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Abstract

We address the problem of distributed estimation of a parameter from a set of noisy observations

collected by a sensor network, assuming that some sensors may be subject to data failures and report

only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an

error floor in moderate and high signal-to-noise ratio (SNR), whereas previously proposed methods based

on hard decisions on data failure events degrade as the SNR decreases. Aiming at optimal performance

within the whole range of SNRs, we adopt a Maximum Likelihood framework based on the Expectation-

Maximization (EM) algorithm. The statistical model and the iterative nature of the EM method allow

for a diffusion-based distributed implementation, whereby the information propagation is embedded in

the iterative update of the parameters. Numerical examples show that the proposed algorithm practically

attains the Cramer-Rao Lower Bound at all SNR values and compares favorably with other approaches.
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I. INTRODUCTION

Distributed estimation of unknown parameters is one of the fundamental problems in wireless sensor

networks (WSNs), in which a large number of nodes favors the use of decentralized architectures to

reduce complexity and power consumption, as well as to increase scalability and robustness to node

failures. In practice, the data collected by the nodes may be unreliable due to for instance, external

malicious attacks aimed at jeopardizing the application [1], or incorrect sensing due to sensor failures

[2]. For instance, in the aircraft control field, one of the concerns is the detection of actuator and sensor

failures [3]. All these data fault events pose an added difficulty to the distributed estimation problem,

and methods based on an initial data classification stage to discard invalid observations shall perform

poorly if the Signal-to-Noise Ratio (SNR) is not sufficiently high. We consider the problem of distributed

estimation under the simple assumption that nodes subject to a data fault do not measure the parameter

of interest and report only noise, thus modeling a transducer failure [4].

A convenient framework when dealing with unreliable measurements is to assume hidden random

variables that govern the occurrence of a data fault event at each sensor. The approach adopted here

aims at the computation of the Maximum Likelihood (ML) estimator by using the well-known EM

algorithm [5], which amounts to a soft classification of the data, avoiding error-prone hard classification

stages. The EM algorithm is an iterative scheme that alternates between an expectation step (E-step),

where certain conditional expectation of the log-likelihood function of the observations is computed, and

a maximization step (M-step), at which said function is maximized to update the estimates. The M-step

requires access to the whole network dataset, as would be the case in a centralized approach. Hence,

for a distributed implementation in a WSN, the global information needed at the M-step must be shared

among the nodes, for instance by means of diffusion strategies [6]. Related contributions on distributed

EM implementations based on diffusion include [7], where the authors use the results from [8] to show

that their implementation is a Robbins-Monro stochastic approximation to the centralized scheme. A

similar approach is proposed in [9] for tracking applications using particle filtering. In [10] a diffusion

adaptation scheme is proposed for learning in the presence of Gaussian mixture models.

Our main contribution is a novel distributed version of the EM algorithm to be implemented in a

WSN with a decentralized architecture using diffusion-like strategies, termed therefore diffusion-based

distributed EM (DB-DEM). The main novelty of DB-DEM with respect to existing schemes [7]–[10]
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resides in the fact that the propagation of information across the network is embedded in the iterative

update of the parameters, where a faster term for information diffusion is combined with a slower term for

information averaging. The relative speed of these two terms is controlled by assigning them appropriate

time-varying step-size sequences. Therefore, the DB-DEM algorithm differentiates from adaptive diffusion

techniques [6], [10], where adaptive algorithms run over networks in a distributed fashion. Numerical

examples show that, given a sufficient number of iterations, the mean square error (MSE) for the DB-

DEM is equal to that of the centralized EM estimator at all SNR values, both practically attaining the

Cramer-Rao Lower Bound (CRLB).

The letter is organized as follows. Sec. II presents the signal model, the CRLB and its asymptotic

behavior, and a brief discussion on previous estimators for this problem. The centralized EM estimator

is presented in Sec. III, leading to the distributed version (DB-DEM) in Sec. IV. Simulation results and

conclusions are presented in Secs. V and VI respectively.

II. SIGNAL MODEL AND CRAMER-RAO LOWER BOUND

Consider a set of N sensors collecting N observations

yi = aix+ wi, i = 1, . . . , N, (1)

where x is the parameter of interest, {ai, ∀i} = {0, 1} are independent identically distributed (i.i.d.)

