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Abstract

The accurate synthesis of realistic waveforms conforming to certain specifica-

tions is a fundamental step in random vibration testing. Since real-time imple-

mentation of digital signal processing systems for random vibration and noise

synthesis necessarily operates frame by frame, the overlap-add (OLA) method,

by which frames are windowed and overlapped, is widely used in practice to

avoid artifacts at frame boundaries. When a wide-sense stationary random

signal is desired, however, the OLA method presents a shortcoming, because

the inherent periodicity of the frame-by-frame process unavoidably produces a

cyclostationary signal, i.e., its statistics present an undesired periodic behav-

ior. We analyze the impact of the window coefficients in the cyclostationarity

properties of the synthetic process, and then present algorithms for window de-

sign with the goal of maximizing a measure of its stationarity, considering both

second- and fourth-order statistical properties. The proposed designs are shown

to significantly improve the stationarity properties when compared to commonly

used windows.
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1. Introduction

Windowing is a common operation which can be found in a wide range of

signal processing applications. In spectral analysis, for example, desirable prop-

erties for a window include having a Fourier transform with a narrow mainlobe

and low sidelobe levels with steep fall-off [1]. Another example is found in Short-5

Time Fourier Transform (STFT) processing of vibration and audio signals. The

observed signal is split into overlapping segments, which are subsequently multi-

plied by an analysis window function. After STFT, frequency-domain processing

(e.g., filtering by pointwise multiplication with the Discrete Fourier Transform

(DFT) of the filter response), and inverse STFT to go back to the time domain,10

the overlap-add (OLA) method [2] can be used to reconstruct the output signal

from the processed segments, which are previously multiplied by a synthesis

window function. In this setting, it is common to impose on the window the

constraint that, when the segments are unprocessed, the output signal be a per-

fect replica of the input signal, up to a processing delay. This requirement leads15

to the so-called constant overlap-add (COLA) property. The design of COLA

windows with good spectral properties has been considered in [3].

Windowing is also employed in the context of random synthesis, which is of

great interest in the fields of vibration control and testing. Random vibration

controllers generate waveforms which are realizations of stochastic processes20

with prespecified statistical properties according to the type of vibratory en-

vironment that the device under test would experience in a real-world setting.

Typical sets of specifications include (i) wide-sense stationarity (WSS), at least

on a short-term basis; (ii) a predefined power spectral density (PSD) or, equiv-

alently, a given autocorrelation function; and (iii) a given probability density25

function (pdf). The possibility of modifying the PSD and/or pdf during the

synthesis process in real-time vibration control applications, and the need for

generating very long duration signals, makes the usage of block processing a

common choice [4, 5, 6]. The different signal blocks are independently synthe-

sized according to the aforementioned specific requirements, and then concate-30
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nated using the OLA method with windowing in order to avoid discontinuities

at the block boundaries. This approach, however, results in a synthetic process

that need not preserve the statistical properties of the individual blocks, because

in general these will be altered by the windowing and overlap-add operations.

Therefore, it is of importance to understand the impact of the OLA method in35

the statistics of the synthetic process, as well as to properly design the window

function to mitigate such impact. We note that desirable window features aris-

ing in different contexts, such as the aforementioned COLA property, need not

be relevant in this framework.

To the best of the authors’ knowledge, the only references dealing with this40

issue are [4, 7], which endorse the use of windows resulting in a synthetic process

whose variance remains constant with time; this property is achieved if the

overlapped windows yield a constant sum of squares. However, this constant-

variance property alone is not sufficient for the process to be truly (wide sense)

stationary: for example, if the individual blocks have constant variance, then45

so does the process obtained with a rectangular window and no overlapping,

yet this ”direct concatenation” method is clearly undesirable for the reasons

discussed above. Additionally, most commonly used windows will fulfill the

constant-variance property only for specific overlap factors.

In certain applications it is desired to synthesize non-Gaussian vibration50

waveforms, to more accurately reflect the vibratory environment [6, 8, 9, 10].

The degree of non-Gaussianity is typically manipulated by controlling the kur-

tosis of the distribution used to synthesize the individual blocks. In such cases,

stationarity of the higher-order statistics should also be considered when de-

signing the synthesis window to be used in the OLA process, since wide-sense55

stationarity is, by definition, only a second-order property. Kurtosis variations

in the synthetic waveform may lead to an undesired increase of its crest factor,

ultimately impacting structural life when durability testing is considered [11].

Motivated by the above considerations, in this paper we focus on the im-

pact of the window function on the stationarity properties of a random process60

synthesized by means of the OLA method. First, it is shown that such process
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is cyclostationary in general, and not WSS. Then, a cost function promoting

second-order stationarity is defined and an algorithm for the computation of

the corresponding optimal window is described. For the case of non-Gaussian

random vibration synthesis, an analogous strategy is applied to the analysis of65

the stationarity of fourth-order statistics (kurtosis), and a cost function aimed

at maximizing fourth-order stationarity is defined and optimized. The station-

arity of the process for the proposed windows is then evaluated and compared

with that obtained with other commonly used windows. Finally, conclusions

are presented based on the obtained results.70

The notation adopted throughout the paper is as follows. E {·} denotes sta-

tistical expectation. Bold lowercase and uppercase letters represent vectors and

matrices, respectively. Vectors are column vectors unless otherwise specified,

the identity matrix is denoted by I, and the vectors of all zeros and all ones

are respectively denoted by 0 and 1. For a matrix A, its transpose, conjugate,75

and conjugate transpose are respectively denoted by AT , A∗ and AH . The

2-norm of a vector v is ‖v‖ =
√
vTv. The gradient of a function F with respect

to variable w is denoted by ∇wF (w). For a complex number c, its real and

imaginary parts are respectively denoted by Re {c} and Im {c}.

