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Abstract—The use of relays to improve the performance of
wireless systems finds some limitations, which in the case of
Amplify and Forward repeaters come from the need to decouple
the incoming signal from its outgoing amplified version. In this
paper we analyze the performance of Amplify and Forward relays
for a partial overlap between the input and output frequency
contents. By considering the relay as a Linearly Periodic Time
Varying System we compute its transmission capacity, which
depends strongly on the undesired coupling from the amplified
output signal into the input antenna. As a byproduct, a fair
comparison between half-duplex and full-duplex operation is
obtained, complementing some initial results which can be found
in the literature.

I. INTRODUCTION

Relaying is a widespread resource to extend the coverage of
wireless links by appropriate amplification of the input signal
[1]. The most simple mechanism to avoid the contamination
of the input by the output signal of the relay is the use
of different frequency bands or time slots; this duplexing
mechanism is not efficient in terms of spectral efficiency, due
to the doubling of spectral or time resources with respect
to a unrelayed direct link. We will refer to this scheme as
Half-Duplex (HD) operation, as opposed to its Full-Duplex
(FD) counterpart, for which input and output signals use
simultaneously the same portion of the spectrum. FD is in
place in some practical settings, and usually requires some
sort of echo cancellation processing to attenuate the coupled
self-interference. See, for example [2], where the operation
of practical on-frequency gap-fillers for terrestrial television
broadcasting is studied. In [3] a comparison between the
capacity of FD and HD is made for different coupling levels.
The coupling can be caused by the residual echo due a
non-perfect cancellation, or by the loopback signal in absence
of any active cancellation scheme. The range for which FD
outperforms HD in [3] is quite limited despite the additional
bandwidth, since the self-interference is assimilated to noise
in a sort of pessimistic analysis. In [4] a hybrid scheme
switches between HD and FD operation as a function of
the capacity of the source to relay and relay to destination
links. A three phase scheduling allocates time for source
to relay, relay to destination, and simultaneous transmission
and reception by the relay; this combination of orthogonal
and simultaneous operation requires the knowledge of the
capacity of the source-relay and relay-destination links in
both modes. An opportunistic switching between FD and HD

is also considered in [5].

In this work we measure the relay performance by evaluat-
ing its transmission capacity as a function of the allocation of
the overall bandwidth to the input and the output; as particular
instances, HD and FD are also included. Since the study will
focus on the relay itself, the source-relay and relay-destination
channels will be considered as non-selective, and noise will
be present only at the final receiver.

II. PARTIAL DUPLEX RELAY

Figure 1 depicts the operations undergone by a signal
x(t) through a generalized Amplify and Forward (AF) relay.
An input signal x(t) occupying a bandwidth Bu is filtered,
shifted in frequency by f0 = B −Bu, and finally amplified1.
The potential coupling from the output to the input between
mutually present frequencies (if Bu > B/2) is the reason
to include a feedback branch. The filter Lu(f) magnitude
response is given by

|Lu(f)| =
{

1 0 ≤ f ≤ Bu
0 otherwise. (1)

The filter delays also the signal by t0, so Lu(f) =
|Lu(f)|e−j(2πft0+θ0), where a phase θ0 is included for gen-
eralization. The output signal y(t) will be assumed to be
contaminated by noise before reaching the final receiver,
although no additional channel impairment is added. No direct
link from the transmitter to the receiver will be assumed.

The design parameter is the bandwidth allocated to the
input and the output signals Bu = B/2 + ∆B. Under the
AF configuration in Figure 1, ∆B = 0 corresponds to a
half-duplex (HD) relay, with input and ouptut spectra fully
decoupled, whereas ∆B = B/2 represents the full-duplex
(FD) relay, for which input and output bandwidths overlap
entirely. All cases in between will be labeled as Partial
Duplex (PD).

The operations performed by the AF relay can be written
in the Fourier domain as

Y (f) =
√
gX(f−f0)Lu(f−f0)+

√
αgY (f−f0)Lu(f−f0),

(2)

1We do not include possible non-linear effects in this study.



