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Abstract—Photo Response Non-Uniformity (PRNU) is the de-
facto standard in image source identification, allowing scientists,
researchers, forensics investigators and courts to bind a picture
under investigation to the specific camera sensor that took the
shot at first place. Caused by silicon sensor imperfections, PRNU
is characterized as a Gaussian i.i.d weak multiplicative noise
embedded into every digital photo at acquisition time. Despite
PRNU nearly-flat spectral characteristics, it undergoes several
interpolations steps while image is demosaicked and optionally
JPEG compressed. In this paper we propose a novel approach to
the design of projection matrices tailored to PRNU compression.
Joint effect of interpolation and projection on cross-correlation
test is first analyzed, in order to derive those conditions that
maximize detection while reducing false-alarm probability. A
design methodology to build effective projection matrices is
then presented, taking into account computational complexity.
Validation of the proposed approach is finally performed against
state-of-the-art methods on a well known public image dataset.

I. INTRODUCTION

Over the last decade, ownership attribution and origin ver-
ification of digital content has become of capital importance,
due to the widespread diffusion of digital devices capable of
acquiring images, videos and audio tracks, as well as sharing
them over the Internet. The most widespread technique for
camera device identification is based on the Photo Response
Non-Uniformity (PRNU) [1]. This is a time invariant weak
multiplicative signal introduced on every picture taken with
a CCD/CMOS imaging device that acts as unique fingerprint
for the sensor itself. Silicon imperfections occurring at sensor
manufacturing process cause each pixel to have a slightly
different area, thus the amount of light energy captured in a
fixed time slot (i.e. exposure time) varies pixel-wise even under
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a perfectly uniform light field. The PRNU can be extracted, or
at least estimated, by having access to a set of images captured
by the same camera. PRNU knowledge allows to determine
whether two images have been captured by the same device,
link a picture to the specific camera that took it, and even
detect forgeries [2]–[4].

The PRNU fingerprint extraction process from natural and
flatfield images has been thoroughly investigated [5]–[8] with
the goal of extracting the fingerprint as accurately as possible.
The overall goal was to improve matching and detection per-
formance between fingerprints extracted from different images
coming from the same device, while keeping a very low
probability that estimated fingerprints coming from different
sensors are matched.

PRNU robustness to scaling, cropping and compression [9],
[10] is an important prerequisite to move toward large scale
applications and scenarios [11], even when camera devices
are not known in advance, but only image fingerprints are
available [12]. One drawback of large scale approaches is
the need to store in a central database, or transmit over
bandwidth-limited channels, a huge amount of data. Indeed,
PRNU fingerprints need to be extracted at higher resolutions,
up to the size of the imaging sensor, to achieve better matching
and detection performance and avoid false-alarms. A second
issue arises in terms of computational complexity, when a
query fingerprint needs to be matched against many device
fingerprints stored in a central camera fingerprints database.

To overcome both rate and complexity issues, several PRNU
compression methods have been recently proposed. The digest
technique [13], aimed at preserving only the most relevant
peaks from a PRNU fingerprint, proves to be really effective,
even though it is bound to the knowledge of an affordable
fingerprint estimate to preserve good matching performance.
Under this condition, the fingerprint digest provides benefits
both in terms of data and complexity reduction, because
only a few peaks values and positions need to be preserved,
thus reducing space requirements and number of operations
to compute the matching between fingerprints. The main
shortcoming of this technique in a server-client scenario comes
from the need, at the client side, of knowing the peak positions.
These are almost impossible to estimate reliably at the client
side, so in order for the digest to work in this scenario, the
server should send peak positions for every known camera
device to each client, thus making this compression approach
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Fig. 1: Estimated camera PRNU K̂c autocorrelation matrix (a)
and the derived Hc approximation (b) as space-invariant bi-
dimensional linear filter with h = 11 in a small-scale example
with N = 225.

practically unfeasible. Another simple, yet effective, technique
resorts to fingerprint binarization, allowing to save rate while
moving from a cross-correlation test to an Hamming distance
computation when it comes to comparing fingerprints. Fast
search methods based on sub-linear hashing on reference
fingerprint digest [14], [15] and minimization of number of
observations required to reduce error probabilities below some
pre-fixed misdetection rates [16] are again two methods aimed
at reducing fingerprint identification and verification cost. In
terms of data compression, the state-of-the-art for PRNU
signals is achieved by binarized Gaussian Random Projec-
tions [17], [18], that exploit Johnson-Lindenstrauss Lemma
to project fingerprints onto a reduced dimensionality subspace
by means of Gaussian i.i.d. projection vectors.