2. Second-order analysis of the overlap-add method80

Consider an OLA-based synthesis system. Blocks have a length of N sam-

ples, and are denoted as x`[n], with ` and n the block and sample indices,

respectively; thus, x`[n] is nonzero only for n = 0, 1,. . . , N − 1. Analogously,

the length-N window function w[n] is defined in the interval 0 ≤ n ≤ N − 1.

The synthesized signal z[n] is then given by

z[n] =

∞∑
`=−∞

w[n− `D]x`[n− `D], (1)

where D ≤ N is the overlap factor, or hop size. Thus, if D < N , there will be

overlapping between consecutive blocks.
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In practice, a set of requirements are imposed on the statistics of z[n],

whereas one has freedom to establish those of the individual blocks. Thus, we

investigate the statistical properties of z[n], given those of x`[n] and the OLA85

synthesis equation (1). To proceed with the analysis, the following assumptions

on the random blocks x`[n], n = 0, 1, . . . , N − 1, will be adopted throughout.

A1. The mean is zero: E {x`[n]} = 0 for all `, n.

A2. Different blocks are uncorrelated: E {x`[n]xm[s]} = E {x`[n]}E {xm[s]}

for ` 6= m.90

A3. Blocks are WSS with the same autocorrelation: E {x`[n]x`[s]} depends

only on the time difference n− s, and not on `.

Assumption A1 is reasonable given the nature of commonly found vibration sig-

nals, whose mean acceleration is zero. Assumption A2 depends on the particular

synthesis algorithm, but can be easily achieved if blocks are generated indepen-95

dently, as it is usually the case in practice [4]. Assumption A3 requires that the

baseline block process be WSS stationary itself, and is reasonable whenever the

final goal is to synthesize a WSS signal z[n].

Given a window w[n], consider the statistics of the synthesized process z[n]

in (1). By Assumption A1, its first-order moment (i.e., its mean) is

E {z[n]} =
∑
`

w[n− `D]E {x`[n− `D]} = 0. (2)

Thus, the OLA process preserves the zero-mean property.

Consider now the second-order statistics of z[n]. By virtue of Assumption

A3, we will denote the autocorrelation function of the blocks by

rx[τ ] , E {x`[n]x`[n− τ ]} . (3)
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Then the autocorrelation of z[n] can be expressed in terms of rx[τ ] as100

rz[n; τ ] , E {z[n]z[n− τ ]}

=
∑
`

∑
m

w[n− `D]w[n− τ −mD]E {x`[n− `D]xm[n− τ −mD]}

=
∑
`

w[n− `D]w[n− τ − `D]E {x`[n− `D]x`[n− τ − `D]} (4)

= rx[τ ]
∑
`

w[n− `D]w[n− τ − `D], (5)

where in (4) we have used Assumption A2, and in (5) we used Assumption A3.

Denoting now1

rw[n; τ ] ,
∞∑

`=−∞

w[n− `D]w[n− τ − `D], (6)

one has from (5) that

rz[n; τ ] = rx[τ ]rw[n; τ ]. (7)

The process z[n] is WSS iff rz[n; τ ] does not depend on n. In general, rw[n; τ ]

will not be constant with n, and hence z[n] will not be WSS. However, z[n] is

cyclostationary [12] with period D, i.e., its autocorrelation is D-periodic in n:

rz[n+D; τ ] = rz[n; τ ] for all n, (8)

which follows immediately from the fact that rw[n; τ ] in (6) is periodic in n with

period D. This periodicity allows one to write rw[n; τ ] as a Fourier series [13]:

rw[n; τ ] =

D−1∑
k=0

cw[k; τ ]ej
2π
D kn, (9)

where cw[k; τ ], 0 ≤ k ≤ D− 1, are the Fourier coefficients (also known as cyclic

correlations), given by

cw[k; τ ] =
1

D

D−1∑
n=0

rw[n; τ ]e−j
2π
D kn. (10)

1Note that rw[n; τ ] depends on the hop size D. For simplicity, we do not make this

dependence explicit in the notation.
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In view of (9), rw[n; τ ] is constant with n iff cw[k; τ ] = 0 for k = 1, . . . , D − 1.

Using (6), these Fourier coefficients can be written as

cw[k; τ ] =
1

D

D−1∑
n=0

∞∑
`=−∞

w[n− `D]w[n− τ − `D]e−j
2π
D kn

=
1

D

∞∑
m=−∞

w[m]w[m− τ ]e−j
2π
D km (11)

=
1

D

(
w[τ ]e−j

2π
D kτ

)
? w[−τ ], (12)

with ? denoting convolution. Thus, cw[k; τ ] is seen to be the crosscorrelation

between the window function and a spectrally shifted replica of itself. For k = 0,105

cw[0; τ ] reduces (up to a scaling) to the standard autocorrelation w[τ ] ? w[−τ ].

