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Abstract—In last decade the extremely rapid proliferation of
digital devices capable of acquiring and sharing images over the
Web has significantly increased the amount of digital images
publicly accessible by everyone with Internet access. Despite
the obvious benefits of such technological improvements, it is
becoming mandatory to verify the origin and trustfulness of
such shared pictures. Photo Response Non-Uniformity (PRNU)
is the reference signal for forensic investigators when it comes
to verifying or identifying which camera device shot a picture
under analysis. In spite of this, PRNU is almost a white-shaped
noise, thus being very difficult to compress for storage or large
scale search purposes, which are frequent investigation scenarios.
To overcome the issue, the forensic community has developed
a series of compression algorithms. Lately, Gaussian Random
Projections have proved to achieve state-of-the-art performance.
In this paper we propose two additional steps that help improving
even more Gaussian Random Projections compression rate: i) a
decimation preprocessing step tailored at attenuating frequency
components in which PRNU traces are already suppressed in
JPEG compressed images; ii) a dead-zone quantizer (rather
than the commonly used binary one) that enables an entropy
coding scheme to save bitrate when storing PRNU fingerprints
or sending residuals over a communication channel. Reported
results show the effectiveness of proposed improvements, both
under controlled JPEG compression and in a real case scenario.

Index Terms—PRNU preprocessing, PRNU interpolation,
JPEG low pass, random projections, dead-zone quantization

I. INTRODUCTION

The amount of multimedia content generated and shared
everyday through social media (e.g., Facebook, Instagram,
Twitter, etc.) or photo sharing platforms (e.g., Flickr, Snapchat,
Pinterest, etc.) is rapidly increasing, mainly thanks to easy
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access to audio-visual recording technologies and mobile In-
ternet connections. Images and videos are acquired and shared
on the web everyday by both professionals and amateurs, and
their widespread diffusion has posed many challenges in terms
of security. As a matter of fact, fast access to multimedia
digital contents and ease of manipulation made development of
digital forensics investigation methods an urgent necessity [1],
[2]. When contents produced with imaging devices are used
with malicious or criminal intent, it is paramount to perform
forensic analyses to assess their authenticity and integrity, and
eventually prevent their diffusion. In this scenario, a common
problem faced by forensic investigators is camera source
attribution, i.e., to identify which device took a given picture
[3]. Courts, police departments, newspapers and companies
are just some of the parties interested in solving ownership
attribution disputes and verify the authenticity of images.

Active forensic methods based on image watermarking
or bit-stream embedded metadata are not always applicable
for owner identification purposes, or may be easy to fool.
Watermarks, for instance, must be inserted at image inception
time to let the content be recognizable even after common
transformations such as rotation, scaling, or compression [4].
Conversely, metadata manipulation is at everyone’s hand, and
with a few clicks it is possible to anonymize an image
removing all its EXIF properties [5].

To face ownership attribution in a completely blind fashion,
researchers have developed a set of techniques tailored to
extract traces left on the image by processing components
such as lens aberrations [6], [7], color filter array (CFA)
demosaicing artifacts [8], [9], JPEG compression traces [10],
or combination of these [11], [12].

In addition to all the aforementioned blind methods, Photo
Response Non-Uniformity (PRNU) gained a lot of interest
in the last years [13], [14], [15], [16] due to its intrinsic
robustness. PRNU traces are mainly due to sensor’s silicon
imperfections and can be exploited as a unique fingerprint for
each camera sensor. Such a fingerprint is embedded in every
shot taken with a specific device, being it a professional Digital
Single-Lens Reflex (DSLR) camera or a cheap smartphone.

As a matter of fact, the PRNU fingerprint extraction process
from natural images has been deeply analyzed [17], [18],
[19], [20], [21], [22] and the effect of image content residuals
after noise extraction has been faced with signal enhancement
techniques [23]. Moreover, native robustness of extracted
PRNU traces to cropping, scaling and JPEG compression [24],
[25] gave way to a massive usage of PRNU fingerprints
for camera device identification [26]. Furthermore, clustering
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based approaches [27], [28] have shown the possibility of
separating pictures coming from several camera devices based
on the analysis of PRNU traces.

Unfortunately, one of the issues in performing device at-
tribution through PRNU in real-world applications, is the
nature of PRNU signal itself. Indeed, PRNU is characterized
as a weak multiplicative noise-like signal, deterministic but
hard to efficiently compress in a lossless fashion. In a large-
scale retrieval setup the need of storing several thousands of
reference fingerprints at full resolution poses issues regarding
the amount of storage space. Moreover, when a noise-like
residual extracted from a query image needs to be correlated
with all the reference fingerprints in the database, a more
compact version of both the fingerprint and the residual would
reduce the computational cost. In a mobile authentication
scenario [29], when a user wants to authenticate its device
by sending a residual extracted from a picture to a centralized
database for verification, restricting the amount of data being
sent over the network is mandatory to reduce response times
and improve user experience.

Several PRNU compression methodologies have been pro-
posed in the literature. Fingerprint digest [30] is one of
the most effective techniques, unfortunately bound to the
knowledge of a strong reference PRNU fingerprint in order to
determine positions of prominent peaks. A simple yet effective
compression method is based on fingerprint binarization [31],
which also provides benefits in computational terms by mov-
ing from a cross-correlation test to an Hamming distance
computation. Several sub-linear hashing methods based on
reference fingerprint digest [32], [33] have been developed
to address the problem of fast search in large dataset. Again
in [34], the problem of minimizing the number of observations
required to reduce error probabilities below some pre-fixed
misdetection rates is addressed in a Sequential Probability
Ratio Test framework. As of now, state-of-the-art in PRNU
compression is achieved by binarized Gaussian Random Pro-
jections by Valsesia et al. [35], [36]. This technique exploits
compressive sensing concepts. The main idea is to preserve
angles between PRNU fingerprint vectors when moving from
a high dimensionality input space to a reduced dimensionality
vector space, according to the Johnson-Lindenstrauss lemma.
The effect of signal peaks selection after Random Projections
has been studied in the form of binary adaptive embedding
in [37], showing that a bias is introduced in the distance values.

In a recent paper [38] the authors faced the problem of
defining a design principle for projection matrices tailored
to PRNU compression. The baseline observation is that the
point spread function of the autocorrelation function of PRNU
fingerprints has a support that is always larger than one pixel.
In particular, JPEG compression enlarges this support in a way
that it is possible to design a very simple projection matrix
that allows to get the same or better level of compression as
Gaussian Random Projections at a computational cost below
0.1%.

In this paper we propose a methodology for PRNU com-
pression tailored to JPEG images. This means reducing the
size of PRNU databases, or residuals directly extracted from
images under analysis, still ensuring high camera detection

capability. This problem is faced considering two metrics:
i) storage space/transmission bitrate; ii) computational com-
plexity. These are essential to achieve high-compression rates
while bounding camera attribution complexity.

