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TRUNPET 1

Optimizing HE for Federated Average Aggregation

Federated Learning: Many works address the problem of secure aggregation in FL [1].
However, to the best of our knowledge, HE has not been yet fully optimized for this setting.
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Main objective: Tailor and optimize HE constructions for secure average aggregation.
Main contribution: A lightweight communication-efficient multi-key approach suitable
for the Federated Averaging rule [2].

e Communication cost per party is reduced approximately (1) by a half with RLWE, and
(2) from quadratic to linear in terms of lattice dimension if considering LWE.

e Secure against malicious aggregators by at most doubling communication cost per party.

Some limitations of current HE-based solutions

Non-Colluding Assumption: Single-Key HE [3] imposes a non-colluding assumption

between the aggregator and the owner of the secret key SK.
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Proposed HE-based Protocol

High-level view: Our HE-based protocol for secure aggregation. See [2] for
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more details.
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Secure Federated Aggregation
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Protocol setup:

e In the CRS model, DOs have access to a common uniformly random a per round.

e All DOs have access to one random polynomial share of zero: share; = r(?).

Workflow for a round of our secure aggregation protocol (semi-honest example):

1. DOs encrypt their inputs: The i-th DO (Vi) encrypts its model update m; as:

bi = a(s; + ') + e; + q/p - m.
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2. Aggregation step: b= > . b; = a(s + Z

Finally, the aggregator sends back share!?88) = [b],/ to the

3. Distributed decryption:
(a) The i-th DO (Vi) computes share!’ =
(b) All DOs compute {share(ag@ — Zishare(i)w
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lasi|,; and makes it available to all DOs.

Public Keys: Both Single-Key HE [3] and Threshold HE [4] give access to encryptions
of zero (i.e., PK = Enc(0)) under the global secret key SK.
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Dishonest Data Owners: A dishonest Data Owner (DO) could easily generate a valid

encryption of the global secret key by only having access to the PK.

An upgrade to malicious aggregators

Limiting ciphertexts’ malleability: By assuming the Common Reference String (CRS)

Comparison with other solutions

Next table compares our work with a representative set of HE and MPC solutions.

M: Model Size
N: Number of DOs

n: lattice dimension Ours [2] [5] [3]
M = constant - n
Agg. Comp. Cost O(MN) add. O(MN) mult. | O(MN) add.
DO Comp. Cost LWE: O(Mn) mult. O(M) exp. O(M logM)
RLWE: O(M logM) mult. mult.
Total Com. Cost O(MN) O(MN) O(MN)
Multiple Keys 4 N N
Passive parties 4 4 4
Malicious Agg. 4 Verify Agg. "4 Verify Agg. N
Assumptions LWE/RLWE Paillier RLWE
Flexible Dec. L4 only DOs contributing to N S

aggregated model
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e HE-based aggregation: We include RLWE-based Single-Key [3] and Multi-Key [4] schemes. Also Paillier with verifiable computation for malicious aggregators [5].

e MPC-based aggregation: We include a work [6] relying on Shamir's Secret Sharing.

model, a different “a” term is fixed among all Data Owners during each aggregation round.
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e The Aggregator can only apply additive transformations without being detected.

e An extra condition check can be embedded into Secret-Key ciphertexts (e.g., § -m with
0 unknown to aggregator). This verifies the honest behavior during aggregation.
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