3. Window design for second-order stationarity

Assuming that the final goal is to generate a WSS process z[n], the previous

analysis shows that the OLA method poses a problem in this regard, as the

cyclostationary character of z[n] is an artifact due to the synthesis process and110

not a desirable feature. It is reasonable then to ask if it is possible to pick the

window function in order to have a process z[n] ”as stationary as possible”. To

this end, first we introduce a measure of wide-sense stationarity, and then we

will consider the optimization of the window according to this metric.

3.1. A cost function promoting wide-sense stationarity115

Particularizing (7) for τ = 0, the expression for the time fluctuations of the

variance of the process z[n], given by E
{
z2[n]

}
= rz[n; 0], is obtained:

rz[n; 0] = rx[0]rw[n; 0] = rx[0]

∞∑
`=−∞

w2[n− `D]. (13)

Therefore, in order to have constant variance with time, the window must satisfy

∞∑
`=−∞

w2[n− `D] = constant. (14)
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Figure 1: Magnitude of the Fourier coefficients cw[k; τ ] for a rectangular window of length

N = 8 and no overlap (D = N), indicating significant non-stationarity.

This was recognized in [7], where the authors proposed the use of a half-

sinusoid window w[n] = sin
π(n+ 1

2 )

N , 0 ≤ n ≤ N − 1, which satisfies (14) for

D = N/2. In [4], the constant variance property (14) is used as the stationarity

criterion for evaluating synthesis window performance. In terms of the cyclic

correlations cw[k; τ ], (14) is equivalent to having cw[k; 0] = 0 for k = 1, . . . , D−1.120

However, constant variance is not equivalent to wide-sense stationarity. For

example, for any hop size D such that N/D is an integer, the rectangular (or

boxcar) window w[n] = 1, 0 ≤ n ≤ N − 1, satisfies (14); however, the degree of

nonstationarity in that case is rather high, as evidenced by the fluctuations with

n of the remaining correlation coefficients rz[n; τ ] with τ 6= 0; equivalently, the125

cyclic correlations cw[k; τ ], k = 1, . . . , D− 1 may take nonzero values for τ 6= 0.

To illustrate this, Fig. 1 shows the magnitude of the Fourier coefficients cw[k; τ ]

for a rectangular window of length N = 8 and no overlap (D = N). Significant

magnitude values are clearly seen for k > 0, indicating lack of stationarity.

The above considerations indicate that the process z[n] will be closer to

being WSS if the cyclic correlations cw[k; τ ] had small magnitudes for all τ and

k = 1, . . . , D − 1. This observation suggests one possible approach to window

design. Letting w ,
[
w[0] w[1] · · · w[N − 1]

]T
∈ RN be the vector of
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window coefficients, consider the cost function

J2(w) ,
D−1∑
k=1

∑
|τ |<N

|cw[k; τ ]|2 . (15)

We propose to pick w in order to minimize J2(w). To avoid the trivial solution130

w = 0, a suitable constraint has to be placed, e.g., ‖w‖2 = 1, or equivalently

cw[0; 0] = 1
D . Note from (6) that rw[n; τ ] = 0 for |τ | ≥ N since the window has

length N ; in view of (10), cw[k; τ ] = 0 for |τ | ≥ N as well. Therefore, it suffices

to consider the range |τ | < N in the inner summation in (15).

In order to expose the dependence of J2 with the parameter w, let us intro-135

duce the N ×N matrices S, Γ as

[S]i,j =

 1, j − i = 1,

0, else,
(16)

Γ = diag
{

1 e−j
2π
D e−j

2π
D 2 · · · e−j

2π
D (N−1)

}
. (17)

Note that S is an upper shift matrix, i.e., Sw is a vector obtained by shifting the

entries of w one position in the upward direction. We shall use the convention

S0 = I and Sτ = (S|τ |)T for τ < 0. (Note that ST is a lower shift matrix).

Then, the cyclic correlations can be written for all k and τ as

cw[k; τ ] =
1

D
wTAτkw, with Aτk , SτΓk. (18)

Using (18), the cost (15) can be expressed as

J2(w) =
1

D2

D−1∑
k=1

∑
|τ |<N

∣∣wTAτkw
∣∣2 . (19)

3.2. Minimization of J2

The function J2 in (19) is nonquadratic in w, so it seems difficult to obtain

the minimizer (under the constraint ‖w‖2 = 1) in closed form. Nevertheless,140

it is possible to obtain first-order conditions on the solutions of this problem,

which will be useful in order to derive efficient numerical schemes.

Consider the Lagrangian for the minimization of J2(w) subject to wTw = 1:

L(w) = J2(w) + λ(1−wTw), (20)

9



where λ is the Lagrange multiplier. Then, any (local) minimum w? of this

problem must satisfy the first-order condition ∇wL(w?) = ∇wJ2(w?)−2λw? =

0. These are only necessary conditions, as they may be satisfied by other points145

which are not local minima (e.g., maxima or saddle points). The expression of

∇wJ2(w) is given in the following result, whose proof is in the Appendix.

