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Abstract—Full-duplex relays suffer from self-interference, due
to simultaneous reception and transmission in the same fre-
quency. This self-induced interference signal of the relay can
be of significant power and considerably distort the information-
bearing signal, leading to unacceptable performance degradation.
This paper presents an adaptive gradient-based method for
full-duplex decode-and-forward multiple-input multiple-output
(MIMO) relays that mitigates the self-interference signal at the
relay. The scheme makes use of the cross-correlation between
signals available at the relay to adaptively estimate the self-
interference channel in order to cancel it. We analyze the
behaviour of the algorithm in terms of stationary points and
mean convergence, and the performed experiments show that
the proposed method can mitigate the self-interference signal by
over 30 dB in a low SNR scenario.

Keywords—Full-duplex, regenerative relaying, self-interference,
MIMO, adaptive filtering.

I. INTRODUCTION

Relays are devices widely used for coverage extension and
cooperative communications, especially in the context of single
frequency networks (SFNs). At the same time, modern com-
munication techniques like spatial multiplexing demand the
use of several antennas in order to avoid the key-hole effect [1]
while allowing the use of precoding schemes, justifying the
need to use several antennas in both transmission and reception
in the relay [2]. Based on the transmission mode, relays can
be classified into half-duplex [3] and full-duplex [4]. While
half-duplex relays receive and transmit in orthogonal time
slots, full-duplex relays receive and transmit at the same time,
and consequently they can achieve a higher spectral efficiency
than the half-duplex counterpart. However, full-duplex relays
suffer from self-interference, due to simultaneous transmission
and reception in the same frequency. This self-interference
signal may severely impact the performance of the relay in the
case of a high power imbalance between the self-interference
signal and the information-bearing signal arriving at the relay.
Although some physical isolation between antennas on the
receive and transmit side of the relay is usually provided during
the design stage [5]–[7], large power imbalance can make
the physical isolation insufficient, and therefore hampering
the relay performance. Consequently, in order to exploit the
full potential of full-duplex relaying, efficient self-interference
mitigation techniques are needed, like for example [2], [5],
[8]–[10].
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Among the different types of full-duplex relaying pro-
tocols, decode-and-forward relays decode and re-encode the
message from the original source [11]. This additional
complexity renders better system performance compared to
amplify-and-forward relays, which only forward messages
without being aware of their content. Therefore, decode-and-
forward relays contain a decoder device, whose mission is to
regenerate and re-encode the source data streams. Furthermore,
Decode-and-forward relays can be classified according to the
decoder characteristics of the relay: Repetition coding-based
relays use the same codebook as in the transmitter, but the relay
could also use a different codebook than in the transmitter,
which translates into a multiple access channel at the final
destination.

Nevertheless, to ensure reliable decoding of the information
signal in the relay, it is necessary to mitigate any interference
signal arriving at the relay. Otherwise the decoded signal may
contain errors which will propagate to the final destination.
In fact, this imposes a maximum interference power level that
can be present in the relay for a desired performance at the
final destination. In contrast to the decode-and-forward case,
in the amplify-and-forward case the signal does not contain
errors but only a distortion (though it can be highly selective
in frequency [9]). As explained before, in a full-duplex relay
the major source of interference is usually the relay itself, and
consequently, the use of efficient self-interference mitigation
schemes in a decode-and-forward relay is extremely important,
since the overall link quality is bounded by the performance
achieved in the relay.

In this work, we propose a method to mitigate the self-
interference signal for full-duplex decode-and-forward MIMO
relays. The characteristics of the decode-and-forward relay
allows to identify the self-interference signal using a gradient-
descent approach. Furthermore, the use of an adaptive solution
makes possible to track the temporal variations of the self-
interference channel at the relay.