In this paper we address the problem of PRNU compression
by proposing a projection design methodology that takes into
account interpolation effects on the PRNU. A Signal-to-Noise-
Ratio (SNR) maximization problem for the alternative hypoth-
esis of a fingerprint cross-correlation test is solved, taking
into account the interpolation effect due to the post-acquisition
operations a digital image undergoes, e.g. demosaicing, JPEG
compression. We first provide a theoretical framework to
establish near-optimal conditions for the projection matrix,
then we provide a design methodology for such matrix.
Finally, we validate the proposed approach on images from
the Dresden Image Database [19] in comparison with state-of-
the-art Gaussian Random Projections. Our approach not only
yields better detection performance as compared to the state-
of-the-art, but is much cheaper in computational terms, which
is a critical indicator when huge databases need to be searched.

The rest of this work is organized as follows. Sect. II pro-
vides notation, background and problem formulation. Sect. III
presents our theoretical analysis and gives near-optimal con-
ditions for the projection matrix. Sect. IV offers a design
methodology to satisfy those conditions. Sect. V and Sect. VI
respectively introduce the experimental setup and results,
while in Sect. VII conclusions are drawn.

II. BACKGROUND AND PROBLEM FORMULATION

We first introduce the used notation, the necessary back-
ground about PRNU fingerprint estimation and matching, and
then we formalize the problem under analysis.

Notation: Vectors are given by boldface letters, e.g., x. The
ith sample of x is represented by xi. The Hadamard (sample-
wise) product between x and y is denoted by x ◦ y. Matrices
are denoted by bold capital letters, e.g., X, and the i, jth
element is indicated by a subindex, e.g., Xi,j . I, 0 and 1
denote the identity matrix, the all-zeros matrix, and the all-
ones vector, respectively. The Kronecker product between two
matrices X and Y is denoted by X⊗Y.

PRNU estimation is based on a simplified linear model
of the camera sensor output y = gγ [(1 + k) ◦ f + z]

γ
+ nq ,

where y is the one-dimensional representation of the acquired
image, f is light field at the sensor, g is the color channel
gain and γ is the gamma correction factor [3]. k is a zero-
mean noise-like signal identified as the PRNU fingerprint, z
is a combination of remaining noise sources (dark currents,
read-out noise, shot noise), and nq is quantization noise. The
imaging model can be further simplified as y = x+x◦k0+n,
where x = (gf)γ is a noise-free version of y, k0 = γk and
n condensates all the independent random noise components
residuals. Here we consider, without loss of generality, the
wavelet decomposition based denoising algorithm proposed in
[20] and adopted in [2] to get x. When a single query image
yq is available, we define its residual as wq = yq−xq . When a
set of Nc images from the same device is available, we define
the residual for each picture yc, c ∈ [1, Nc] as wc = yc − xc
and we obtain the estimated PRNU fingerprint k̂ for the device
as

k̂ =

∑Nc

c=1 wc ◦ yc∑Nc

c=1 y2
c

(1)

Wiener adaptive filtering in the Discrete Fourier Transform
domain and mean subtraction are finally applied to k̂ in order
to remove model or compression specific artifacts.

When a query image under investigation yq and a camera
device c, characterized by a PRNU fingerprint kc are made
available, a two-channel hypothesis testing problem is faced
in order to determine whether query yq has been shot by the
device characterized by kc:

H0 : yq was not taken with camera c;

thus it does not contain kc

H1 : yq was taken with camera c;

thus it contains kc

Detection of such matching is performed via cross-correlation
test, defined as r .