Lemma 1. Define the N ×N Hermitian positive (semi)definite matrices

A(w) ,
1

D2

D−1∑
k=1

∑
|τ |<N

Aτkww
TAH

τk, (21)

B(w) ,
1

D2

D−1∑
k=1

∑
|τ |<N

AT
τkww

TA∗τk. (22)

Then the gradient ∇wJ2(w) satisfies

∇wJ2(w) = 2 Re {A(w) +B(w)}w. (23)

The computation of A(w), B(w) featuring in (23) can be significantly sim-

plified, as the following result states; see the Appendix for the proof.150

Lemma 2. A(w) is real-valued and Toeplitz, and its first column is given by

[A(w)]i,0 =
α[i]

D2

N−1−i∑
`=0

w[i+ `]w[`] i = 0, 1, . . . , N − 1, (24)

where the sequence α[i] is defined as

α[i] ,

 D − 1, i = 0,±D,±2D, . . . ,

−1, otherwise.
(25)

Moreover, it holds that B(w) = A(w).

Therefore, from Lemmas 1 and 2, the gradient of the Lagrangian is

∇wL(w) = ∇wJ2(w)− 2λw = 4A(w)w − 2λw, (26)

so that the first-order condition ∇wL(w?) = 0 reads as

A(w?)w? =
λ

2
w?, (27)
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i.e., w? is a unit-norm eigenvector of A(w?), with associated eigenvalue λ/2.

Given the definition of A(w) in (21), it is readily checked that, for any

w ∈ RN , the cost J2(w) in (19) can be written as

J2(w) = wTA(w)w. (28)

In view of (27) and (28), it is seen that if w? satisfies the first-order condition,

then the cost at such point equals J2(w?) = λ
2 , which is an eigenvalue of A(w?).

3.3. Iterative algorithms155

The first-order condition tells us that the vector w? minimizing J2 is an

eigenvector of A(w?) with associated eigenvalue J2(w?); however, it does not

reveal which eigenvalue it must be. Since our goal is to minimize J2, one may

hope that the corresponding eigenvalue be the smallest. If that was the case, it

would make sense to construct a sequence of estimates as follows. Starting with

some initial candidate window w0 with ‖w0‖ = 1 (for example, the normalized

rectangular window: w0 = 1√
N

1), then for k = 1, 2, . . ., compute:

wk = least unit-norm eigenvector of A(wk−1). (29)

In this way, if the sequence {wk} obtained by repeated application of (29)

converges to some w?, then such w? satisfies the first-order condition, and

J2(w?) is the smallest eigenvalue of A(w?).

Iteration (29) requires an eigenvector extraction at each step. This can be

achieved by using the inverse power method [14], in which the least eigenvector of

a symmetric positive definite matrix M is successively approximated by solving

Myn = xn−1 and setting xn = yn/‖yn‖. In this way, we would have an inner

iteration (running the inverse power method for a prespecified number of steps)

embedded within an outer iteration given by (29). If only a single inner iteration

is performed, the scheme boils down to:

For k = 1, 2, . . ., solve A(wk−1)vk = wk−1 and set wk =
vk
‖vk‖

. (30)

If the sequence {wk} in (30) converges to some point w?, then again w? satisfies

the first-order condition. However, it is not clear whether in this case J2(w?)160
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is the smallest eigenvalue of A(w?). Simulation results suggest that, when ini-

tialized with the same value, both iterations (29) and (30) converge to the same

setting, although iteration (30) has the advantage of computational simplicity.

4. Window design for fourth-order stationarity

In many occasions, it is desired that the synthesized process be non-Gaussian.165

A common approach is to assume zero skewness (ratio of third moment to stan-

dard deviation cubed) and specify its kurtosis (ratio of fourth moment to the

variance squared; for a Gaussian distribution, the kurtosis equals 3) [15, 16, 17].

Hence, it is of interest to analyze the impact of the OLA method on higher-order

statistics, in a similar vein of the second-order analysis presented in previous sec-170

tions. To this end, we will adopt an additional assumption on the fourth-order

statistics of the random blocks x`[n]:

A4. Blocks are fourth-order stationary, so that their quadri-autocorrelation

function, defined as

rx[τ ] , E {x`[n]x`[n− τ1]x`[n− τ2]x`[n− τ3]} , (31)

depends only on τ , [ τ1 τ2 τ3 ], but not on n or `.

In order to analyze the fourth-order statistics of the synthesized process z[n],

let us define its quadri-autocorrelation function as175

rz[n; τ ] , E {z[n]z[n− τ1]z[n− τ2]z[n− τ3]} (32)

=
∑
`0···`3

w[n− `0D]w[n− `1D − τ1]w[n− `2D − τ2]w[n− `3D − τ3]×

E {x`0 [n− `0D]x`1 [n− `1D − τ1]x`2 [n− `2D − τ2]x`3 [n− `3D − τ3]}(33)

Using assumptions A2, A3 and A4, it is found that (33) can be written as

rz[n; τ ] = rx[τ ] · rw[n; τ ]

+ rx[τ1] · rx[τ3 − τ2] · (rw[n; τ1] · rw[n− τ2; τ3 − τ2]− rw[n; τ ])

+ rx[τ2] · rx[τ3 − τ1] · (rw[n; τ2] · rw[n− τ3; τ1 − τ3]− rw[n; τ ])

+ rx[τ3] · rx[τ2 − τ1] · (rw[n; τ3] · rw[n− τ1; τ2 − τ1]− rw[n; τ ]),(34)
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where rw[n; τ ] was defined in (6), and we have introduced the function

rw[n; τ ] ,
∑
`

w[n− `D]w[n− `D − τ1]w[n− `D − τ2]w[n− `D − τ3]. (35)

Note that rw[n; τ ] is D-periodic in n, analogously to rw[n; τ ]. It follows that

the quadri-autocorrelation (34) is also D-periodic in n, so that the process z[n]

is fourth-order cyclostationary.