Notation: Throughout the paper, discrete time-domain sig-
nals are functions of the discrete time index n, e.g., x(n).
Similarly, frequency-domain systems are denoted by their z-
transform, e.g., A(z) =

∑
k A[k] z−k, and, z, when applied

to signals, represents the delay operator, i.e., z−k{x(n)} =
x(n − k). Therefore, the output of a generic linear time-
invariant system can be expressed as y(n) = Hab(z)x(n).
The matrix Hab(z) represents a causal channel of order Lab,
i.e., Hab(z) =

∑Lab

k=0 Hab[k]z
−k. Also, the power spectral

density of x(n) is represented by the matrix Rxx(z), whereas
Px = 1/2π tr

∫ π
−π Rxx(e

jω)ejωdω denotes its power.
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Fig. 1. System model of a single-frequency decode-and-forward relay with self-interference mitigation.

II. SYSTEM MODEL

Figure 1 depicts the considered single-frequency MIMO
relay link, which is composed of a source node (S) equipped
with Mt transmit antennas, and a relay (R) with Nr and
Mr receive and transmit antennas, respectively. Finally, the
destination receiver (D) has Nd antennas.

At time instant n, S transmits the signal t(n), R receives
q(n) while transmitting r(n), and D receives the signal d(n).
The expressions for both q(n) and d(n) are

q(n) = Hsr(z)t(n) + Hrr(z)r(n) + η(n) (1)
d(n) = Hrd(z)t(n) + ν(n) (2)

where Hsr(z), with size Nr × Mt and order Lsr, denotes
the channel from S to R, Hrd(z), with size Nd ×Mr and
order Lrd, is the channel from R to D and Hrr(z), with size
Nr×Mr and order Lrr, is the self-interference channel at the
relay. Finally, η(n) and ν(n) are the additive noise sources at
the relay and destination, respectively.

We assume that in both nodes, S and R, linear precoding
is applied before transmission. Consequently,

t(n) = Gs(z)s(n) (3)
r(n) = Gr(z)y(n) (4)

where s(n) represents the original Ms ≤Mt data streams that
are precoded by Gs(z), of size Mt ×Ms and order Ls. In
the same way, y(n) represents the Ms retrieved data streams
at the relay, and Gr(z), of size Mr ×Ms and order Lr, the
precoding matrix for transmitting r(n).

Every decode-and-forward relay contains a decoder device,
which regenerates the original Ms source data streams by using
the received signal at R. In general, we consider the decoder
to be a nonlinear function of past samples of its input, e(n),
i.e., the decoder output y(n) can be expressed as y(n) =
f(e(n − τ), e(n − τ − 1), . . .), being τ the decoding delay.
Therefore, in the ideal case, y(n) = s(n− (τ + δsr)) (where
δsr accounts for propagation and transmission delay between
the source and the relay) if the same coding scheme is applied
at both hops [12].

Since the decoder regenerates the data streams, the as-
sociated decoding delay is expected to be relatively high,
in comparison to the amplify-and-forward case, where such
decoding process is not present. Throughout this paper, we
assume that τ is long enough so that t(n) and y(n) are
uncorrelated in the sense that E{t(n)yH(n − k)} ≈ 0, for
any k ≥ 0.

For simplicity, let x(n) = Hsr(z)t(n) and f(n) =
Hrr(z)r(n), so (1) can be expressed as

q(n) = x(n) + f(n) + η(n) (5)

Since the ratio Pf/Px can be very high (even tens of
dBs), the normally neglected transmit side noise, which is
due to distortion effects in practical implementations, can
be of significant power at the relay receive side. Therefore,
η(n) is decomposed into two different noise sources, i.e,
η(n) = γ(n)+σ(n), where γ(n) represents the additive noise
at reception and σ(n) = Hrr(z)ε(n) represents the additive
noise propagated from the relay transmit side. We regard the
noise sources as independent from each other and from the
information-bearing signal.

III. SELF-INTERFERENCE MITIGATION

In this section, we detail the proposed method for self-
interference mitigation. First we describe the architecture used
and later we outline an adaptation rule for it.