Bernoulli random variables with probability p,Pr{ai=1}, and {wi, ∀i} are i.i.d. zero-mean Gaussian

with variance σ2 and independent of {ai, ∀i}. Thus, a value of ai = 1 indicates that node i is actually

sensing the parameter x (corrupted by noise), whereas ai = 0 indicates a transducer failure such that

sensor i measures only noise. Rewriting (1) for the entire network in vector form yields y = ax+w

where y = [y1, · · · , yN ]T ,a= [a1, · · · , aN ]T and w = [w1, · · · , wN ]T . Since the observations are i.i.d.,

the probability density function (pdf) of y is

f(y|θ) =
N∏
i=1

[
p√
2πσ2

e−
(yi−x)

2

2σ2 +
1− p√
2πσ2

e−
y2i
2σ2

]
, (2)

where θ= [x, σ2]T . The parameter to be estimated is x, whereas σ2 is regarded as an unknown nuisance

parameter; the a priori probability p is assumed known throughout. Closed-form maximization of f(y|θ)

is not possible, and one must resort to numerical methods. As a first step we compute the CRLB for the

estimation of x under model (1), in order to benchmark the performance of different estimators.
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Let γ2 , x2/σ2 denote the SNR. After some algebra, the normalized CRLB for the estimation of x

is found to be
CRLB {x}

x2
=

1

Npγ2
· 1

1− %I11(γ)− %2γ2 I
2
12(γ)
I22(γ)

(3)

where % , (1−p)p−1 and the functions Imn(γ) are defined in terms of a zero-mean, unit-variance

Gaussian distributed random variable z as follows, with gγ(z), eγz+γ
2/2:

I11(γ) = E
{

z2

gγ(z) + %

}
=

∫ ∞
−∞

z2

gγ(z) + %
· e
−z2/2
√
2π

dz, (4)

I12(γ) = E
{
γz + 2z2

gγ(z) + %

}
, (5)

I22(γ) = E
{
[(z2 − 1)gγ(z) + %((z + γ)2 − 1)]2

(gγ(z) + %)gγ(z)

}
. (6)

For low SNR, it can be readily checked that (3) behaves as

CRLB {x}
x2

≈ 1

Np2γ2
for γ2 → 0. (7)

This is the performance achieved by the Best Linear Unbiased Estimator (BLUE) at low SNR, given by

x̂BLUE =

∑N
i=1 yi
Np

,
Var{x̂BLUE}

x2
=

1

Np2γ2
+

1− p
Np

. (8)

Thus, the BLUE becomes asymptotically efficient for low SNR.

In the high SNR regime, it follows from (3) that

CRLB {x}
x2

≈ 1

Npγ2
for γ2 →∞. (9)

Comparing (9) with (8), it is apparent that the BLUE is not efficient in high SNR. On the other hand,

(9) coincides with the performance achieved by a clairvoyant estimator with knowledge of the values

{ai, ∀i}, which is given by

x̂CV =

∑N
i=1 aiyi∑N
i=1 ai

. (10)

This is not unexpected since it should be feasible, for sufficiently high SNR, to decide with vanishingly

small error probability which nodes are sensing only noise: the corresponding measurements are then

removed from the averaging operation. This is the principle behind the mixed detection-estimation (MDE)

scheme of [4], which is based on local hard decisions for distributed estimation of x. Assuming knowledge

of the noise variance σ2, the MDE scheme iteratively switches between Maximum A Posteriori (MAP)

detection of the faulty sensors, taking the parameter estimate from the previous iteration as the true

value of x, and ML estimation assuming the detected values of the {ai} as the true ones. Although
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asymptotically efficient for high SNR, MDE becomes severely biased for medium and low SNR values

due to errors in the hard decisions on ai.

The CRLB asymptotes (7) and (9) motivate the search for better estimators performing well at all

SNR values, as opposed to MDE and BLUE. Next we derive a centralized EM-based ML estimator, to

be followed by a distributed implementation for WSNs.