The fourth moment of z[n] is obtained by taking τ = 0 in (34):

E
{
z4[n]

}
= rz[n; 0] = (rx[0]− 3r2x[0])rw[n; 0] + 3r2x[0]r2w[n; 0], (36)

whereas in view of (13), the second moment (variance) is E
{
z2[n]

}
= rx[0]rw[n; 0].180

Therefore, the kurtosis of z[n] can be written as

βz[n] ,
E{z4[n]}
E2{z2[n]}

=
rz[n; 0]

r2z [n; 0]

= βxρw[n] + 3(1− ρw[n]), (37)

where βx is the kurtosis of the individual blocks:

βx ,
rx[0]

r2x[0]
=

E
{
x4` [n]

}
E2{x2` [n]}

, (38)

and the D-periodic function ρw[n] is defined as

ρw[n] ,
rw[n; 0]

r2w[n; 0]
=

∑
` w

4[n− `D]

(
∑
` w

2[n− `D])
2 . (39)

Note that 0 ≤ ρw[n] ≤ 1, since(∑
`

w2[n− `D]

)2

=
∑
`

∑
m

w2[n− `D]w2[n−mD]

=
∑
`

w4[n− `D] +
∑
`

∑
m6=`

w2[n− `D]w2[n−mD]

≥
∑
`

w4[n− `D] for all n. (40)

Hence, (37) shows that the kurtosis βz[n] is a (time-varying, and in fact, D-

periodic) convex combination of the kurtosis βx and that of a Gaussian random

variable, which is 3. This means that the OLA synthesis method yields a (D-185

periodic) kurtosis which is closer to that of a Gaussian, or in other words,
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after OLA, the resulting process is ”closer to Gaussian”. This makes sense,

because the OLA method constructs z[n] as the sum of a number of statistically

independent random variables, see (1); the larger the number of terms in the

sum, the closer the distribution will be to a Gaussian, asymptotically reaching190

this distribution by virtue of the Central Limit Theorem. When the individual

blocks are Gaussian (βx = 3), then (37) shows that βz[n] = 3 for all n, so that

the synthetisized process is Gaussian as well, as it should be since in such case

z[n] is a linear combination of Gaussian random variables. For non-Gaussian

synthesis βx 6= 3, and the kurtosis βz[n] will be constant with n iff ρw[n] is195

constant. Therefore, in practice we would like ρw[n] to be as constant and as

close to 1 as possible. For example, for a rectangular window and hop factor D

such that N/D is an integer, ρw[n] is constant and equal to D
N ≤ 1.

However, similarly to the situation in Sec. 3 regarding the temporal fluctu-

ations of the variance, having a constant kurtosis does not necessarily translate200

into (fourth-order) stationarity. Again, for hop size D = N (no overlap) a

rectangular window would result in constant variance and constant kurtosis

βz[n] = βx (since ρw[n] = 1 for all n), but it would also yield a high degree of

nonstationarity, as shown in Fig. 1. For this reason, we explore next the design

of windows with good fourth-order stationarity properties, in the sense that we205

would like the quadri-autocorrelation function rz[n; τ ] in (34) to be independent

of n. For this, both rw[n; τ ] and rw[n; τ ] should be constant with n. A similar

approach to the second-order case can be applied to fourth-order stationarity.

To this end, since rw[n; τ ] is D-periodic in n, it can be written as

rw[n; τ ] =

D−1∑
k=0

cw[k; τ ]ej
2π
D kn, (41)

where cw[k; τ ] are the Fourier coefficients (cyclic quadri-correlations), given by

cw[k; τ ] =
1

D

D−1∑
n=0

rw[n; τ ]e−j
2π
D kn. (42)

14



Using (35), the cyclic quadri-correlations can be written as

cw[k; τ ] =
1

D

D−1∑
n=0

∞∑
`=−∞

w[n− `D]w[n− `D − τ1]w[n− `D − τ2]w[n− `D − τ3]e−j
2π
D kn

=
1

D

∞∑
m=−∞

w[m]w[m− τ1]w[m− τ2]w[m− τ3]e−j
2π
D km. (43)

Our approach at this point is analogous to that from Sec. 3.1: to design a window

for which rw[n; τ ] is as constant with n as possible, we propose to minimize the

sum of squares of all cyclic quadri-correlations with k 6= 0, given by

J4(w) ,
D−1∑
k=1

∑
|τ1|<N

∑
|τ2|<N

∑
|τ3|<N

|cw[k; τ ]|2 . (44)

In order to find a suitable expression for J4(w), substitute (43) in (44) to obtain210

J4(w) =
1

D2

∑
|τ1|<N

∑
|τ2|<N

∑
|τ3|<N

∑
p

∑
q

w[p]w[p− τ1]w[p− τ2]w[p− τ3]

× w[q]w[q − τ1]w[q − τ2]w[q − τ3]