A. Proposed Architecture

In order to mitigate the self-interference signal f(n), we
propose the cancellation architecture depicted in Figure 1. It
consists of the La-th order matrix filter A(z), with Nr×Mr×
(La+1) adjustable parameters. When compared to suppression
schemes, where the relay input is filtered to achieve mitigation,
a cancellation scheme does not increase the overall delay in the
relay, which can be important for some applications. Besides,
suppression schemes that filter the signal at the relay transmit
side (for nullspace transmission in Hrr(z)) may disturb the
link between the relay and the destination.

The cancellation scheme proposed here does not modify
the actual architecture of the relay or its normal operation. In
the best case, the relay can be designed as it was free of self-
interference. The decoder input signal, e(n), has the expression

e(n) = x(n) + i(n) + η(n) (6)

where i(n) = f(n)+A(z)y(n) is the residual self-interference
after mitigation. Equation (6) clearly shows that in order to
cancel self-interference in the relay we must select A(z) =
−Hrr(z)Gr(z), yielding e(n) = x(n) + η(n). Consequently,
to achieve perfect cancellation La ≥ Lr + Lrr. To evaluate
the performance of the self-interference mitigation scheme we
define the signal-to-interference ratio before mitigation and
after mitigation as SIRpre = Px/Pf and SIRpost = Px/Pi,
respectively. Additionally, we define the signal-to-noise ratio
as SNR = Px/Pη .



B. Adaptation Rule

Once we have set the architecture of the mitigation scheme,
we need a rule for adapting the coefficients of A(z). In the
first place, note that the power spectral density of e(n) has the
expression

Ree(z) = Rxx(z) + Rii(z) + Rηη(z) (7)

where Rii(z) = (A(z)+Hrr(z)Gr(z))Ryy(z)(A
H(1/z∗)+

GH
r (1/z∗)HH

rr(1/z
∗)). We see from (7) that Pe has a mini-

mum with respect to A(z) when A(z) = −Hrr(z)Gr(z) and
consequently, a gradient-descent approach for the adaptation
rule is possible. Note that this minimum is unique if Ryy(z)
is full rank. The proposed adaptation rule for A(z) is then

A[k](n+ 1) = A[k](n) + µa
(
R?[k](n)− e(n)yH(n− k)

)
(8)

for k = 0, . . . , La, where µa is the step-size of the algorithm
and R?[k](n) are La+1 user-defined matrix sequences. When
R?[k](n) = 0, then (8) is a gradient descent of Pe with
respect to A(z). Next section details how to select R?[k](n)
for several cases.

It is clear from (8) that the algorithm only makes use
of the input and output decoder signal in the adaptation,
which are easily accessible inside the relay architecture. As
a consequence, the mitigation scheme and the relay can be
designed independently from each other. Moreover, the miti-
gation scheme does not need information about Gr(z), since
it can be assimilated into the self-interference channel.

IV. ALGORITHM ANALYSIS

In this section, we analyze the behaviour of the algorithm.
We provide an expression for the stationary points, and we
study the mean convergence properties of the algorithm.

A. Stationary Points

In this section, we show that the adaptation rule in (8) leads
to an estimate of the self-interference multipath channel when
the algorithm has converged. In fact, upon convergence of the
algorithm, any stationary point (denoted by A?(z)) will fulfill

E{e(n)yH(n− k)} = E{R?[k](n)} (9)

for k = 0, . . . , La. Using (6), the cross-correlation between
e(n) and y(n) can be expressed as

Rey(z) = (A?(z) + Hrr(z)Gr(z))Ryy(z) (10)

If we define Heq(z) , Hrr(z)Gr(z) with order Leq = Lrr+
Lr, then (9) is equivalent to

A?R
(La,La)
Y + HR

(Leq,La)
Y = R? (11)

where A? = [A?[0] . . .A?[La]] contains the coefficients of
A(z). In the same way, H = [Heq[0] . . .Heq[Leq]], and R? =

E{[R?[0] . . .R?[La]]}. The matrix R
(α,β)
Y refers to

R
(α,β)
Y =


Ryy[0] Ryy[1] . . . Ryy[β]

Ryy[−1] Ryy[0] . . . Ryy[β − 1]
...