III. ML ESTIMATION: CENTRALIZED EM

ML estimators have the desirable properties of being asymptotically unbiased and efficient as the

number of samples goes to infinity. The EM algorithm is a numerical method to compute the ML

estimate in the presence of incomplete observations. We regard the observation vector y as the incomplete

observation and {y, a} as the complete observation. Assuming for the time being a centralized approach

in which y is available, at iteration t one performs the following:

1) E-step: given an estimate θ̂(t) = [x̂(t), σ̂2(t)]T , compute the conditional expectation

Q(θ̃ ; θ̂(t)) = Ea{log f(y,a | θ̃) | θ̂(t),y}, (11)

where θ̃ = [x̃, σ̃2]T denotes a trial value of θ.

2) M-step: obtain the estimate for the next iteration as

θ̂(t+ 1) = argmax
θ̃

Q(θ̃ ; θ̂(t)). (12)

Let ϕi(t),Pr
{
ai=1 | θ̂(t), yi

}
. By virtue of Bayes’ theorem, the E-step results in computing

ϕi(t)=
p ·exp

{
− (yi−x̂(t))2

2σ̂2(t)

}
p ·exp

{
− (yi−x̂(t))2

2σ̂2(t)

}
+(1−p) exp

{
− y2i

2σ̂2(t)

} . (13)

Then, after some algebra (11) becomes

Q(θ̃; θ̂(t))∝−N
2
log 2πσ̃2− 1

2σ̃2
[
||y||2+x̃21Tϕ(t)−2x̃yTϕ(t)

]
(14)

where ϕ(t)= [ϕ1(t), · · · , ϕN (t)]T . The M-step is now easily accomplished: maximizing (14) with respect

to θ̃ yields

x̂(t+ 1) =
yTϕ(t)

1Tϕ(t)
(15)

σ̂2(t+ 1) =
1

N

[
||y||2 − (yTϕ(t))2

1Tϕ(t)

]
. (16)

From the Cauchy-Schwarz inequality and the fact that 0≤ϕi(t)≤ 1 for all {i, t}, it follows that σ̂2(t)≥ 0

for all t, which is a desirable property.
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Obtaining a distributed implementation of the EM estimator entails the computation of (15)-(16), which

require global information, in a decentralized fashion. A similar problem is considered [4] assuming

σ2 known and relying on hard decisions on {ai,∀i}. The EM approach, in contrast, does not require

knowledge of σ2 and implicitly makes soft decisions on ai, which is the key to good performance at all

SNR values.

IV. A DIFFUSION-BASED DISTRIBUTED EM ESTIMATOR

We propose a scheme where the information needed for the computation of (15)-(16) is spread over

the network by diffusion-like strategies. Consider a WSN with nodes indexed from 1 to N , where the

communications are restricted to a neighborhood of each node. The network is assumed connected,

i.e., there exist a path between any pair of nodes {i, j}. Let W ∈ RN×N denote a weight matrix with a

nonzero entry Wij only if node i can receive information from node j. It is assumed that W is symmetric

and that it satisfies
i) W1 = 1, 1TW = 1T , ρ(W − 11T

N
) < 1 (17)

where 1 ∈ RN is an all-ones vector and ρ(·) denotes the spectral radius. Further, we assume that the

measurements are bounded. At each time instant1 k, node i keeps local variables x̂i(k) and σ̂2i (k), as

well as the following auxiliary variables:

fyp(i, k) = yip̂i(k),

fy(i, k) = y2i ,

fp(i, k) = p̂i(k),

f1(i, k) = 1,
(18)

where p̂i(k) is the a posteriori probability of ai given the observation yi and the local estimates, given

by

p̂i(k)=
p ·exp

{
− (yi−x̂i(k))2

2σ̂2
i (k)

}
p ·exp

{
− (yi−x̂i(k))2

2σ̂2
i (k)

}
+(1−p) exp

{
− y2i

2σ̂2
i (k)

} . (19)

