, the

original signal x(n) is obtained by quantizing the generated

AR(1) process, i.e., x(n) = Q∆ (u(n)) with∆ = 1. Regarding
the set of considered resampling factors, for the sake of

simplicity, we use a finite discrete set, obtained by sampling

the interval (1, 5] with step size 0.05 (from 1.05 to 2) and 0.5
(from 2 to 5). Be aware that we use the same set for the true

resampling factor ξ and the values tested by the ML estimator,

ξt. We consider that the estimation of the resampling factor

is correct if ξ̂ = ξ, i.e., if the estimated value is indeed the

one used for resampling the original signal, up to the precision

used when griding ξ and ξt. For all the experiments, the length

of the vector of observations is Lz = 400.
Fig. 3 shows the percentage of correct estimation for some

of the resampling factors in the set as a function of σ2
W . From

this plot, we can observe that the performance of the estimator

strongly depends on the mentioned variance of innovation, as

well as on the true resampling factor used. For instance, by

resampling the AR process with ξ = 5, a very small value

for the variance of innovation (σ2
W = 0.5), is required to cor-

rectly estimate the resampling factor for all the experiments;
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Fig. 3. Correct resampling factor estimation percentage for different
resampling factors as a function of σ2

W
. ρ = 0.95, and 500 Monte Carlo

realizations are considered.

nevertheless, for ξ = 2, almost a value of σ2
W = 50 will

be necessary for getting the same estimation performance. In

general, and in accordance with the assumptions backing the

analysis introduced in the previous section, the higher σ2
W , the

better the estimation will be.

Although ML-based estimators are frequently thought to be

computationally demanding, if the fine-quantization assump-

tion holds, then the estimation proposed in the previous section

is very cheap and only a few samples are required for correctly

estimating the actual resampling factor. Remember that when

a resampling factor under test does not match the true one,

then it can be discarded when an empty set is obtained for a

non-visible sample or when a visible sample falls outside the

obtained interval (cf. Steps 3 and 5 in Section III-B).
This is illustrated at Fig. 4, where the number of samples

required for discarding the candidate resampling factor is

shown for different values of σ2
W , when ξ = 3

2
. As it can

be checked in that figure, whenever the ξt = ξ, the tested

resampling factor will not be discarded, even when the full

vector of observations is considered, as it should be expected.

It is also important to point out that the larger the value of

σ2
W , i.e., the more accurate the fine-quantization assumption

is, the smaller number of samples is required for discarding a

wrong ξt.

B. Performance analysis with real audio signals

For the evaluation of the estimator in a real scenario, we

consider the “Music Genres” audio database [8], composed

of 1000 uncompressed audio files with 10 different music

styles (for instance some of them are blues, country, jazz,

pop or rock). The performance of the proposed estimator

will be checked by fixing the number of available samples,

and looking for inconsistencies in the resampled signal with

respect to the tested resampling factor. For comparison, the

same tests will be performed with a state-of-the-art resampling

detector, i.e., the one proposed by Popescu and Farid in [1].1

1The neighborhood of the predictor is set to N = 3, yielding a window of
length 7.
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W

, as a function

of ξt. The true resampling factor is ξ =
3
2
. 500 Monte Carlo realizations were

performed.

The set of resampling factors that we will consider in

this case will be in the interval (1, 2] (sampled with a step

size of 0.05). Since we are interested in comparing the

performance with different sizes for the vector of observations,

we perform the experiments with the following set of values

Lz ∈ {64, 128, 256, 512}.
The results obtained with both methods are shown in Fig. 5.

As we can observe, the method proposed by Popescu and

Farid is highly dependent on the number of available samples,

whereas our proposed MLE is essentially independent of this

parameter. In the same way, the performance achieved by

their method is poor when the applied resampling factor is

close to 1, which is neither an issue for our estimator. These

two limitations of Popescu and Farid’s method come from

the frequency analysis performed (once the pmap has been

computed) for the detection of the resampling factor, as we

pointed out in the Introduction. From these results, it is clear

that the MLE method becomes very useful for estimating

the resampling factor when a small number of samples are

available, thus leading to a very practical forensic tool.

Although the performance of the MLE is very good, if we

consider a noisy vector of observations then the method of

Popescu and Farid is expected to be more robust than the

proposed MLE. The reason is that in their model for the EM

algorithm, they assume Gaussian noise, and in our case, we

are only assuming the presence of uniformly distributed noise,

due to the quantization. We note, however, that it is possible to

extend our model to the case of Gaussian noise. Such extension

is left for future research.

V. CONCLUSIONS

The problem of resampling factor estimation following the

ML criterion has been investigated in this work for the 1-

D case. The derived MLE from this analysis has been tested

with audio signals showing very good performance. The most

distinctive characteristic of the proposed approach is that only

a few number of samples of the resampled signal are needed

to correctly estimate the used resampling factor.
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Fig. 5. Comparison of the correct estimation percentage of the proposed
MLE versus the method proposed in [1]. Solid lines represent the obtained
results with the MLE, while dashed lines are used for the method [1].

Since the scenario where the proposed resampling factor

estimator can be employed is quite limited, future work will

focus on improving this aspect. As a first step, the 2-D

extension of the obtained method will be explicitly derived.

Introduction of new parameters in the model such as general

interpolation filters, noisy observations or resampling factors

smaller than one will be studied. Possible links between this

work and set membership algorithms will also be considered.
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entiation for resampling detect ion,” in 2010 17th IEEE Int. Conference

on Image Processing (ICIP), sept. 2010, pp. 1753–1756.
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