...
. . .

...
Ryy[−α] Ryy[1− α] . . . Ryy[β − α]


(12)

where α and β are positive integers. In most of the cases, all
the Ms streams of y(n) will be independent and share the same
spectrum, which renders Ryy(z) = ρ(z)ρ(1/z∗)I (where ρ(z)
has no zeroes on the unit circle). Consequently, it is reasonable
to assume that R

(α,α)
Y is full rank for any choice of α. Under

these conditions, (11) has the unique solution

A? =
(
R? −HR

(Leq,La)
Y

)(
R

(La,La)
Y

)−1

(13)

From (13) we can differentiate the three following cases:

Undermodelled case (La < Leq): The algorithm has
not enough degrees of freedom to fully mitigate the self-
interference signal, leading to a biased estimate of the self-
interference path. This is seen by dividing H into H =
[HL HU ], where the matrix HL = [H[0] . . .H[La]] and,
equivalently, the matrix HU = [H[La + 1] . . .H[Leq]]. Addi-

tionally, R
(Leq,La)
Y =

[(
R

(La,La)
Y

)T (
D

(Leq,La)
Y

)T]T
, with

D
(Leq,La)
Y being the last Lh−La rows of R

(Leq,La)
Y , as can be

seen from (12). Therefore, (13) has the following expression
for the undermodelled case

A? = −HL +
(
R? −HUD

(Leq,La)
Y

)(
R

(La,La)
Y

)−1

(14)

We see from (14) that the algorithm is able to estimate the
first La coefficients of H up to a bias term which is the
consequence of the higher order of the self-interference path.
This bias can be still mitigated by selecting R?[k](n) such
that R? = HUD

(Leq,La)
Y , if the information is available.

Sufficient order case (La ≥ Leq): We can extend H by
performing zero padding, and obtain an equivalent La-th order
matrix HA = [H 0]. After this zero padding, (13) becomes

A? = R? −HA (15)

which clearly indicates that we must select R?[k](n) = 0, to
obtain an unbiased estimate of the self-interference channel,
i.e., A?(z) = −Hrr(z)Gr(z). Consequently, after conver-
gence e(n) = x(n) + η(n), and the self-interference signal
has been completely mitigated. In conclusion, for the suffi-
cient order case the gradient-descent algorithm in (8) with
R?[k](n) = 0 provides cancellation of the self-interference
signal.

Singular case (rank{Ryy(z)} < Ms): Now R
(La,La)
Y is

singular. As opposed to the previous cases, there exist several
stationary points fulfilling

A?R
(La,La)
Y =

(
R? −HR

(Leq,La)
Y

)
(16)

which shows that, due to the existence of local minima,
the estimation of the self-interference channel may be bi-
ased. In fact, all the possible solutions to (16) conform an
Ms × (La + 1) − rank{R(La,La)

Y } dimensional subspace,
meaning that A? + ∆ is also a solution, with A? satisfying
(16) and ∆ being in the nullspace of R

(La,La)
Y . Since the

solutions of (16) are not bounded, this can result, in the worst
case, in the algorithm amplifying the self-interference signal,
i.e., SIRpre < SIRpost, which is, of course, detrimental for
the relay. Obviously, the desired solution will be the one that
globally minimizes Pe with respect to A. In order to alleviate



this unwanted bias, we can use a regularization technique. By
selecting R?[k](n) =

∑La

i=0 A[i](n)Θik, (16) is transformed
to

A?(R
(La,La)
Y −Θ) = −HR

(Leq,La)
Y (17)

where Θ is of size (La+1)Ms×(La+1)Ms and has elements
Θik. If we select Θ such that R