= 〈k̂c,wq〉. When r > τ then H1 hypothesis
is verified and query image is verified to come from c. τ is a
threshold on the cross-correlation test properly set in order to
bound the false-alarm probability under a maximum desired
value.

Problem formulation: Given a device whose estimated
PRNU fingerprint is k̂c ∈ RN and a query image yq ∈ RN ,
our goal is to design a projection matrix Φ of size L×N,L <
N that under statistic

r
.
= 〈Φk̂c,Φwc〉 (2)



(a)

(b)

Fig. 2: Projection matrix Φ designed as a bi-dimensional Sub-Sampling matrix Φss (a) and the derived Sub-Wrapping matrix
Φsw (b) in a small-scale example with n = 15, L = 12, s = 3.

enables dimensionality reduction of both k̂c and wc while
maximizing detection probability for H1 hypothesis and min-
imizing false alarm probability for H0 hypothesis.

III. PROPOSED PROJECTION METHOD

We assume the existence of a zero-mean vector k0 with N
i.i.d. components N (0, σ2

k) describing the PRNU of a sensing
device. The estimated device PRNU fingerprint k̂ ∈ RN ,
extracted from a set C of images taken with the same camera
device as from Eq. (1), is modeled as

k̂ = Hck0 + ne (3)

where ne is the extraction noise which we assume zero-mean
i.i.d., i.e. E{nenTe } = σ2

eI. Matrix Hc ∈ RN×N accounts
for demosaicing effects in the spatial domain and possibly
the equivalent filtering performed in the DCT domain when
images are compressed. All other effects due to compression
are included in ne.

Given a query vector y from an image in the query images
set Q, and its denoised version x, we model x = µx1 + x̃,
where x̃ is assumed to be stationary with autocorrelation rx̃[i−
j]
.
= E[x̃ix̃j ].
The noise residual y − x is modeled as Hq(k0 ◦ x) + nt,

where nt is zero-mean i.i.d. noise, i.e. E{ntnTt } = σ2
t I and

Hq plays a similar role to Hc. In general Hc 6= Hq because
we assume that images from C and Q may be compressed
differently. Also notice that more complicated noise models
can be easily accommodated in our discussion, but we keep
our choice for the sake of readability.

For dimensionality reduction, we assume that both k̂ and
y−x are projected using the dimensionality-reduction matrix
Φ, so the test statistic is the one introduced in Eq. (2).

Under hypothesis H1, we are interested in computing the
mean and standard deviation of r, and find conditions on Φ
that maximize the Signal-to-Noise Ratio (SNR) defined as
SNR = E{r}/

√
Var{r}.

The mean term is

E{r} = µxE{Tr[Φqk0k
T
0 ΦT

c ]} = µxσ
2
kTr[M] (4)

where Φq
.
= ΦHq , Φc

.
= ΦHc, and M

.
= ΦT

q Φc. We assume
that projection vectors are normalized, so that each row of both
Φq and Φc has l2-norm equal to 1.

For the variance term, we show in [21] that

Var{r} = σ4
k

(
µ2
xTr[MM] + (µ2

x + σ2
x)Tr[MMT ]

+
∑
i,j

rx̃[i− j] (Mi,iMj,j +Mi,jMj,i)
)
+ σ2

t σ
2
kL

+ σ2
eσ

2
k(µ

2
x + σ2

x)L+ σ2
eσ

2
tTr[(ΦΦT )2] (5)

Recalling that Tr[ΦΦT ] = L, the last summand is min-
imized when ΦΦT = I, that is when projection vectors
are orthonormal. Minimization of (5) with respect to M
is cumbersome; however, noticing that in practice µ2

x is
often larger than σ2

x, it makes sense to minimize instead
σ4
kµ

2
x

(
Tr[MM] + Tr[MMT ]

)
, subject to Tr[M] = L.