In particular we leverage on two founding concepts:
• As images are often JPEG compressed, high-frequency

PRNU components may be corrupted, thus making low-
frequencies overall more informative.

• Dead-zone quantization provides much more flexibility
than binary one, especially when paired with entropy
coders.

Exploiting the first idea, we show that it is possible to pre-
process PRNU traces with a decimation operation up to a
certain ratio before reducing vector space dimensionality with
Random Projections, still retaining important camera device
information. Even though PRNU is robust to JPEG compres-
sion in terms of device identification or verification [13], the
strong quantization introduced by JPEG compression at high
frequency components [39], [40] motivates the introduction of
a low-pass filtering via decimation as first step of the pipeline,
in order to preserve only those frequency components that
are carrying significant information about the original PRNU
signal.

The second idea basically compromises between fingerprint
binarization [31] (i.e., binary quantization) and fingerprint
digest [30] (i.e., only coding prominent peaks). Thanks to
the proposed dead-zone quantization process, it is possible to
further compress fingerprints exploiting entropy coders that
did not prove useful after PRNU binary quantization.

Experiments are carried out both under controlled JPEG
compression, starting from RAW images from the Dresden
Image Database [41], and in a wild scenario, with JPEG
images compressed directly by camera’s firmware. In all cases
we take care of both detection accuracy and computational
complexity of proposed improvements. Results show that, by
using the proposed pre-processing and quantization scheme, it
is possible to further push the performance of Gaussian Ran-
dom Projections when JPEG images are actually considered,
while achieving the state of the art when RAW images are
available.

The rest of this work is organized as follows. Section II
reports the necessary background concepts. Section III is
dedicated to the formal problem definition and presentation
of PRNU compression state-of-the-art techniques. Section IV
explains the rationale behind the proposed pipeline and its
algorithmic details. Section V describes the experimental setup
for results reported in Section VI. Conclusions are drawn in
Section VII.

II. BACKGROUND

In the following, we provide an overview of PRNU extrac-
tion techniques and the JPEG compression pipeline, which
are useful to understand the rationale behind the proposed
compression method.

A. Notation
Vectors are given by boldface letters, e.g., x and are consid-

ered to be column vectors. The ith sample of x is represented
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by x(i). Matrices are denoted by bold capital letters, e.g.,
X, and the i, jth element is indicated by X(i, j). Given a
matrix X, its column-wise unwrapped vector is denoted by
x. The Hadamard (sample-wise) product between x and y is
denoted by x ◦ y. The sample-wise division between X and
Y is denoted as X ÷Y. The matrix multiplication between
X and Y is denoted by X�Y.

B. PRNU extraction

Photo Response Non-Uniformity (PRNU) is a multiplicative
noise pattern mostly related to different sizes of imaging
sensor cells. It is a weak signal caused by minute imperfections
occurring during the manufacturing process of the sensor.
Despite its weakness, when a sufficiently large number of
image samples is available it is possible to estimate and use
it as a robust fingerprint for a specific camera sensor [17].

PRNU extraction is based on a simplified linear model of
camera sensor output [15]

I = gγ [(1 + K0)Y + Λ]
γ

+ Θq (1)

where I is an h × w matrix of the same size in pixels
of the sensor, g is the color channel gain and γ is the
gamma correction factor. K0 is a zero-mean noise-like signal
responsible for the PRNU fingerprint. Λ is a combination of
remaining noise sources (dark currents, read-out noise, shot
noise) and Θq is the quantization noise. As shown in [15],
the imaging model can be further simplified as

I = I(0) + I(0)K + Θ (2)

where I(0) = (gY)γ is the noiseless image, K = γK0 and
Θ = γI(0)Λ/Y + Θq condensates independent random noise
components.

The first step toward PRNU estimation is a noise extraction
process that aims at preserving only noise-like residuals from
I, thanks to a properly designed filter. One of the most
used noise extraction algorithms [14] is based on multi-level
wavelet noise-enhancement via adaptive Wiener filtering and
it is applied to red, green and blue channels of I separately to
obtain a residual W.

When a set of Fc shots Ik with k = 1, . . . , Fc taken from the
same camera c is available, the Maximum Likelihood estimate
for Kc results in

K̂c =

(
Fc∑
k=1

Wk ◦ Ik

)
÷

(
Fc∑
k=1

I2k

)
(3)

When only a single query image I(q) is available we call
its residual W(q).

A few post-processing operations on K̂c and W(q) are then
applied in order to remove the average from each color chan-
nel, subtract row and column means for each color component
separately and finally merge the three color components. At
last a noise-peaks removal step is applied as a Wiener filtering
in the discrete Fourier domain, to remove residual periodicities
artifacts and whiten the spectrum of the resulting fingerprint
or residual estimate.

Given a camera device c characterized by a PRNU finger-
print Kc, and a query image I(q), whose residual is W(q), a
binary hypothesis testing problem defined as

H0 : I(q) was not taken with camera c
thus it does not contain Kc

H1 : I(q) was taken with camera c
thus it contains Kc

is faced in order to determine whether the query image has
been shot with the given camera device. Detection of such
matching can be performed via a cross-correlation test, defined
as

ρ
(
K̂c,W

(q)
)

=

h∑
i=1

w∑
j=1

K̂c(i, j) ·W (q)(i, j) (4)

When ρ
(
K̂c,W

(q)
)
> τ then I(q) is decided to contain

Kc, thus the query image is attributed to camera c (verifying
H1 hypothesis). τ is a threshold properly set in order to bound
the false-alarm probability under a desired target value.

C. JPEG compression

JPEG compression is the most widespread standard for
saving natural pictures in a digitized way. All camera models
and smartphones, both professional and cheap ones, provide
a way to save on non-volatile storage the acquired images in
JPEG format.

At first, a color space transformation from the RGB color
space to the YCbCr color space is applied to the original
image, to get a luma component (Y) and two chroma compo-
nents (Cb, Cr). Luma and chroma matrices are split in 8× 8-
pixel non-overlapping blocks. Every block is transformed with
2D Discrete Cosine Transform, rearranging the 64 resulting
coefficients in a 8 × 8 matrix where the top-left element
contains the DC component and the bottom-right element
contains the highest – both vertically and horizontally –
frequency component coefficient.

Each block is then quantized by dividing each frequency
component by a specific quantization step, then rounding
the result to the nearest integer. Quantization coefficients are
stored in two quantization matrices, one for luma component
and one for chroma components. The aforementioned coeffi-
cients quantization carries two effects: i) a reduction of inter-
coefficient entropy, exploited by zig-zag run-length Huffman
coding to compress each block thus reducing storage space;
ii) a frequency-dependent filtering, that greatly reduces high-
frequency components while preserving low-frequency ones.