Fig. 1: Functional description of partial duplex relay. A practical implementation is expected to include an initial downconversion
stage complemented by an upconversion to the output frequency band. The difference between the corresponding oscillator
frequencies is given by f0.

a recursive relation which can be unfolded to yield

Y (f) =
√
gX(f − f0)Lu(f − f0)+

self-interference︷ ︸︸ ︷
√
g

Kmax∑
k=1

(
√
αg)kX(f − (k + 1)f0)Πk+1

m=1Lu(f −mf0) .

(3)

The number of terms contributing to the self-intererence sum
is finite except for ∆B = B/2 (FD case), and it is given by

Kmax =

⌈
B/2 + ∆B

B/2−∆B

⌉
− 1 (4)

where d·e denotes the ceiling function. This bound can be
readily obtained from the bandwidth of the filter Lu(f),
B/2 + ∆B, and the frequency shift f0 = B/2−∆B applied
to the main path in Figure 1.

The signal output power Py is fixed due to the presence of
gain controls. The amplification gain g in Figure 1 is not set
beforehand, but rather is adjusted to achieve the prescribed
output power considering the presence of feedback. If the
coupling gain α = 0 is zero, then the amplifier gain is simply
written as g = Py/Px, with Px denoting the input power.

As performance metric we will use the channel capacity
from the AF relay to the final destination, provided that there
is not direct link from the source. The noise generated by the
AF relay should also be considered, although we will assume
that its relative contribution is much less significant than that
of the final receiver noise. A reference signal to noise ratio
(snr) is defined for flat spectrum noise with power spectral
density No as

snr , Py/NoB. (5)

If self-interference is assimilated to noise, then a fast degra-
dation of FD performance with the loop gain LG = αPy/Px
occurs as a result. In such a case, the interfering output power
can be readily seen to be equal to Py−gPx, whose contribution
for fixed Py and Px grows with LG, since the gain g gets

smaller. In consequence, the consideration of self-interference
as noise leads to overly pessimistic results. For a more accurate
analysis, we can note that for Bu < B the relay cannot be
considered as a Linear Time Invariant (LTI) system, but rather
as a Linearly Periodic Time Varying (LPTV) system. We will
use this consideration in the next section to obtain the PD
relay capacity, together with an approximation for additional
insight.

III. CAPACITY OF PD RELAY

The input-output relationship of the PD relay can be ex-
pressed as a linear time variant filter:

r(t) = y(t) +w(t) =
√
g

∫ ∞
∞

p(t, τ)x(t− τ)dτ +w(t). (6)

This is the time counterpart of (3), with the noise at the final
receiver explicitely added, and the filter response p(t, τ) given
by

p(t, τ) =

Kmax+1∑
k=1

(
√
gα)k−1·(

lu(τ)ej2πτ/T0 ∗ . . . ∗ lu(τ)ej2πkτ/T0

)
ej2πk(t−τ)/T0 (7)

with T0 = 1/f0 and Kmax defined in (4). Note that the input-
output relation corresponds to an LPTV sytem, since p(t, τ) =
p(t+T0, τ). In discrete-time form, if the sampling rate is equal
to 1/T , we have

y(nT ) =
√
g

∞∑
m=−∞

p(nT,mT )x((n−m)T ) (8)

with the time-variant discrete-time impulse response

p(nT,mT ) =

Kmax+1∑
k=1

(
√
gα)k−1·(

lu(mT )ej2πmT/T0 ∗ . . . ∗ lu(mT )ej2πmkT/T0

)
ej2π(n−m)kT/T0 .

(9)
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After defining

lk(mT ) , lu(mT )ej2πmT/T0 ∗ . . .∗ lu(mT )ej2πmkT/T0 (10)

(9) reads as

p(nT,mT ) =
Kmax+1∑
k=1

(
√
gα)k−1lk(mT )e−j2πmkT/T0ej2πnkT/T0 . (11)

If we choose T = 1/B, then the Nyquist criterion is satisfied
for all bandwidths under consideration in Figure 1, and the
period Nch of the discrete-time impulse response, such that
p ((n+Nch)T,mT ) = p(nT,mT ), is given by

Nch ,
T0

T
=

B

B −Bu
(12)

which for the range of considered bandwidths is such that
2 ≤ Nch < ∞. Although Nch is not necessarily integer, the
subsequent analysis is simpler by doing this assumption; the
simulations will illustrate how the approximation in Section
III-A allows to extend the results to any value of T0/T .
The relay LPTV response is rewritten now as

pn(mT ) , p(nT,mT ) =
Kmax+1∑
k=1

(
√
gα)k−1lk(mT )e−j2πmk/Nchej2πnk/Nch . (13)

If the discrete-time equivalent response of the filter in the PD
relay goes from 0 to `, then the time duration of pn(mT ) is
`p + 1, with `p , (Kmax + 1)` for all n.