Writing M = MS + MA, where MS and MA are,
respectively, symmetric and antisymmetric, the problem can
be formulated as

minimize Tr[MMS ]

subject to Tr[M + MT ] = 2Tr[MS ] = 2L

Observe that Tr[MMS ] = Tr[(MS + MA)MS ] =
Tr[MSMS ]. Then, we can pose the problem equivalently in
terms of MS . In fact, if Λ is the diagonal matrix containing
the eigenvalues of MS , the problem becomes

minimize Tr[Λ2]

subject to Tr[Λ] = L
(6)

From Cauchy-Schwarz inequality, the solution to this prob-
lem is achieved when all P non-null eigenvalues of MS

are identical and take the value L/P . Notice that P =
rank(MS) ≤ 2 · rank(M) = 2L. It is an ongoing problem to
translate this general solution into design principles regarding
Φc and Φq . A particular approach consists in assuming that M
is symmetric, in which case P above will be equal to L, and
the eigenvalues of ΦcΦ

T
q will be all identical to 1. Therefore,

we will seek projection matrices Φ for which ΦcΦ
T
q = I.
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Fig. 3: ΦcΦ
T
q for Φ is a Sub-Wrapping matrix (a) and when Φ

is a Gaussian matrix (b) in a small-scale example with n = 15,
L = 12, s = 3 and real case Hc and Hq .

On the other hand, for hypothesis H0 we find that E{r} = 0
and in [21] we show that Var{r} = (µ2

x+σ
2
x)Tr[MMT ]. Then,

minimizing Tr[MMT ] also minimizes the variance for H0.

IV. PROJECTION MATRIX DESIGN

As shown in Sect. III, a condition to nearly maximize detec-
tion while minimizing false-alarms in a cross-correlation test
is ΦcΦ

T
q = I. Since our goal is to design Φ, we first want to

find the support of the point-spread function characterizing Hc

and Hq . To this end, we consider a bi-dimensional estimated
camera PRNU fingerprint K̂c and compute its autocorrelation,
as shown in Fig. 1a. If the estimated fingerprint were purely a
white noise signal, its autocorrelation would result in a single
peak at (0, 0). However, demosaicing and low-pass filtering
occurring during image compression lead the autocorrelation
to be far from an impulse, thus with a support extended over
more than one pixel. Approximating the PRNU autocorrelation
as a bi-dimensional point-spread function with support h× h,
we can estimate Hc as a space-invariant bi-dimensional linear
filter, as from the example in Fig. 1b. Following the same
reasoning, it is possible to estimate the support of Hq via
autocorrelation of Wq , the bi-dimensional residual for image
Yq . For the sake of simplicity, in the following we will
consider Hq = Hc. The extension to the case where they
are different is straightforward.

When it comes to the design of Φ, among the infinite
set of solutions that lead to ΦcΦ

T
q = I, we propose two

simple design strategies: i) Sub-Sampling; ii) Sub-Wrapping.
Sub-Sampling: The first proposed strategy is bi-dimensional
subsampling with step-size s, cropped to the first L output
coefficients. In order to build the projection matrix Φ let
us suppose we wish to project a bi-dimensional fingerprint
K̂c ∈ Rn×n, with N = n2, L and n integer multiples of
step-size s, such that n = b · s, for some b ∈ Z. Let us define

a
.
=
[
1 0 . . . 0

]
∈ {0, 1}s

B
.
=
[

Ib×b | 0b×b(s−1)

]
∈ {0, 1}b×bs

Φ̄
ss .

= Ib×b ⊗ (B⊗ a) ∈ {0, 1}b
2×N

where a is a row vector of s elements, representing the
structuring element for the subsampling matrix, Ib×b is an
identity matrix of size b × b, 0b×b(s−1) is an all-zero ma-
trix of size b × b(s − 1) and ⊗ represents the Kronecker

product between matrices. The subsampling projection matrix
Φss ∈ {0, 1}L×N is then obtained by retaining the first L
rows of Φ̄

ss. An example for matrix Φss is shown in Fig. 2a.
Sub-Wrapping: The second strategy is an extension of

subsampling with step-size s that takes into account the unused
input coefficients due to cropping to length L. Cropped rows
from Φ̄

ss are warped and summed to obtain Φsw, taking care
of normalizing each row of Φsw. Formally, let us define

δ
.
= Ls2, r

.
=

⌈
b2

L

⌉
Z

[z]
i,j =

{
1 if i+ z = j

0 otherwise
i ∈ [1, N ], j ∈ [1, N ]

D
.
=

r−1∑
z=0

Z[zδ] ∈ {0, 1}N×N

where δ is the offset, in input space, between successive warps,
r is the maximum number of input samples contributing to a
single output sample and D is an offset projection matrix. We
can now define an over-sized projection matrix Φ̄

sw as

Φ̄
sw .