The final effect of JPEG compression on an image is a
block-wise low-pass filtering. This also affects the image em-
bedded PRNU, which loses its white-shaped spectrum in favor
of a low-pass version. This consideration stands behind the
choice of pre-processing with a low-pass filter the estimated
PRNU fingerprints and image residuals, in order to reduce
the amount of data being processed and transmitted, while
preserving the surviving spectral components of the PRNU.
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Fig. 1: Overall database and query pipeline. (Top) A set of flatfield images is used to estimate a camera fingerprint K̂, that is compressed
and stored into a database. (Bottom) Residual W(q) is extracted from a single query image, then compressed and sent to a central location
for matching purpose.

III. PRNU COMPRESSION

In this section, we introduce the PRNU fingerprint and
residual compression problem, depicting two commonly con-
sidered scenarios. An overview of lossy compression methods
developed over the last years follows.

A. Problem Formulation
When it comes to storing a huge amount of fingerprints or

there is the need of sending them over a band-limited com-
munication channel, an effective PRNU compression method
becomes mandatory.

We are interested in two main applicative scenarios that can
summarize several real-world applications (see Figure 1). Both
scenarios include two players: i) a central database that stores
camera fingerprints, each extracted from several images; ii) a
number of query devices whose fingerprints need to be sent
to a central server for matching purposes. The two scenarios
are described in the following:

Query compression scenario: the goal is to reduce as
much as possible the amount of memory used to represent
query residual information. This means minimizing the bitrate
required to send the compressed residual from a remote device
to a central server. Equivalently, this can be interpreted as min-
imizing the file size in case of residual storage applications.

Joint database-query compression scenario: the first goal
is to restrict as much as possible both the bitrate required to
send a query residual to a central server and at the same time
limit the storage space required to store camera fingerprints.
The second goal is to reduce the computational complexity
required to match each camera fingerprint with a given query
residual.

One of the main issues in compressing a PRNU fingerprint
comes from the observation that it is an inherently broadband
white noise-like signal, well modeled as a sequence of i.i.d.
samples drawn from a zero mean Gaussian distribution. This
results in a signal with little or no redundancies to be exploited
for lossless compression. Lossy compression is then the only
way to reduce fingerprint’s rate. In particular, we focus on
compressing PRNU fingerprints and residuals when no geo-
metrical transformations are applied to the original images.

From a formal point of view, the problem of PRNU com-
pression faced in this work can be defined as follows. Let C

be a collection of camera fingerprints, where each fingerprint
is estimated from several flatfield images according to (3).
Let Q be a collection of query residuals, where each residual
is extracted from a single query image. Let K̂c and W(q)

be an estimated fingerprint and a noise residual extracted
respectively from C and Q. The main goal is to generate
reduced rate representations of K̂c and W(q) such that
• the performances in terms of Receiver-Operating-

Characteristic of the compressed and the uncompressed
case are similar.

• storage space – or transmission rate – requirements of the
compressed fingerprints and residuals are minimized.

B. State-of-the-art Compression Methods

Due to the ever increasing demand of higher compression
rates, several techniques have been proposed in the literature to
work either in the PRNU fingerprint or residual compression
scenarios. The illustrated compression strategies are described
in terms of camera fingerprint (K̂c) but the same process holds
also for query residuals (W(q)).

Trimming and cropping. Fingerprint trimming [30] is
the most trivial way of compression. Considering k̂c as the
column-wise unwrapping of K̂c, trimming is performed by
preserving only the first P samples from k̂c. Similarly, finger-
print cropping results when preserving only the central portion
of a fingerprint K̂c and then performing the unwrapping. This
is the reference baseline method.

Digest. Fingerprint digesting [30] comes from the idea that
most prominent peaks of the extracted PRNU K̂c are more
relevant when using (4) for camera attribution. Therefore,
the digest is built by retaining the position and value of
the P highest energy pixels from K̂c, creating a pair of
vectors of length P , holding respectively peak values and
positions. While this method turns out to be very effective
in terms of compression ratio, it requires the knowledge of
a rather good estimate of K̂c to preserve those pixels that
are really characterizing a specific sensor fingerprint. This is
made possible only when K̂c is estimated from many images,
as only with a good estimate of the PRNU the peaks selection
process is robust enough to allow compression while retaining
high detection performance. In a query compression scenario,
as in a joint compression scenario, where query residual
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compression is limited to the knowledge of a single image,
fingerprint digesting is not a viable option.

Gaussian Random Projections. Introduced as PRNU com-
pression method by Valsesia et al. [36], Random Projections
(RP) with Gaussian sensing matrix have proven to be an
effective way of compressing camera fingerprints and query
residuals. The idea of RP is to project the one dimensional
unwrapping k̂c of fingerprint K̂c from a vector space of
dimension L = h · w to a subspace of dimension P .

Formally, a sensing (projection) matrix Φ with size L× P
is generated with samples being extracted from a i.i.d. zero-
mean Gaussian distribution. The resulting projection rc is thus
a matrix product between a sensing matrix Φ and a vector k̂c

rc = Φ� k̂c (5)

In order to speed-up computation and save memory, a sim-
plified way of building the projection matrix is to randomly
generate as i.i.d. zero-mean Gaussian a single column φ of Φ,
then generate all other columns by means of circular shifting.
In this way the projection can be turned into an element-wise
product in the Fourier Transform domain as

rc = IFFT
(

FFT(k̂c) ◦ FFT(φ)
)

(6)

The process ends by preserving only the first P elements of
rc. The binary version of rc is denoted as rbc.

Binarization Fingerprint binarization [31] is an effective
way to greatly reduce the fingerprint bitrate even after trim-
ming, cropping or projection. Binarization is defined as an
element-wise operation transforming a real number x into its
binarized version xb as

xb =

{
+1 if x ≥ 0

−1 if x < 0
(7)

An additional benefit from binarization is the reduced compu-
tational complexity when performing a cross-correlation test,
as shown by Bayram et al. [31].

IV. PROPOSED COMPRESSION PIPELINE

Given a camera fingerprint K̂c acquired according to Eq. (3)
and a query residual W(q) we propose the same compression
pipeline for both K̂c and W(q). For the sake of clarity, in the
following we describe the process only for K̂c, using K̂ as a
short notation for K̂c.

Algorithm 1 and Figure 2 depict the proposed approach,
comprising four steps: i) fingerprint K̂ is decimated over
rows and columns by a factor d to generate K̂d; ii) Random
Projections (RP) are applied to K̂d to produce a vector r∗P of
length P ; iii) dead-zone (DZ) quantization with threshold δ
preserves only the peaks of r∗P and creates rδP ; iv) Entropy
Coding (EC) applied to rδP generates the compressed output
bit-stream containing fingerprint information. In the following
we illustrate the rationale and the details for each step, in-
troducing compression for the case of the fingerprint estimate
K̂. The whole pipeline holds exactly in the same way also for
query residuals W(q).