The main difference between ϕi(t) in (13) and p̂i(k) in (19) is that ϕi(t) is computed using the global

estimates in (15)-(16), whereas computing p̂i(k) only requires the local estimates x̂i(k) and σ̂2i (k) at

each node i. By means of local communications, the local information in p̂i(k) is appropriately diffused

over the network. Thus, each node can in turn update its local estimates x̂j(k+1) and σ̂2j (k+1), so that,

in the limit, all nodes reach an agreement on their values. The computation of these local estimates is

detailed in Table I, which summarizes the DB-DEM algorithm. Briefly, the DB-DEM iteration for node

1We use the index k for the distributed implementation to avoid confusion with the centralized approach of Sec. III, for which

we use the index t.
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For i = 1, · · · , N

1) Initialize:

fyp(i, 1) = yip

fp(i, 1) = p

fy(i, 1) = y2i

f1(i, 1) = 1

x̂i(1) =
∑N
j=1Wijyj

σ̂2
i (1) =

∑N
j=1Wijy

2
j − x̂2i (1)

where p is the a priori probability.

For k ≥ 1,

2) E-Step: given x̂i(k) and σ̂2
i (k), compute p̂i(k) as

in (19).

3) M-Step: for every subindex ν ∈ {yp, p, y, 1}, and

with with fν(j, k) given by (18), compute the

intermediate variables

φν(i, k) = (1−β(k))
N∑
j=1

Wijφν(j, k−1)

+ α(k)

N∑
j=1

Wijfν(j, k) (20)

where

α(k) =
1

k
, β(k) =

1

kδ
, 0 < δ < 1, k = 1, 2, · · · (21)

and then update

x̂i(k + 1) =
φyp(i,k)

φp(i,k)

σ̂2
i (k + 1) =

φy(i,k)

φ1(i,k)
− φ2

yp(i,k)

φp(i,k)φ1(i,k)

(22)

4) Repeat steps 2 and 3 until convergence.

TABLE I

DIFFUSION-BASED DISTRIBUTED EM ALGORITHM

i at time k can be described as follows. First, the a posteriori probability in (19) is computed using

the current estimates x̂i(k) and σ̂2i (k). Information is then exchanged with neighboring nodes to update

the intermediate variables φν(i, k). Finally, the local estimates x̂i(k) and σ̂2i (k) are updated using the

intermediate variables φν(i, k). This procedure is repeated until convergence.

Notice that the terms including α(k), β(k) in the update equation (20) converge to zero. The use of

vanishing control parameters is common in stochastic adaptive signal processing and control [11], and
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also in consensus applications with noisy signals [12], [13]. For ν ∈ {yp, p, y, 1}, the vector φν(k) ,

[φν(1, k), · · · , φν(N, k)]T evolves for k≥ 1 as

φν(k) = (1− β(k))Wφν(k − 1) + α(k)Wfν(k) (23)

where fν(k), [fν(1, k), · · · , fν(N, k)]T . The last term on the right-hand side of (23) is responsible for

propagating information over the network, whereas the first term drives the state vector φν(k) toward

a consensus (identical entries) once the information has propagated through the network, so that all

nodes reach an agreement on the values of their estimates in (22). Thus, intuitively, one should have

1−β(k)� α(k) for small k, tending to the reverse situation as k increases. The parameter δ allows

to control this relationship and to tune the onset of the averaging process. In general, more connected

topologies may benefit form values of δ closer to one to increase the convergence rate. It must be

emphasized that, once the observations {yi} are given and assuming a deterministic schedule for the

control parameters α(k) and β(k), the DB-DEM algorithm in Table I is a completely deterministic process.

A preliminary convergence analysis, not included due to lack of space, shows that, under assumption i)

and with the choice in (21), if convergence of the DB-DEM algorithm takes place, then it must be to a

fixed point of the centralized EM scheme, upon which all the nodes agree.