(
D−1∑
k=1

e−j
2π
D k(p−q)

)
. (45)

The term in parentheses in (45) is α[p−q], with α[n] defined in (25). Therefore,

J4(w) =
∑
p

∑
q

w[p]w[q]

α[p− q]
D2

 ∑
|τ1|<N

w[p− τ1]w[q − τ1]


×

 ∑
|τ2|<N

w[p− τ2]w[q − τ2]

 ∑
|τ3|<N

w[p− τ3]w[q − τ3]

 .(46)

The three terms in parentheses in (46) are all equal, and they are given by

the autocorrelation of the window, i.e., w[n] ? w[−n], evaluated at n = p −

q. Therefore, if we define the N × N symmetric Toeplitz matrix K(w) with

elements in its first column given by

[K(w)]i,0 =
α[i]

D2

(
N−1−i∑
`=0

w[i+ `]w[`]

)3

, i = 0, 1, . . . , N − 1, (47)

then (46) can be written as

J4(w) =
∑
p

∑
q

w[p]w[q][K(w)]p,q

= wTK(w)w, (48)

15



an expression which is similar to that corresponding to the second-order cost

function J2(w), see (28). Note, however, that whereas the elements of the matrix

A(w) in (28) are quadratic functions of w, those of K(w) are of sixth-order.215

In any case, one may apply the same procedure as in Sec. 3.3 to numerically

find a minimum of J4(w), for example:

for k = 1, 2, . . ., set wk = least unit-norm eigenvector of K(wk−1), (49)

or, if eigenvector extractions are to be avoided,

for k = 1, 2, . . ., solve K(wk−1)vk = wk−1 and set wk =
vk
‖vk‖

. (50)

These iterations were found to converge in all tested cases, and no numerical

problems have been observed.

5. Results and discussion

We focus on the results obtained by iterations (30) and (50) initialized with

the rectangular window w0 = 1√
N

1, as these are computationally simpler than220

(29) and (49), and as already mentioned, iterations (29)-(30) both converged to

the same point in all tested cases, and so did iterations (49)-(50).

Figs. 2 and 3 show the results for a block length N = 256 and different values

of the hop size D, considering second and fourth-order stationarity optimization,

respectively. In all cases, convergence was achieved in 10 iterations or less. For225

small overlap percentages, the improvement with respect to the rectangular

window is small; this makes sense, because with small overlap it is very difficult

to counteract the artifacts introduced by block-by-block processing. However,

as the amount of overlap increases, the improvement achieved by the proposed

window designs becomes more pronounced. For example, for D = N/4 (75%230

overlap) and second-order stationarity, the achieved cost is almost four orders

of magnitude smaller than that for the rectangular window, and the resulting

design yields a function rw[n; τ ] which is practically constant with n.

Assuming a ”second-order quasi-stationary” window such that rw[n; τ ] ≈

rw[τ ], the autocorrelation of the synthesized process z[n] becomes rz[τ ] ≈ rx[τ ]rw[τ ].
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Figure 2: Results obtained for second-order stationarity optimization, N = 256 and different

overlap factors. Left: convergence of the cost function J2. Right: resulting window w[n].

Equivalently, its power spectral density (PSD) is the convolution of that of the

individual blocks and the Fourier transform of rw[τ ], which is |W (ejω)|2, with

W (ejω) =

N−1∑
n=0

w[n]e−j
2π
k n (51)

the Fourier transform of the window w[n]. This means that the windowing pro-

cess has the effect of smearing the original PSD, a situation analogous to that in235

spectral analysis [1]. Thus, in order to limit the loss in spectral resolution, win-

dows with narrow bandwidth and low sidelobes are desirable. Fig. 4 shows the

spectra of the proposed designs together with those of commonly used windows,

for N = 256. As the overlapping factor increases, the designed windows depart
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Figure 3: Results obtained for fourth-order stationarity optimization, N = 256 and different

overlap factors. Left: convergence of the cost function J4. Right: resulting window w[n].

from the rectangular one: the bandwidth of the main lobe increases, whereas240

the sidelobe amplitudes decrease. This effect is particularly pronounced for the

truly ”quasi-stationary” window obtained for 75% overlap.

This effect raises an interesting issue: the frames x`[n] should be generated

with an autocorrelation rx[τ ] that is somehow pre-compensated in order to

account for the fact that rz[τ ] ≈ rx[τ ]rw[τ ], so that the synthesized process245

z[n] has the desired autocorrelation (and therefore PSD). Within the context of

closed-loop vibration control, the adjustment of the process PSD can be left to

the iterative control loop, although, since the window coefficients are known, it

18
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Figure 4: Comparison of the spectra of the proposed windows (N = 256) with other non-

optimized windows, for different overlap factors.
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may be of interest to apply pre-compensation directly during the OLA synthesis

stage. Note that, given a ”quasi-stationary” window with rw[n; τ ] ≈ rw[τ ],250

a naive pre-compensation scheme which obtains rx[τ ] as rx[τ ] = rz[τ ]/rw[τ ]

(with rz[τ ] the desired autocorrelation values for the synthesized process) may

run into trouble if rw[τ ] is close to zero; and even if this is not the case, the

resulting rx[τ ] need not be a valid autocorrelation sequence, in the sense that

its Fourier transform may not be non-negative at all frequencies. Thus, spectral255

pre-compensation is not a trivial problem and is left for future work.