Algorithm 1 Camera fingerprint processing algorithm

Require: K̂, d, φ, P , δ
K̂tmp ← DECIMATE(K̂, d)
Ǩ← DECIMATE(K̂tmp, d)
ǩ← UNWRAP(Ǩ)
r∗ ← RANDOM PROJECT(ǩ, φ, P )
rδ ← DEAD-ZONE QUANTIZE(r, δ)
bit-stream ← ENTROPY ENCODE(rδ)

function DECIMATE(A, d)
h,w ← SIZE(A)
for ir in {0, 1, . . . , h− 1} do

for ic in {0, 1, . . . , b(w − 1)/dc} do
Ad(ir, ic) = 0
for jc in {0, 1, . . . , w − 1} do

x = ic · d− jc
Ad(ir, ic) = Ad(ir, ic) + hc(x) ·A(ir, jc)

end for
end for

end for
return Ad

end function
function RANDOM PROJECT(A, φ, P )

a← FLATTEN(A)
aF ← FFT(ad), φF ← FFT(Φ)
pF ← aF ◦ φF
p← IFFT(pF )
p← TRIM(p,P )
return p

end function
function DEAD-ZONE QUANTIZE(a, δ)

P ← LENGTH(a), σ ← STD(a)
for i in {0, . . . , P − 1} do

if a(i) > δσ then
aq(i) = +1

else if a(i) < −δσ then
aq(i) = −1

else
aq(i) = 0

end if
end for
return aq

end function
function ENTROPY ENCODE(a)

P ← LENGTH(a)
for i in {0, . . . , P − 1} do

if a(i) = 1 then
bitstream ← bitstream +10

else if a(i) = −1 then
bitstream ← bitstream +11

else
bitstream ← bitstream +0

end if
end for
return bitstream

end function
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Fig. 2: Proposed compression pipeline. A camera fingerprint estimate K̂ is first decimated (DEC) by a factor d to obtain Ǩ, then Random
Projections (RP) are used to compress Ǩ into a P elements vector r∗. Finally a dead-zone quantizer (DZ) is applied with threshold δ to
get a quantized fingerprint rδ successively encoded (EC) to generate a compressed output bit-stream.

Fig. 3: Power Spectral Density (PSD) for noise residuals from a single flatfield image (a,b,c,d,e) and from a single natural image (f,g,h,i,j)
on PNG uncompressed images and while varying JPEG quality factor.

A. Decimation

It is known from [40] that JPEG compression increases
the variance of cross-correlation values in (4), thus reducing
the margin between H0 and H1 hypotheses. In Figure 3 we
analyze the effect of JPEG compression on the Power Spectral
Density (PSD) for different quality factors by looking at noise
residuals W extracted from flatfield and natural images. It is
clear that the power of the residue at high spatial frequencies –
lower right quadrant – lowers as images are more compressed.
Moreover, residual PRNU contributions in high-frequency bins
are combined with residuals of blockiness artifacts from JPEG
compression that cannot be completely removed by the residue
extraction process.

Putting together the aforementioned consideration, a reason-
able and simple preprocessing method to reduce the dimen-
sionality of K̂ and attenuate its high-frequency components
consists in decimating K̂ by a factor d > 1 along rows and
columns. This operation is accomplished via interpolation with
a cubic kernel [42] hc(x) defined as

hc(x) =


1.5|x|3 − 2.5|x|2 + 1 if |x| ≤ 1

−0.5|x|3 + 2.5|x|2 − 4|x|+ 2 if 1 < |x| ≤ 2

0 otherwise
(8)

Given a vector a of length L and a decimation factor d, the
i-th element of its decimation ad results in

ad(i) =

L−1∑
j=0

hc(j − i · d) · a(j), ∀i ∈ {0, . . . , bl/dc} (9)

The choice of d is carried out such that the resulting resized
fingerprint Ǩ performs in the same way as the original K̂
fingerprint in terms of detection performance.

B. Random Projection

The second step in the pipeline consists in projecting ǩ
– the column-wise unwrapping of Ǩ – with P Random
Projections according to (6), to obtain r∗. Recalling that
L = w · h is the number of pixels in the sensor, it is
worth observing that the input to Random Projection is now
a vector with L/d2 elements due to the previous decimation,
thus the computational complexity in terms of additions and
multiplications of implementing (6) for ǩ is

CRP (ǩ) = 2
L

d2
[log2(L) + 3− 2 log2(d)] (10)

whereas the computational complexity of implementing (6) for
k̂ – the column-wise unwrapping of K̂ – as in [36] is

CRP (k̂) = 2L [log2(L) + 3] (11)
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Finally observing that

CRP (ǩ) <
1

d2
CRP (k̂) (12)

we can conclude that the computational complexity is reduced
by more than a factor d2.

C. Dead-zone quantization

While binarization of random projections has been proved
to be an effective way of quantizing and preserving good
performance in terms of detection, here we propose to use
a dead-zone quantizer on r∗ to get rδ . Given σ, the standard
deviation of r∗, the i-th element of rδ for i = 1, . . . , P is
obtained as

rδ(i) =


+1 if r∗(i) > δσ

0 if − δσ ≤ r∗(i) ≤ δσ
−1 if r∗(i) < −δσ

(13)

The rationale behind this choice is twofold. On one hand,
as observed in [30] for PRNU digest, peaks with high ab-
solute values are the most important ones in terms of cross-
correlation, thus preserving those peaks seems a reasonable
choice. On the other hand, quantizing with a variable threshold
allows to reduce the bitrate of rδ via entropy coding by fixing
P while increasing the value of δ (i.e., setting more samples
to zero). When comparing a dead-zone quantized signal with
another binarized or dead-zone quantized signal, the similarity
measure provided by the cross-correlation, Eq. (4) is equiva-
lent to the Opposite Absolute Distance (OAD) defined as:

OAD (x,y) =

N∑
i=1

1− |x(i)− y(i)| (14)

where x and y are respectively the two binarized or dead-zone
quantized reference fingerprint and query residuals of length
N .

D. Entropy coding

As last step of the pipeline, an arithmetic entropy coding
scheme is applied to rδP in order to get a compressed bit-stream
containing compressed information about K̂. The threshold
value δ is a tunable parameter, as will be discussed in
Section VI. The Gaussian distribution of PRNU fingerprint
coefficients after projection comes at help in the entropy
coding stage. In fact, dead-zone quantization produces a three-
symbols output whose entropy is lower than log2(3) for
increasing values of δ, due to the higher probability of symbol
0 with respect to symbols +1 and −1.