V. SIMULATION RESULTS

We simulate an example network composed of N =100 nodes randomly deployed over a unit square

with connectivity radius rc = 0.25. The nodes sense the parameter x = 1 with probability p = 0.6 and

SNR values in the range [−5, 20] dB. The DB-DEM algorithm from Table I is run over the network with

δ=0.8 and a Metropolis weight matrix W [14]. A comparison is made with MDE [4], BLUE (8) and

the centralized EM of Sec. III, using the normalized MSE

NMSE{x̂}= 1

Nx2
·
N∑
i=1

E
[
‖x̂i(k)−x‖22

]
as performance metric. Fig. 1 shows the residual NMSE vs. SNR averaged over 1000 independent

realizations after K =1000 iterations for the different estimators. The CRLB (3) is included as a reference

(solid thick line). As anticipated in Sec. II, the MDE (’+’) (which assumes known σ2) and BLUE (’×’)

estimators are efficient in the high- and low-SNR regimes respectively. The MDE suffers from a large bias

in the low-SNR regime, and hence a large NMSE, due to frequent errors in its MAP-based hard decision

stage. An embedded higher-resolution plot further shows the results for K = {300, 500, 1000, 5000}

along with the results for the centralized EM (dots) and the CRLB (solid thick line). The centralized EM
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Fig. 1. NMSE vs. SNR for the DB-DEM, MDE, BLUE and centralized EM estimators. The CRLB is depicted as a reference.

is efficient over practically the whole SNR range, except for a slight deviation which can be observed

for intermediate values, and a similar behavior is observed for the DB-DEM. The explanation for this

phenomenon is the fact that the MLE is not necessarily efficient for finite N . For some SNR values, the

DB-DEM variance remain slightly below the CRLB indicating a residual bias, which nevertheless vanishes

with increasing K. Therefore, we can conclude that the DB-DEM practically attains the performance of

the centralized EM for a sufficient number of iterations K.

VI. CONCLUSION

A diffusion-based EM algorithm has been proposed for distributed estimation in WSNs in the presence

of noisy measurements and data faults. The novelty of the proposed scheme, denoted DB-DEM, is that

the propagation of information over the network is embedded in the iterative update of parameters. In this

way, DB-DEM combines two operations, where an initial period for information diffusion is gradually

switched off at the same time as an averaging process is gradually switched on. Numerical results show

that the proposed scheme is able to practically attain the CRLB at all SNR values, outperforming similar

algorithms in terms of MSE performance. Ongoing research is addressing the applicability of the DB-

DEM principle to more advanced data models.

REFERENCES

[1] Z. Benenson, P. M. Cholewinski, F. C. Freiling, ”Vulnerabilities and Attacks in Wireless Sensor Networks,” in

Wireless Sensor Networks Security, J. Lopez, J. Zhou (Eds.), Cryptology & Information Security Series (CIS),

IOS Press, 2008.

April 24, 2013 DRAFT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LSP.2013.2260329

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

[2] K. Ni et al., ”Sensor Network Data Fault Types,” ACM Trans. Sensor Networks, vol. 5, no. 3, 2009.

[3] A. S. Willsky, ”A survey for design methods for failure detection in dynamic systems,” Automatica, vol. 12,

no. 6, pp. 601–611, 1976.

[4] Q. Zhou, S. Kar, L. Huie, and S. Cui, “Distributed estimation in sensor networks with imperfect model

information: an adaptive learning-based approach,” in Proc. IEEE ICASSP, 2012.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from incomplete data via the EM

algorithm,” J. Royal Stat. Soc., Series B, vol. 39, no. 1, pp. 1–38, 1977.

[6] A. H. Sayed, ”Diffusion adaptation over networks,” to appear in E-Reference Signal Processing, R. Chellapa

and S. Theodoridis, eds., Elsevier, 2013.

[7] Y. Weng, L. Xie, and W. Xiao, “Diffusion scheme of distributed EM algorithm for Gaussian mixtures over

random networks,” in Proc. IEEE ICCA, pp. 1529–1534, 2009.

[8] M. A. Sato and S. Ishii, “On-line EM Algorithm for the normalized Gaussian network,” Neural Comput.,

vol. 12, no. 2, pp. 407–432, Feb. 2000.

[9] D. Gu, “Distributed EM algorithm for Gaussian mixtures in sensor networks,” IEEE Trans. Neural Networks,

vol. 19, no. 7, pp. 1154–1166, 2008.

[10] Z. J. Towfic, J. Chen and A. Sayed, “Collaborative learning of mixture models using diffusion adaptation,”

IEEE MLSP, 2011.
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