Fig. 5 compares the results obtained in terms of the cost functions J2 and

J4 for six different windows: rectangular, Hamming, Hanning, Sine, J2- and J4-

optimized. The J2- and J4-based designs yield similar performance for overlap

factors below 50%. Above this value, their differences become more pronounced,260

although both designs result in good behavior with respect to either cost. The

optimized windows outperform other alternatives over the whole overlap range.

If a tradeoff between second- and fourth-order stationarity is desired, one

may consider the minimization of a convex combination of costs, i.e., J(w) =

ηJ2(w) + (1 − η)J4(w), with 0 ≤ η ≤ 1 a design parameter. Minimization of265

J(w) can be achieved iteratively, following the procedure described in Sec. 3.3,

but replacing the matrix A(w) by ηA(w) + (1− η)K(w).

Fig. 6 shows the time fluctuations of the variance and of the kurtosis-related

function ρw[n] for the same windows, and for three different overlap percentages:

50%, 62.5% and 75%. Clearly, with larger overlap, the variance and the kurtosis270

become more constant. This is at the price of a more reduced range of allowable

kurtoses, since the mean value of ρw[n] tends to decrease with more overlapping

(due to the aforementioned ”Gaussianization” effect).

The time fluctuations may become apparent in the time domain for low

overlap factors, as shown in Fig. 7 for 25%. For each type of synthesis window275

we show a segment of 20 seconds and an overlay of all successive blocks of 256

samples length. All the signals are synthesized with a duration of 600 s and a

sample rate of 256 Hz, and correspond to a white random process with average

kurtosis β̄z = 4.83. The variation in amplitude is clearly noticeable in both the
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Figure 5: Results obtained for N = 256 and different overlap factors. Left: second-order cost

J2(w). Right: fourth-order cost J4(w).

time signal and the block overlay, with the rectangular, J2-optimized and J4-280

optimized windows presenting the lowest observable amplitude variation. Fig. 8

presents the same white process synthesized with 50% overlap. In that case, the

cyclic variation of the process variance and kurtosis is not as clearly identified

in the time history, but becomes apparent in the block overlay for some of the

synthesis windows, such has the Hamming and Hanning. This brings to light285

the fact that, although the process is indeed suffering from significant time

fluctuations in both variance and kurtosis, a simple time domain inspection will

not directly reveal it for most of the synthesis windows.

In a vibration control scenario, if the non-stationarity of the synthesized

signal is not taken into account whereas the average kurtosis is adjusted by290

the control loop, the peak kurtosis will exceed the expected value, leading to

an increase in the applied loads. For a better illustration of the variation of

the actual kurtosis, the resulting values of βz[n] described by (37) with βx =

4.83 are plotted in Fig. 9. The range of kurtosis variation and the trade-off

between kurtosis range, stationarity and overlap level is clearly noticeable. A295
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function ρw[n] for N = 256 and three different overlap factors.

proper adjustment of the kurtosis level would then require compensation of the

”Gaussianization” effect produced by the OLA processing. Directly increasing

the kurtosis βx of the block process x`[n] without reducing the fourth-order

non-stationarity would correct the average kurtosis, but it would also increase

its range of variation, leading to an undesired increase in the peak load.300

6. Conclusions

The proposed window design clearly improves the stationarity of random

vibration signals synthesized by means of the overlap-add method, for both

Gaussian and non-Gaussian cases, and provides a clear and simple criterion

to quantify and optimize the stationarity of the synthesized process for any305

given overlap factor. The proposed iterative approach for the calculation of the
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Figure 7: Time realization (left) and overlay of blocks of 256 samples length (right) of a white

random process with kurtosis β̄z = 4.83 and N = 256, using different synthesis windows and

25% overlap.
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Figure 8: Time realization (left) and overlay of blocks of 256 samples length (right) of a

white random process with average kurtosis β̄z = 4.83 and N = 256, using different synthesis

windows and 50% overlap.
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optimal window is computationally simple; nevertheless, windows can be pre-

computed and stored for their use in real-time applications. The stationarity

analysis is particularly important for non-Gaussian synthesis, where an uncon-

trolled cyclic variation of the process kurtosis may lead to significant increase310

of the crest factor and severity of the synthesized vibration. The proposed

approach provides a criterion that minimizes undesired variability and hence

allows better control of the fourth-order statistics of the synthesized random

signal. Although in general larger overlap values lead to improved stationarity

properties, this comes at the cost of an increase in computational load and a315

Gaussianization of the synthesized process, so that the choice of an adequate

window allowing smaller overlap becomes all the more important.
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Appendix A. Proof of Lemma 1

Let Aτk = Re {Aτk} and Ãτk = Im {Aτk}. Then, since w is real-valued,

∇w

∣∣wTAτkw
∣∣2 = ∇w(wTAτkw)2 +∇w(wT Ãτkw)2

= 2(wTAτkw) · ∇w(wTAτkw)

+ 2(wT Ãτkw) · ∇w(wT Ãτkw). (A.1)

For any real-valued matrix M (not necessarily symmetric), it can be readily320

checked that ∇w(wTMw) = (M +MT )w. Therefore, (A.1) reads as

∇w

∣∣wTAτkw
∣∣2 = 2(wTAτkw) · (Aτk +A

T

τk)w

+ 2(wT Ãτkw) · (Ãτk + ÃT
τk)w (A.2)