V. EXPERIMENTAL SETUP

In the following we provide details about the evaluation
metrics and datasets adopted to provide experimental results
in Section VI. To validate the effectiveness of the proposed
method, we focus on the problem of image source attribution
in a probabilistic framework with the following constraints:
• All extracted fingerprints K̂c and residuals W(q) are

cropped to their central region of size h = w = 1500,

thus L = 2.25 · 106. This allows for a direct comparison
between every fingerprint-residual pair.

• We consider only aligned fingerprints and residuals at
original resolution, meaning that we are not looking for
rotation, cropping, or other affine transformations. All
fingerprints and residuals have the same size and for each
camera device the cropped region offset with respect to
the origin is fixed. This choice follows from state of the
art works about PRNU compression [31], [36].

Given a set of C camera devices, for each device c ∈ [1, C]
we have Fc flatfield pictures that we use to estimate the camera
fingerprint K̂c, according to (3). In this way we build a dataset
C of Nc device fingerprints. For each natural image I(n), n ∈
[1, N ] we estimate its residual W(n), building a dataset Q of
N query images.

A. Evaluation metrics

In order to determine whether a query image residual W(n)

from Q is correctly binded to its camera device and not to
other devices, we build a cross-correlation matrix NCC ∈
RC×N defined as

CC(c, n) =
〈
K̂c ◦ I(n), W(n)

〉
c = 1, . . . , C, n = 1, . . . , N

(15)

then we set the same cross-correlation threshold τc for all
camera devices such that the overall False-Positive rate is be-
low a certain false-alarm probability pFA. The cross-correlation
matrix CC is then turned into a binary prediction matrix
P ∈ {0, 1}C×N according to

P (c, n) =

{
1 CC(c, n) > τc

0 CC(c, n) ≤ τc
c = 1, . . . , C, n = 1, . . . , N

(16)

Comparison between P and the Ground-Truth binary matrix
GT, where GT (c, n) = 1 when K̂c and W(n) are from the
same camera device, leads to definition of the hereinafter used
evaluation metrics known as True-Positive Rate (TPR) and
False-Positive Rate (FPR). In particular, when evaluating the
relationship between residual bitrate and system performance,
we are considering the True-Positive Rate at a specific false-
alarm probability pFA = 0.05.

B. Datasets

Resorting to images from the Dresden Image Database [41]
we build two camera fingerprint datasets and several query
residual datasets.

Four controlled compression datasets are built upon RAW
images coming from 6 camera devices, two for each model of
Nikon-D200, Nikon-D70, Nikon-D70s:
• CRAW

f is composed of 6 camera fingerprints extracted
from flatfield RAW images.

• QRAW
n is composed of 1317 query residual extracted from

natural RAW images.
• QQF=q

n is composed of 1317 query residual extracted
from natural RAW images compressed in JPEG format
with QF = q before the noise extraction process.
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Fig. 4: Effect of decimating by factor d in terms of detec-
tion performance when query images are uncompressed (QRAW

n )
or JPEG compressed with different quality factors (QQF=q

n , q ∈
{30, 40, 50, 60, 70, 80, 95}).

Fig. 5: Comparison between decimation with a factor d = 2 followed
by central cropping (Ǩ) against central cropping alone (K̂) in terms
of detection performance when query images are JPEG compressed
with different quality factors (QQF=95

n , QQF=90
n ).

Two uncontrolled compression datasets are built upon JPEG
images from 53 camera models, the same used in [36]:

• CJPG
f is a composed of 53 camera fingerprints extracted

from flatfield JPEG images as encoded by cameras’
firmware.

• QJPG
n is a composed of 9092 query residual extracted from

natural JPEG images as encoded by cameras’ firmware.

VI. RESULTS

In the following we report experimental results. At first
we show how to properly select the decimation kernel and
factor. Then we compare Random Projections with and without
the proposed resizing and dead-zone quantization approaches
in terms of bitrate vs. True-Positive Rate. Finally we show
how the proposed pipeline compares with the state of the art
solution in terms of Receiver-Operating-Characteristic.

Fig. 6: Effect of decimation with a factor d = 2 followed by Random
Projections in terms of detection performance when query images are
JPEG compressed with different quality factors (QQF=95

n , QQF=90
n ).

Fig. 7: Effect of dead-zone quantization, applied after decimation and
Random Projection, in terms of detection performance when query
images are uncompressed (QRAW

n ) or JPEG compressed with different
quality factors (QQF=95

n , QQF=90
n ).

A. Decimation

Choice of d, the resizing factor for the first step of the
pipeline, is performed evaluating the impact in terms of TPR
when database fingerprints are extracted from CRAW

f , while
query residuals are extracted from QRAW

n and QQF=q
n , q ∈

{30, 40, 50, 60, 70, 80, 95}. Figure 4 depicts the TPR at fixed
pFA = 0.05, as a function of d. For weak JPEG compression
(QF ≥ 70) we observe a drop in detection performance when
decimating with a factor d ≥ 3, while for d < 3 the accuracy
is preserved almost without loss at a value of 1.0. For stronger
JPEG compression factors (QF < 70) decimation with d = 2
results beneficial, as it increases the Signal-to-Noise Ratio
between the PRNU (signal) and the PRNU-unrelated noise
components remaining after the noise extraction process. It
is also interesting to notice that the loss-less behavior of
decimation with d = 2 might be related to CFA interpolation,
even though we have no experimental evidences to prove it at
this time. Given the aforementioned considerations we chose
to set d = 2 for all the following experiments. As shown in
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Fig. 8: Detection performance in a query compression scenario on
uncompressed query images.

Fig. 9: Detection performance in a query compression scenario on
JPEG compressed query images (QF = 95).

Fig. 10: Detection performance in a query compression scenario on
JPEG compressed query images (QF = 90).

Fig. 11: Detection performance in a query compression scenario on
Dresden dataset.

Fig. 12: Detection performance in a joint compression scenario on
uncompressed query images.

Fig. 13: Detection performance in a joint compression scenario on
JPEG compressed query images (QF = 95).

Fig. 14: Detection performance in a joint compression scenario on
JPEG compressed query images (QF = 90).

Fig. 15: Detection performance in a joint compression scenario on
Dresden dataset.
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Sec. IV this leads to a 75% complexity reduction in terms
of subsequent Random Projections. As for the choice of the
kernel function, the cubic one defined in Eq. (8) shows similar
detection rates when compared to Lanczos kernels, with a
noticeable improvement with respect to a bilinear kernel, as it
should be expected.