(La,La)
Y −Θ is full rank, then

(17) will have the unique solution

A? = −HR
(Leq,La)
Y (R

(La,La)
Y −Θ)−1 (18)

and the equivalent self-interference channel after mitigation
has the expression

A? + H = [HL(I−R
(La,La)
Y (R

(La,La)
Y −Θ)−1)

+ HUD
(Leq,La)
Y (R

(La,La)
Y −Θ)−1) HU ] (19)

If we consider the case of sufficient order, when HU = 0, we
can select Θ during the design stage to minimize the residual
self-interference power after mitigation, i.e., using the notation
Hres = (I −R

(La,La)
Y (R

(La,La)
Y −Θ)−1), Θ is the solution

to the problem

minimize
Θ

tr{HresR
(La,La)
Y HH

res}

subject to rank{R(La,La)
Y −Θ} =Ms(La + 1)

which may be sufficient depending on the particular scenario
and application. If isolation provided at this point is not
enough, the scheme needs additional information about ∆ in
order to provide further attenuation of the self-interference.
This information could be provided by the decoder device
of the relay, although a joint design of the decoder and the
mitigation scheme will be required in that case.

B. Global Convergence

In this section, we prove that regardless of the initialization
point of the algorithm, it will ultimately converge to an
stationary point. Under the assumption of a sufficiently small
µa (although not necessarily vanishing), the mean convergence
properties of the algorithm are characterized by the associated
ordinary differential equation [13], which is given by

dA[k](t)

dt
= E{R?[k]− e(n)yH(n− k)} (20)

for k = 0, . . . , La. In the same way as we do in Section IV-A,
(20) can be expressed as a linear system

dA(t)

dt
= R? −A(t)R

(La,La)
Y −HR

(Leq,La)
Y (21)

where A(t) = [A[0](t) . . .A[La](t)] and the remaining ele-
ments are defined in Section IV-A. If we split (22) into real
and imaginary parts and concatenate each part into an extended
matrix, we obtain the linear system

dÃ(t)

dt
= R̃? − Ã(t)R̃

(La,La)
Y − H̃R̃

(Leq,La)
Y (22)

with R̃ = [<R? =R?], Ã(t) = [<A(t) =A(t)] and H̃ =

[<H =H]. On the other hand, R̃
(La,La)
Y is given by

R̃
(α,β)
Y =

(
<R

(α,β)
Y =R

(α,β)
Y

−=R
(α,β)
Y <R

(α,β)
Y

)
(23)

For the convergence analysis, it is convenient to express Ã(t)
as a 2Nr ×Ms × (La + 1) vector. Vectorizing both sides of
(22) results in

da(t)

dt
= r? −ΣLa

La
a(t)−Σ

Leq

La
h (24)

where r? = vec{R̃?}, a(t) = vec{Ã(t)} and h = vec{H̃}.
Additionally, we define Σα

β ,
(
R̃

(α,β)
Y

)T
⊗I, with ⊗ denoting

the Kronecker product. The spectral factorization of Σα
α is Γα,

i.e., Σα
α = ΓHα Γα.

In order to prove that the algorithm is globally convergent,
we propose the following Lyapunov function [14]

V (a(t)) =
1

2
‖a(t)− a?‖2 (25)

with time derivative
dV (a(t))

dt
= <

{
(a(t)− a?)

H da(t)

dt

}
(26)

where a? = vec{Ã?} = vec{[<A? =A?]}. If we vectorize
(16) we obtain that ΣLa

La
a? = (r? − Σ

Leq

La
h). Using this in

(26) gives the following result

dV (a(t))

dt
= −‖Γα(a(t)− a?)‖2 (27)

Note that (27) is still valid for the singular case in section
IV-A by defining Γk as the spectral factorization of the full-

rank matrix
(
R̃

(α,β)
Y − Θ̃

)T
⊗ I, with

Θ̃ =

(
<Θ =Θ
−=Θ <Θ

)
(28)

We can verify from (27) that dV (a(t))/dt < 0 for any value
of a(t), except for the equilibrium point a?. Therefore, in this
case, we can conclude that the stationary point a? is globally
asymptotically stable, and the algorithm will converge to it
regardless of the initial point, i.e., a(t) → a? as t → ∞ for
any initialization a(0).