= Φ̄
ss

D ∈ {0, 1}b
2×N

and finally derive the actual subwrapping projection matrix
Φsw ∈ RL×N by selecting the first L rows of Φ̄

sw and
normalizing each row in l2 norm. An example of the resulting
projection matrix Φsw is depicted in Fig. 2b.

Orthogonality. The design of Φssand Φsw presents two
degrees of freedom, namely, s and L ≤ N/s2. When designing
a Sub-Sampling or a Sub-Wrapping projection matrix, the rule
that allows us to meet the ΦcΦ

T
q = I requirement is s ≥ h,

since this way replicas of the point-spread function will not
overlap in Φc or Φq .

Fig. 3 shows an example of how Sub-Wrapping and Gaus-
sian Random Projections affect ΦcΦ

T
q when real-world (i.e.

with unlimited support) Hc and Hq are considered. With
the same set of parameters of the figure (n = 15, L =
12, s = 3), the resulting values for Tr[Λ2] are 14.58, 14.92,
16.88 respectively for Sub-Sampling, Sub-Wrapping, Gaussian
Random Projection. Recalling from Eq. (6) that the objective
function to minimize is Tr[Λ2], we can see how Gaussian
Random Projection, despite being built as an orthogonal basis,
presents a higher value for Tr[Λ2] than Sub-Sampling and Sub-
Wrapping, which leads to a worst expected performance, as
we will confirm later.

Complexity. A final consideration about the design of Φ is
in terms of complexity. In the Sub-Sampling case, projection
complexity is reduced only to samples selection, as no sum
or multiplications are involved, thus Css = 1. For the Sub-
Wrapping case, sample selection is followed by summing of a
maximum of r elements for each output sample, thus Csw =
L(r − 1). When Φ is built as a circulant matrix, as for the
Gaussian Random Projections case, CRP = 2N [2 log2(N) +
3], considering a direct Fast-Fourier-Transform (FFT) of size
N , a dot product between two complex vectors of length N
and the final inverse FFT of size N . In a real-case application



with n ≈ 1, 500, s = 3, b ≈ 500, L ≈ 150, 000 and r = 2, the
complexity of Sub-Wrapping projection is Csw ≈ 150K, less
than 0.1% with respect to the complexity of Gaussian Random
Projections CRP ≈ 200M.

V. EXPERIMENTAL SETUP

In the following we provide details about evaluation metrics
and datasets adopted to provide experimental evidences for
the effectiveness of proposed projection methods. To ease
the comparison among different camera models, we consider
only aligned fingerprints and residuals at original resolution,
meaning that we are not looking for rotation, cropping, or other
affine transformations. Fingerprints and residuals have been
center-cropped to 1500×1500 pixels. Projection performances
are evaluated in terms of True-Positive Rate (TPR), at a
specific false alarm probability of 0.05, against the fingerprint
rate.

To verify the practical feasibility of the proposed methods,
we perform two kinds of experiments. First, projected finger-
prints and residuals are used without any kind of quantization,
thus following the model presented in Sect. III, then we only
keep the sign of projected fingerprints and residuals (i.e., one
bit per projected component), to measure in a qualitative way
the effect of quantization on the proposed model. Residuals
rates are calculated as 32 bits per symbol when no quantization
is applied, and as 1 bit per symbol when binarization is
applied.

Datasets. Resorting to images from Dresden Image
Database [19] we build two camera fingerprint datasets and
two query residual datasets.

The first pair of datasets is built upon RAW images coming
from 6 Nikon camera devices:

• CRAWf is composed of 6 camera fingerprints extracted
from flatfield RAW images.