To understand the effect introduced by decimation when
dealing with JPEG compressed query images, Figure 5 reports
the comparison between a baseline central cropping strategy
(K̂ dotted lines) versus a compression approach based on
decimation by a fixed factor d = 2 followed by central
cropping (Ǩ dashed lines). To vary the bitrate when no
decimation is applied (K̂ dotted lines) we centrally crop
both the fingerprint and the residual. When decimation of a
fixed factor d = 2 is applied as a pre-processing step (Ǩ
dashed lines) the bitrate is varied by central cropping both the
decimated fingerprint and the decimated residual. The bitrate
is computed as l2 · 32bit, where l is the side-length of the
cropping square. Database images are drawn from CRAW

f while
query images are extracted from QQF=95

n and QQF=90
n . Results

show that when JPEG query images are involved the same TPR
can be obtained with a significantly lower bitrate, meaning
that the interpolation effect introduced by the cubic kernel is
preserving PRNU components and compacting them into a
smaller support.

When Random Projections are used instead of central crop-
ping, the benefits of decimation are confirmed and highlighted.
Figure 6 shows the benefit of decimation with d = 2 when
Random Projections are used to compress the signal while
varying the projection space dimensionality P . As no quan-
tization is involved, the bitrate is computed as P · 32bit. The
comparison between the use of Random Projections applied
directly to the input fingerprint or residual (r dotted lines)
against the use of Random Projections after decimation (r∗

dashed lines) show that in the latter case the same TPR is
obtained with a significant reduction of bitrate.

B. Quantization and coding

Figure 7 shows the reduction in terms of bitrate at equal
TPR when dead-zone quantization is used instead of bina-
rization for compressing query residuals. Camera fingerprints
extracted from the CRAW

f database are decimated with d = 2,
projected with Random Projection with P = 96k and bina-
rized. Query residuals from QRAW

n , QQF=95
n and QQF=90

n are first
decimated with d = 2 then projected with Random Projection
with varying P and binarized (rb dotted lines) or projected
with P = 96k and quantized with a varying δ dead-zone
quantizer (rδ dashed lines). The reported results show how
for both uncompressed and JPEG compressed query images,
the same TPR can be obtained with a bitrate reduction of more
than 20% when using dead-zone quantization.

To confirm the choice of a dead-zone quantizer whose dead-
zone is driven by the standard deviation σ of the residual,
as described in Section IV, we also tested several different
quantizers followed by an entropy coder and reported the
results in Table I. We evaluate the required query rate to reach
a TPR of 95%. In the first two lines, a Random Projection

with 96k output coefficients is fed to two different dead-zone
quantizers, the top one with a σ-driven dead-zone and the
second one with a signal independent dead-zone. In both cases,
the values for δ are the same for all camera devices and a
varying value of δ is used to draw a ROC curve. From the
ROC curve we derive the bitrate needed to reach a 95% TPR.
The other lines of the table are obtained by projecting the
decimated residuals with a varying projection length P while
quantizing with binarization, three uniform scalar quantizers
and three Lloyd-Max scalar quantizers. The overall results
from the table confirm the choice of a signal-dependent dead-
zone quantizer as it reduces the required bitrate for fixed TPR
performance.

As final step of the pipeline, the choice of a proper encoding
scheme is essential to exploit the reduced entropy resulting
from the dead-zone quantization. While results reported in the
plots are computed with the use of a real arithmetic encoder,
Table II shows the comparison between an arithmetic coder
(AC) applied after dead-zone quantization (first row) compared
to run-length coding (RLC) after dead-zone quantization (sec-
ond row). Run-length coding is obtained by encoding only
differential positions and sign of the peaks. The increased
bitrate when using RLC is in any case smaller or equal
to the bitrate obtained with binarized Random Projections
applied to the original query residual (third row of Table I). In
applications where bitrate constraints are relaxed, the choice
of a run-length encoder allows to keep coding complexity at
bay while preserving state of the art compression rates.

C. Query compression scenario
In a query compression scenario we wish to evaluate the

trade-off between query residual bitrate and achieved True-
Positive Rate. Three different datasets combinations are taken
into account, all resorting to camera fingerprints from CRAW

f

while query residuals are drawn fromQRAW
n (Figure 8),QQF=95

n

(Figure 9) and QQF=90
n (Figure 10).

Each plot reports four curves comparing different methods:
i) central fingerprint and residual cropping (K̂) while varying
the amount of preserved pixels. Query residual coefficients
are quantized by binarization; ii) Random Projections (r)
applied to the entire K̂ fingerprint while varying the number
of projection components P . Projected coefficients from query
residuals are quantized by binarization; iii) “Sub-Wrapping”
method introduced in [38] (SW), which proved to behave
at par with Random Projections with a lower computational
complexity; iv) proposed method, with K̂ resized by a factor
d = 2 that is then projected through Random Projections with
P = 96000, giving rise to r96k. Query projected fingerprints
are then quantized with a Dead-Zone quantizer (rδ), where
threshold δ is gradually increased to decrease query residual
bitrate, thanks to arithmetic coding exploiting the reduced
entropy of quantized residual.

By observing the three plots we can clearly see that
when query residuals are extracted from uncompressed images
(Figure 8) the performance gap between Random Projections
applied to the entire fingerprint (r) and dead-zone quantized
Random Projections applied to resized fingerprints (rδ) is neg-
ligible. When JPEG compression is applied to query images
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TABLE I: Entropy coded query rate [kbit] @ TPR = 95% with several quantizer choices in joint and query compression scenarios. Best
results in bold font.

P Quantization Joint
QF 95

Joint
QF 90

Query
QF 95

Query
QF 90

96k Dead-zone, δσ 22 30 13 18
96k Dead-zone, δ 44 54 35 42

varying Binarization 30 39 19 26
varying Uniform scalar, 3 levels 28 40 18 26
varying Uniform scalar, 5 levels 33 45 23 31
varying Uniform scalar, 7 levels 39 52 27 34
varying Lloyd-Max scalar, 3 levels 34 46 22 33
varying Lloyd-Max scalar, 5 levels 44 62 30 41
varying Lloyd-Max scalar, 7 levels 53 68 34 46

TABLE II: Query rate [kbit] @ TPR = 95% with different encoders in joint and query compression scenarios. AC = Arithmetic Coding,
RLC = Run-Length Coding

P Quantization Encoding Joint
QF 95

Joint
QF 90

Query
QF 95

Query
QF 90

96k Dead-zone AC 22 30 13 18
96k Dead-zone RLC 28 40 18 23

(Figures 9 and 10) the gap between r and rδ increases greatly.
If setting a goal TPR at around 95% the rate required by r is
25kbit and 52kbit, respectively for QQF=95

n and QQF=90
n , while

for rδ it is 13kbit and 18kbit, with a rate reduction between
48% and 65%.

To test performance of proposed method on a dataset with
uncontrolled JPEG compression, Figure 11 reports results
when camera fingerprints are from CJPGf and query residuals
from QJPGn . In this case both camera and query images
have undergone JPEG compression, but with several quality
factors and customized quantization matrices, due to different
brands’ firmware implementations. In spite of the uncontrolled
condition, when setting a desired TPR at 90% the proposed
method achieves a 70% rate reduction with respect to Random
Projections.