V. SIMULATIONS AND RESULTS

In this section, we study the performance and behaviour of
the algorithm under two practical scenarios. In particular, we
simulate a system in which the source signal s(n) consists of
Ms = 2 independent OFDM-modulated streams with Nsub =
8192 subcarriers and a cyclix prefix of length Npre = 1/4Nsub
(in samples). The transmitter has Mt = 3 antennas, while the
relay has Nr = 4 receive antennas and Mr = 3 transmit
antennas. Additionally, the channel S-R has order Lsr = 2,
while Lrr = 1, and the precoders have orders Lr = 1 and
Ls = 0, so Leq = 2. Finally, La = 2 and therefore R?[k](n) =
0. The relay uses an oversampling factor of 2 in both e(n) and
y(n). The incoming signal x(n) has normalized power, i.e.,
Px = 0 dB. Finally, Rηη(z) = PγI + PσHrr(z)H

H
rr(1/z

∗),
considering that Hrr(z) has normalized gain.

In the first case, we analyze how Hrr(z) affects the conver-
gence time of the algorithm. The convergence time is defined
as the number of samples needed, from the initialization point
Ã(0) = 0, to reach a point where ‖Ã(τ)+H̃‖2F /‖H̃‖2F < −25
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Fig. 3. Self-interference power in dB after mitigation.

dB is fulfilled. For this case, Hsr(z)Gs(z) is fixed across
all simulations and selected as a snapshot of a multipath
Rayleigh fading channel. Additionally, SIRpre = −20 dB and
SNR = 3.8 dB (with Pσ = −5 dB and Pγ = −10 dB). In each
simulation, H̃ ∼ N (0, I) up to power normalization. Finally,
µa = 0.01 and the number of simulations is 500000.

Figure 2 shows the resulting histogram of convergence
time with a superimposed Gaussian distribution with the
same mean and variance. As indicated by the vertical line,
the mean convergence time is approximately 1578 samples,
which translates to much less than one OFDM symbol, under
the current parameters. Also, note that due to the frequency
dependence of Hrr(z) and the stopping criterion used, SIRpost
is also a random variable with E{SIRpost} = 8.6 dB, or a mean
attenuation of the self-interference signal of 28.6 dB.

In our second case, we analyze the effect of the SNR on
the algorithm performance. As opposed to the first case, H̃ is
fixed across all simulations and H̃ ∼ N (0, I) up to a power
normalization. Like before, SIRpre = −20 dB and we modify
the values of both Pσ and Pγ . Each simulation spans over one
OFDM symbol (or 20480 samples) and the adaptation rate used
is µa = 0.001. The number of simulations is 300 while the
remaining parameters are unchanged from the previous case.

Figure 3 depicts the power of signal i(n) and how the
performance of the algorithm is affected by the noise, after
the algorithm has converged. There we can see that the
performance loss is independent of the noise power spectral
density (note that γ(n) is a frequency-selective noise process),
and only depends on its overall power, Pσ + Pγ , while the
minimum attenuation from mitigation is above 30 dB.

VI. CONCLUSIONS

In this paper, we presented a method for self-interference
mitigation in full-duplex decode-and-forward MIMO relays.
We showed that a gradient descent approach is possible
in order to mitigate the self-interference without modifying
the relay design. Also, for the case of sufficient order, the
algorithm has a unique stationary point which matches with
the self-interference channel. We also addressed the singular
case by introducing a regularization term, and we showed
that the algorithm is globally convergent. Finally, according
to simulations the algorithm is able to attenuate the self-
interference by over 30 dB, when SNR ≈ 6 dB.
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