Somewhat surprisingly, the capacity computation of LPTV
channels has not been directly addressed in the literature till
recently. The results exposed next follow the derivation in
[6], applied to Power Line Communications, and based on
the assimilation of the channel to a MIMO LTI system. Ideas
from [7] can also be exploited; in the latter the capacity of the
multivariate Gaussian channel with memory is obtained, by
formulating the input-output relationship as a MIMO channel
with memory, although the term MIMO was not used at that
time.

The relay channel capacity can be derived by transforming
the original scalar model into a vector model. The size M of
the input block is given by

M =

(⌈
`p + 1

Nch

⌉
+ κ

)
Nch (14)

whereas the dimension of the output vector is M − `p. The
integer κ is such that κ > 0, and used to determine the
number of periods included in the input block. The input-
output relationship can be expressed in matrix form as

r[n] =
√
gPx[n] + w[n], (15)

with x[n] = [x(nMT ), . . . , x((nM +M − 1)T )]
t,

r[n] = [r((nM + `p)T ), . . . , r((nM +M − 1)T )]
t, the

noise w[n] = [w((nM + `p)T ), . . . , w((nM +M − 1)T )]
t,

and the (M − `p)×M channel matrix given by

P ,

 p`p(`pT ) . . . p`p(0) . . . 0
...

. . . . . .
...

0 . . . pM−1(`pT ) . . . pM−1(0)

 .

(16)
Note that the dimension of the output vector, M − `p, is
lower than the M samples of the input block. Nevertheless,
the impact on the capacity derivation decreases as M grows
(by increasing κ), and the true capacity can be obtained as the
limit limM→∞ CM [6], with CM denoting the achievable rate
of the truncated MIMO model with channel matrix P in (16)
for a given input covariance Cx , E

[
x[n]xH [n]

]
:

CM/B =
1

M − `p
log2 det

(
I +

g

N0B
PCxP

H

)
. (17)

Since we are considering non-frequency selective channels, we
will assume that the frequency content is flat in the occupied
bandwidth:

Cx(mT ) = Px · sinc (mBu/B) ejπmBu/B . (18)

Finally, for output power Py , the PD relay gain is computed
as

g =
Py

trace{PCxPH}/(M − `p)
. (19)

A. Frequency-domain approximation

The time domain relation between input and output vectors
in (15) can equivalently be expressed in the frequency domain.
If F denotes the Discrete Fourier Transform (DFT) matrix
with the appropriate dimension, then r[n] = FHR[n], x[n] =
FHX[n], and the relay operation reads as

R[n] = FPFHX[n] + W[n] (20)

with R[n], X[n] and W[n] the DFTs of the nth output, input
and noise blocks, respectively. The corresponding continuous
Fourier Transform relation in (3) can be used as an approxi-
mation. We consider L carriers, with intercarrier spacing given
by ∆f = B/L, and the frequency offset in Figure 1 equal to
f0 = (L−N)∆f if Bu = ∆f ·N . Inter Carrier Interference
(ICI) will be a consequence of the coupling of carriers which
have altered their positions after passing through the relay. The
relation between R[n] and X[n] follows from (3), and can be
expressed in matrix form as

R[n] = HX[n] + W[n], (21)

with H an L×L matrix, and R[n],X[n],W[n] L×1 vectors.
Note that, in the noiseless case, input and output vectors have
N − L zeros:

0
·
0
�
...
�


=

(
0 0√

g ·T ·Λ 0

)


�
...
�
0
·
0


. (22)
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where T is lower triangular and Λ diagonal. Their correspond-
ing elements are given by

[Λ]nn = ejθ0e−j2πn∆ft0 , n = 1, . . . , N, (23)
[T]nn = 1, n = 1, . . . , N, (24)
[T]nm = 0, m > n, (25)
[T]nm = 0, n−m 6= k(L−N), k integer, (26)

[T]nm = (
√
gα)kejkθe−j2πn∆ft0kej2πt0∆f(L−N)k(k+1)/2·

|Lu((n− k(L−N))∆f)|, n−m = k(L−N). (27)

The last expression applies for 1 ≤ k ≤ Kmax, with

Kmax =

⌈
N

L−N

⌉
− 1. (28)

For illustration purposes, the magnitude of the N ×N matrix
T can be seen to be the following for L−N = 2 and an ideal
filter response LU (f):



1 0 . . . 0 . . . 0 . . . 0
0 1 0 . . . 0 . . . . . . 0√
gα 0 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 . . .