D. Joint database and query compression scenario

In a joint database and query compression scenario, exper-
iments are carried out while quantizing by binarization all
database fingerprints. Figures 12, 13 and 14 report results
obtained respectively on query datasets QRAW

n , QQF=95
n and

QQF=90
n . For each plot, the three lines represent performance

with same query compression methods illustrated for query
compression scenario. When query residuals are extracted
from uncompressed images (Figure 12) the gap between r and
rδ results negligible, while as soon as JPEG compression is
applied to query images (Figures 13 and 14) the rate reduction
obtained by rδ with respect to r is respectively of 46% and
66%, at a desired 95% TPR.

As previously done for the query compression scenario,
also in the joint compression scenario we wish to verify
performance under uncontrolled JPEG compression. Figure 15
reports results obtained from database fingerprints CJPGf and
query residuals QJPGn . As for the query compression scenario,
the rate reduction offered by the proposed method rδ with
respect to Random Projection directly applied to K̂ is more
than 68%, under a fixed 90% TPR.

Both in the query compression scenario (Figures 8, 9, 10)
and in the joint compression scenario (Figures 12, 13, 14)

we can observe a common trend. The proposed method (rδ)
performs better in terms of compression than the state of
the art method based on solely binarized Gaussian Random
Projections (r) when query images are JPEG compressed.
However, when query images are uncompressed, the proposed
method performs at par with the state of the art in terms of
compression, but with a reduced computational complexity.

E. Lowering false-alarm probability
A last experiment is carried out by computing the Receiver-

Operating-Characteristic (ROC) for both scenarios, query and
joint compression, on the Dresden dataset. This test allows
us to verify the performance of the proposed pipeline even
at pFA smaller than 0.05. With a fixed rate of 64kbit per
query for all three compared compression methods, Figure 16
reports the obtained ROC curves for the query compression
scenario, showing the Equal-Error-Rate for each curve at side
of legend items. The same results are shown for the joint
compression scenario in Figure 17. The proposed compression
method preserves its good performance even at really small
pFA, making this choice viable also for those kind of systems
that need to strictly bound the False Positive rate.

F. Running times
The execution time for the query compression pipeline is

measured on a modern laptop equipped with a quad-core
Intel Core-i7 processor on top of a MATLAB® 2018a imple-
mentation. The baseline pipeline that takes as input the image
and directly applies Gaussian Random Projections followed by
binarization and encoding takes 150ms. When decimation of
a factor d = 2 is pre-pended to the same pipeline the running
time drops to 38ms. Finally, as for the proposed method, when
binarization is substituted by dead-zone quantization the total
time required to execute the pipeline is 39ms.

VII. CONCLUSIONS

In this paper we presented a compression pipeline for PRNU
fingerprints and residuals based on decimation, Random Pro-
jections and dead-zone quantization. At first we observed



12

Fig. 16: Receiver-Operating-Characteristic at 64kbit per residual in a
query compression scenario on Dresden dataset.

Fig. 17: Receiver-Operating-Characteristic at 64kbit per residual in a
joint compression scenario on Dresden dataset.

that JPEG compression strongly attenuates high frequency
components of the PRNU, basically zeroing the usefulness
of such frequencies in terms of cross-correlation. Exploiting
this phenomena, we decimate the extracted PRNU fingerprint
and residuals before passing to Random Projections. Finally
we are able to further reduce the bitrate by adopting a
dead-zone quantization scheme, that fuses the advantages of
fingerprint binarization and digest compression methods. On
the Dresden Image Dataset, the proposed pipeline accounts for
more than 65% bitrate reduction with respect to basic Random
Projections applied to the whole fingerprint or residual, both
in terms of query and joint compression, with an overall 75%
complexity reduction.
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digital image forensics?” in Proceedings of the 15th ACM International
Conference on Multimedia, ser. MM ’07. New York, NY, USA: ACM,
2007, pp. 78–86.

[4] X. Feng, H. Zhang, H. C. Wu, and Y. Wu, “A new approach for optimal
multiple watermarks injection,” IEEE Signal Processing Letters, no. 10,
pp. 575–578, 2011.

[5] J. Voisin, C. Guyeux, and J. M. Bahi, “The metadata anonymization
toolkit,” 2017, available at: https://mat.boum.org/.

[6] K. S. Choi, E. Y. Lam, and K. K. Y. Wong, “Source camera identification
using footprints from lens aberration,” in Electronic Imaging, 2006.

[7] L. T. Van, S. Emmanuel, and M. S. Kankanhalli, “Identifying source
cell phone using chromatic aberration,” in Multimedia and Expo, 2007
IEEE International Conference on. IEEE, 2007, pp. 883–886.

[8] S. Bayram, H. Sencar, N. Memon, and I. Avcibas, “Source camera iden-
tification based on CFA interpolation,” in IEEE International Conference
on Image Processing 2005. IEEE, 2005, pp. 69–72.

[9] A. Swaminathan, M. Wu, and K. Liu, “Nonintrusive component foren-
sics of visual sensors using output images,” IEEE Transactions on
Information Forensics and Security, no. 1, pp. 91–106, 2007.

[10] E. J. Alles, Z. J. M. H. Geradts, and C. J. Veenman, “Source camera
identification for heavily JPEG compressed low resolution still images,”
Journal of Forensic Sciences, no. 3, pp. 628–638, 2009.

[11] M. Kharrazi, H. Sencar, and N. Memon, “Blind source camera identi-
fication,” in 2004 International Conference on Image Processing, 2004.
ICIP ’04. IEEE, 2004, pp. 709–712.

[12] O. Celiktutan, B. Sankur, and I. Avcibas, “Blind identification of source
cell-phone model,” IEEE Transactions on Information Forensics and
Security, no. 3, pp. 553–566, 2008.

[13] J. Lukas, J. Fridrich, and M. Goljan, “Determining digital image origin
using sensor imperfections,” in Image and Video Communications and
Processing 2005, A. Said and J. G. Apostolopoulos, Eds. SPIE, 2005,
p. 249.

[14] M. Goljan, M. Chen, and J. Fridrich, “Identifying common source digital
camera from image pairs,” in 2007 IEEE International Conference on
Image Processing, no. 1. IEEE, 2007, pp. VI – 125–VI – 128.

[15] M. Chen, J. Fridrich, M. Goljan, and J. Lukas, “Determining image ori-
gin and integrity using sensor noise,” IEEE Transactions on Information
Forensics and Security, no. 1, pp. 74–90, 2008.

[16] J. Fridrich, “Digital image forensics,” IEEE Signal Processing Magazine,
no. 2, pp. 26–37, 2009.

[17] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from
sensor pattern noise,” IEEE Transactions on Information Forensics and
Security, no. 2, pp. 205–214, 2006.