• QRAWn is composed of 1317 query residuals extracted
from natural RAW images.

The second pair of datasets is built upon JPEG images from
53 camera models, as from [18]:

• CJPGf is composed of 53 camera fingerprints extracted
from flatfield JPEG images as encoded by the cameras’
firmware.

• QJPGn is composed of 9092 query residuals extracted
from natural JPEG images as encoded by the cameras’
firmware.

VI. EXPERIMENTS

Experiments conducted in this Section aim at proving the
compression effectiveness of the proposed PRNU fingerprint
and residuals projection methods. Each reported plot presents
four curves, each one related to a different compression
pipeline:

• Crop (blue): a central square region of the fingerprint or
residual is cropped and the rate is modulated by varying
region size. This is a baseline reference method.

• Random Projections [RP] (green): Gaussian Random
Projections implemented via circulant sensing matrices

are used for fingerprint and residual projection. The
rate is modulated by varying the projected subspace
dimensionality.

• Sub-Sampling [SS] (purple): Bi-dimensional subsampling
is implemented as depicted in Sect. IV. The rate is
modulated by varying the downsamping step size s while
keeping L = bc.

• Sub-Wrapping [SW] (red): Bi-dimensional subwrapping
with s = 3. The rate is modulated by varying L.

Fig. 4 reports results obtained with camera fingerprints
from CRAWf and query residuals from QRAWf . Images used
to estimate camera fingerprints and query residuals have been
affected only by demosaicing and neither projected fingerprints
nor residuals are quantized. We observe how the SS, SW and
RP perform at par, a symptom of almost diagonal Hc and Hq

matrices due to reduced point-spread function support h.
Fig. 5 shows how SS and SW behavior changes when both

camera fingerprints and query residuals are binarized after
projection. Both SS and SW are now outperforming RP with
a sensible compression improvement, e.g. a rate reduction in
the order of 37% for a TPR of 0.99.

Fig. 6 reports results when images used to estimate camera
fingerprints and query residuals have undergone JPEG com-
pression by camera built-in firmware. In this case the point-
spread function in Hc and Hq have surely larger support. This
experiment resembles a real-world scenario, where camera
fingerprints are taken from CJPGf , query residuals are from
QJPGn and no quantization is applied to projected fingerprints
and residuals. In this case SS is performing as RP, with better
TPR for bitrates smaller than 1700kbit per residual. SW is
instead always offering a TPR improvement in the order of
1% meaning a rate reduction of nearly 23% at a fixed TPR of
0.9.

Finally, Fig. 7 shows how binarization affects the aforemen-
tioned real case scenario on CJPGf and QJPGf . While with
similar performance, among the three methods SW achieves
better detection performances at equal bitrate with respect to
RP and SS.

In any case, we once again remark that the complexity of
the new projection methods is much lower than that of RP.

VII. CONCLUSIONS

In this work we have proposed a novel projection framework
for PRNU fingerprint and residuals compression based on
SNR near maximization of the alternative hypothesis in a
cross-correlation statistical test. We have derived systematic
design conditions for the projection matrix, taking into account
local interpolation effects on PRNU due to demosaicing and
JPEG compression. Two projection design strategies have been
introduced and tested on real-world datasets, in comparison
with state-of-the-art PRNU compression methods. The ob-
tained experimental results confirm that proposed projection
methods perform at par or better with state-of-the-art Gaussian
Random Projection, with a signifcant reduction in terms of
computational complexity.



Fig. 4: Rate vs TPR when camera fingerprints and query
residuals are extracted from RAW images. Fingerprints
and residuals are not quantized.

Fig. 5: Rate vs TPR when camera fingerprints and query
residuals are extracted from RAW images. Fingerprints
and residuals are binarized after projection.

Fig. 6: Rate vs TPR when camera fingerprints and query
residuals are extracted from JPEG images. Fingerprints
and residuals are not quantized.

Fig. 7: Rate vs TPR when camera fingerprints and query
residuals are extracted from JPEG images. Fingerprints
and residuals are binarized after projection.
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