√
gα 0 1 0 . . . 0

(
√
gα)k 0 . . .

√
gα 0 1 . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

(
√
gα)Kmax 0 (

√
gα)k . . . 0

√
gα 0 1


.

(29)
The sum rate of all carriers is bounded by the relay channel
capacity, which from (21) give the following achievable rate
for flat-spectrum inputs:

C/B =
1

L
log2 det

(
I + snr

L

trace{TTH}
TTH

)
. (30)

Note that a potential receiver extracting the information from
the PD relayed signal would require higher complexity due to
the time-varying behavior, translated into the interfering terms
depicted in (22).
In practice, the intensity of the self-coupling is usually mea-
sured as the relative magnitude of the fedback signal with
respect to the input signal, parameterized by the loop gain LG
introduced in Section II. For a fair and realistic comparison,
the output power Py will be fixed by the appropriate gain
control; from (22), this power is given by

Py = gPx
1

N
trace{TTH}, (31)

from which follows

gα =
αPy
Px

1
1
N trace{TTH}

= LG
1

1
N trace{TTH}

. (32)

From the expression of T, we have that trace{TTH} =∑Kmax

k=0 (gα)k(N − k(L−N)), so that gα is the real solution
of the equation

∑Kmax

k=0 (gα)k+1(N−k(L−N))−N ·LG = 0.

IV. NUMERICAL RESULTS

We have computed the PD maximum spectral efficiency
C/B in (17) and its approximation (30), in both cases as
the relay achievable rate considering uniform power allocation
across the input bandwidth Bu. The true capacity is computed
for M large enough and Bu = B(1− 1/r), with r an integer
value going from 2 to 9; it can be checked that the period
Nch in (12) is directly equal to r. The operation point is
determined by the bandwidth Bu/B, the signal-to-noise ratio
and the magnitude of the coupling LG. As reference we plot
also the spectral efficiency for LG = −∞ dBs, given by
C/B = Bu

B log2(1 + Py/(N0Bu)), and labeled as perfect
isolation. The spectral efficiency is plotted in Figures 2 and 3
for two values of the snr, 7 and 17 dB. The filter Lu(f) was
implemented as a truncated sinc such that t0(B−Bu) = 5. On
the other side, it can be proved that the approximation (30) is
independent of the delay t0. Note the similarity between the
true capacity values and those obtained with the frequency
domain approach, which does not rely on the existence of
a periodic behavior of the relay and can be computed more
easily. Since the true achievable rate has been computed only
for values of the form Bu = B(1− 1/r), it is a question for
further research to learn if the non-smooth behavior of the rate
with Bu, predicted by the approximation (30), applies also to
the true values. From the tests that we have performed, we can
conclude that low values of L, lower than 100, are enough to
predict accurately the spectral efficiency of the PD relay. As
expected, the performance degrades with the loop gain LG,
although it is remarkable that FD beats HD even for LG = 0
dB, that is, for an echo which has the same power as the input
signal.

V. CONCLUSIONS

An AF relay with partial overlapping between input and
output spectra has been proposed and analyzed in terms of
its achievable rate. The behavior for different overlapping
degrees has been obtained by exploiting the LPTV nature of
this PD relay. A frequency domain approach has been also
presented which shows a remarkable accuracy to predict the
true capacity. As a by-product, HD and FD operation can be
compared within this framework; the most favorable mode is
a function of the relay self-coupling and signal to noise ratio.
It turns out that FD can beat HD even for a low isolation
from the output coupling, if the contribution of the feedback
is properly accounted, and not simply disregarded as noise.
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Fig. 2: Relay achievable rate normalized by total bandwidth B, LG = 0 dB.
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Fig. 3: Relay achievable rate normalized by total bandwidth B, LG = 5 dB.
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