= 2 Re
{
wTAH

τkw · (Aτk +AT
τk)w

}
(A.3)

Summing over τ and k,

∇wJ2(w) = 2 Re

 1

D2

D−1∑
k=1

∑
|τ |<N

wTAH
τkw · (Aτk +AT

τk)w


= 2 Re

 1

D2

D−1∑
k=1

∑
|τ |<N

Aτkww
TAH

τkw

+ 2 Re

 1

D2

D−1∑
k=1

∑
|τ |<N

AT
τkww

TAH
τkw


= 2 Re

 1

D2

D−1∑
k=1

∑
|τ |<N

Aτkww
TAH

τkw

+ 2 Re

 1

D2

D−1∑
k=1

∑
|τ |<N

AT
τkww

TA∗τkw


= 2 Re {A(w) +B(w)}w, (A.4)

where we have used (21)-(22) and the fact that wTAH
τkw = wTA∗τkw because

w is real-valued.
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Appendix B. Proof of Lemma 2325

Let us write the matrix A(w) as

A(w) =
1

D2

D−1∑
k=1

∑
|τ |<N

Aτkww
TAH

τk

=
1

D2

D−1∑
k=1

∑
|τ |<N

SτΓkwwT (Γ∗)k
(
ST
)τ

(B.1)

=
1

D2

∑
|τ |<N

Sτ

(
D−1∑
k=1

(Γkw)(Γkw)H

)(
ST
)τ

(B.2)

=
1

D2

∑
|τ |<N

SτZ(w)
(
ST
)τ
, (B.3)

where we have introduced

Z(w) ,
D−1∑
k=1

(Γkw)(Γkw)H . (B.4)

Due to the shift property of the matrices S and ST , it can be easily checked

that A(w) is (Hermitian) Toeplitz, and therefore it is completely determined

by the elements of its first column. These are given by

[A(w)]i,0 =
1

D2

N−1−i∑
`=0

[Z(w)]i+`,` i = 0, 1, . . . , N − 1, (B.5)

or, in words, [A(w)]i,0 is obtained by summing the elements in the i-th subdi-

agonal of Z(w), and then dividing by D2. Now, let us denote the `-th column

of the N ×N identity matrix (counting from ` = 0 to ` = N − 1) by e`. Then

[Z(w)]i+`,` = eHi+`Z(w)e`

=

D−1∑
k=1

(eHi+`Γ
kw)(eH` Γkw)H (B.6)

=

D−1∑
k=1

(e−j
2π
D k(i+`)eHi+`w)(e−j

2π
D k`eH` w)H (B.7)

= α[i]w[i+ `]w[`], (B.8)

where

α[i] ,
D−1∑
k=1

e−j
2π
D ki =

 D − 1, i = 0,±D,±2D, . . . ,

−1, otherwise.
(B.9)
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Therefore, from (B.5) and (B.8), the elements of A(w) can be efficiently ob-

tained from the autocorrelation of the window, as follows:

[A(w)]i,0 =
α[i]

D2

N−1−i∑
`=0

w[i+ `]w[`] i = 0, 1, . . . , N − 1, (B.10)

which also shows that A(w) is real-valued. Regarding B(w), one has:330

B(w) =
1

D2

D−1∑
k=1

∑
|τ |<N

AT
τkww

TA∗τk

=
1

D2

D−1∑
k=1

∑
|τ |<N

Γk
(
ST
)τ
wwTSτ (Γ∗)k (B.11)

=
1

D2

D−1∑
k=1

Γk

 ∑
|τ |<N

(
ST
)τ
wwTSτ

 (Γ∗)k (B.12)

=
1

D2

D−1∑
k=1

ΓkY (w)(Γ∗)k (B.13)

where we have introduced

Y (w) ,
∑
|τ |<N

(
ST
)τ
wwTSτ . (B.14)

Again, due to the shift property of S and ST , it can be easily checked that

Y (w) is just the autocorrelation matrix of the window, i.e., it is symmetric

Toeplitz with first column given by

[Y (w)]i,0 =

N−1−i∑
`=0

w[i+ `]w[`] i = 0, 1, . . . , N − 1. (B.15)

Therefore we can write the elements in the i-th subdiagonal of B(w) as

[B(w)]i+p,p =
1

D2
eHi+pY (w)ep

=
1

D2

D−1∑
k=1

eHi+pΓ
kY (w)(Γ∗)kep (B.16)

=
1

D2

D−1∑
k=1

e−j
2π
D k(i+p)eHi+pY (w)epe

j 2π
D kp (B.17)

=
1

D2

(
eHi+pY (w)ep

)D−1∑
k=1

e−j
2π
D ki (B.18)

=
α[i]

D2
[Y (w)]i+p,p. (B.19)
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Since Y (w) is Toeplitz, [Y (w)]i+p,p depends only on i but not on p. Thus,

(B.19) shows that B(w) is Toeplitz as well, and using (B.15), its first column

is given by

[B(w)]i,0 =
α[i]

D2

N−1−i∑
`=0

w[i+ `]w[`]. (B.20)

From (B.10) and (B.20), clearly B(w) = A(w), which concludes the proof.
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