[18] I. Amerini, R. Caldelli, V. Cappellini, F. Picchioni, and A. Piva,
“Analysis of denoising filters for photo response non uniformity noise
extraction in source camera identification,” in 2009 16th International
Conference on Digital Signal Processing. IEEE, 2009, pp. 1–7.

[19] G. Chierchia, S. Parrilli, G. Poggi, C. Sansone, and L. Verdoliva, “On the
influence of denoising in prnu based forgery detection,” in Proceedings
of the 2Nd ACM Workshop on Multimedia in Forensics, Security and
Intelligence, ser. MiFor ’10. New York, NY, USA: ACM, 2010, pp.
117–122.

[20] A. Cortiana, V. Conotter, G. Boato, and F. De Natale, “Performance
comparison of denoising filters for source camera identification,” Pro-
ceedings of the SPIE Conference on Media Watermarking, Security, and
Forensics, pp. 788 006–788 007, 2011.

[21] F. Gisolf, A. Malgoezar, T. Baar, and Z. Geradts, “Improving source
camera identification using a simplified total variation based noise
removal algorithm,” Digital Investigation, no. 3, pp. 207–214, 2013.

[22] X. Lin and C.-T. Li, “Preprocessing reference sensor pattern noise via
spectrum equalization,” IEEE Transactions on Information Forensics and
Security, no. 1, pp. 126–140, 2016.

[23] C. T. Li, “Source camera identification using enhanced sensor pattern
noise,” IEEE Transactions on Information Forensics and Security, vol. 5,
no. 2, pp. 280–287, 2010.

[24] M. Goljan and J. Fridrich, “Camera identification from cropped and
scaled images,” in Security, Forensics, Steganography, and Watermark-
ing of Multimedia Contents X, E. J. D. III, P. W. Wong, J. Dittmann,
and N. D. Memon, Eds. SPIE, 2008, p. 68190E.



13

[25] K. Rosenfeld and H. T. Sencar, “A study of the robustness of PRNU-
based camera identification,” Proc. SPIE 7254, Media Forensics and
Security, pp. 72 540M–72 540M–7, 2009.

[26] M. Goljan, J. Fridrich, and T. Filler, “Large scale test of sensor
fingerprint camera identification,” Proceedings of SPIE, no. 607, pp.
72 540I–72 540I–12, 2009.

[27] R. Caldelli, I. Amerini, F. Picchioni, and M. Innocenti, “Fast image
clustering of unknown source images,” in 2010 IEEE International
Workshop on Information Forensics and Security. IEEE, 2010.

[28] F. Marra, G. Poggi, C. Sansone, and L. Verdoliva, “Blind PRNU-
Based Image Clustering for Source Identification,” IEEE Transactions
on Information Forensics and Security, no. 9, pp. 2197–2211, 2017.

[29] D. Valsesia, G. Coluccia, T. Bianchi, and E. Magli, “User authentication
via prnu-based physical unclonable functions,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 8, pp. 1941–1956, Aug
2017.

[30] M. Goljan, J. Fridrich, and T. Filler, “Managing a large database of
camera fingerprints,” in Media Forensics and Security II, N. D. Memon,
J. Dittmann, A. M. Alattar, and E. J. D. III, Eds. SPIE, 2010, p. 754108.

[31] S. Bayram, H. T. Sencar, and N. Memon, “Efficient sensor fingerprint
matching through fingerprint binarization,” IEEE Transactions on Infor-
mation Forensics and Security, no. 4, pp. 1404–1413, 2012.

[32] Y. Hu, C.-T. Li, Z. Lai, and S. Zhang, “Fast camera fingerprint search
algorithm for source camera identification,” in 2012 5th International
Symposium on Communications, Control and Signal Processing, no.
May. IEEE, 2012, pp. 1–5.

[33] Y. Hu, C.-T. Li, and Z. Lai, “Fast source camera identification using
matching signs between query and reference fingerprints,” Multimedia
Tools and Applications, no. 18, pp. 7405–7428, 2014.

[34] F. Perez-Gonzalez, M. Masciopinto, I. Gonzalez-Iglesias, and P. Come-
sana, “Fast sequential forensic detection of camera fingerprint,” in 2016
IEEE International Conference on Image Processing (ICIP). IEEE,
2016, pp. 3902–3906.

[35] D. Valsesia, G. Coluccia, T. Bianchi, and E. Magli, “Large-scale image
retrieval based on compressed camera identification,” IEEE Transactions
on Multimedia, no. 9, pp. 1439–1449, 2015.

[36] ——, “Compressed fingerprint matching and camera identification via
random projections,” IEEE Transactions on Information Forensics and
Security, no. 7, pp. 1472–1485, 2015.

[37] D. Valsesia and E. Magli, “Binary Adaptive Embeddings From Order
Statistics of Random Projections,” IEEE Signal Processing Letters,
vol. 24, no. 1, pp. 111–115, Jan 2017.

[38] L. Bondi, F. Prez-Gonzlez, P. Bestagini, and S. Tubaro, “Design of
projection matrices for prnu compression,” in 2017 IEEE Workshop on
Information Forensics and Security (WIFS), Dec 2017, pp. 1–6.

[39] E. Quiring and M. Kirchner, “Fragile sensor fingerprint camera identifi-
cation,” in 2015 IEEE International Workshop on Information Forensics
and Security, 2015.

[40] M. Goljan, M. Chen, P. Comesaña, and J. Fridrich, “Effect of com-
pression on sensor-fingerprint based camera identification,” Electronic
Imaging, no. 8, pp. 1–10, 2016.

[41] T. Gloe and R. Bhme, “The dresden image database for benchmarking
digital image forensics,” Journal of Digital Forensic Practice, no. 2-4,
pp. 150–159, 2010.

[42] R. Keys, “Cubic convolution interpolation for digital image processing,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981.

Luca Bondi was born in Sassuolo, Italy, on
February 12, 1990. He received the B.Sc. degree in
Automation Engineering and the M.Sc. in Computer
Science and Engineering from the Politecnico di
Milano, Milan, Italy, in 2012 and 2014, respectively.
He is currently a Ph.D. student at the Image and
Sound Processing Group, Politecnico di Milano.
His research interests focus on data-driven methods
applied to images and videos in multimedia forensics
applications.



14

Paolo Bestagini (M11) was born in Novara, Italy,
on February 22, 1986. He received the M.Sc. de-
gree in Telecommunications Engineering and the
Ph.D. degree in Information Technology from the
Politecnico di Milano, Italy, in 2010 and 2014,
respectively. He is currently an Assistant Professor at
the Image and Sound Processing Group, Politecnico
di Milano. His research interests focus on multi-
media forensics and acoustic signal processing for
microphone arrays. He is an elected member of the
IEEE Information Forensics and Security Technical

Committee, and a co-organizer of the IEEE Signal Processing Cup 2018.
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