
1

Realizable minimum mean-squared error

channel shorteners
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Universidad de Vigo

36200 Vigo (Pontevedra), Spain

Ph. +34 986 812677, Fax +34 986 812116

E-mail: valcarce@gts.tsc.uvigo.es .

Abstract

We present an analysis of realizable (i.e., causal, stable, and of finite degree) minimum mean-squared

error (MMSE) channel shorteners for multiple-input multiple-output (MIMO) systems, driven by spatially

and temporally white signals, and subject to a constant output power constraint. This is of interest since

this design has recently been shown to result in near optimal rate performance in multitone transceivers,

and the performance of conventional finite impulse response (FIR) shorteners is upper bounded by that

of realizable schemes. The MMSE shortener is shown to consist of a prewhitening filter followed by

an FIR postfilter of order equal to the sum of the overall delay and the target shortening length. It is

shown that this design results in output decorrelation, and that the shortener output enjoying the smallest

MMSE sees a target impulse response without zeros inside the unit disk. The asymptotic behavior of the

shortened system is explored, and performance bounds are provided in terms of the channel frequency

response and the noise power spectral density.

I. INTRODUCTION

In FFT-based multicarrier systems, intersymbol and intercarrier interference can be avoided with the

insertion of a cyclic prefix of length ν between consecutive symbols, for both single-input (e.g. discrete

multitone (DMT) modulation [5]) and multiple-input (e.g. discrete matrix multitone (DMMT) [19])

frequency selective channels. If the channel impulse response spans no more than ν+1 samples, then the

effect of the channel appears as a circular convolution, enabling one-tap equalization on each subcarrier.

∗ This work was supported by the Ramón y Cajal program of the Spanish Ministry of Science and Technology.
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The cyclic prefix reduces the data rate of the system by a factor of N/(N +ν), where N is the length of

the multicarrier symbol, so ν has to be kept as small as possible. Usually the channel memory is much

longer than the cyclic prefix length, so that a channel shortener (also known as a time-domain equalizer) is

placed in the receiver with the purpose of appropriately shortening the overall impulse response. Channel

shorteners also find application as ‘preconditioners’ for maximum-likelihood sequence estimation in order

to reduce the computational complexity of the Viterbi algorithm, which increases exponentially with the

channel memory [3].

The goal of this paper is the study of the structure and properties of channel shorteners under the only

constraint of realizability, i.e., the filter may have an infinite impulse response (IIR), but it must be causal,

stable, and of finite degree. This is in contrast to standard approaches which either assume shorteners

with a doubly infinite number of taps [9], [14] or consider finite impulse response (FIR) filters of fixed

order (thus, potentially suboptimal) [3]. We adopt the minimum mean-squared error (MMSE) criterion,

by which the shortener minimizes the MSE between its output and that of a virtual channel with a short

target impulse response (TIR), subject to a constant output power constraint. While not attempting to

directly maximize the achievable bit rate (which constitutes the ultimate performance measure in DMT

systems), our design bears a direct relation to that from [6], which was shown to be near to rate optimal.

Assuming a temporally and spatially white transmit signal, the general multiple-input multiple-output

(MIMO) framework is adopted throughout. Multicarrier MIMO techniques are proving very valuable in

wireless applications, in which two antenna arrays are deployed at the transmitter and receiver sides (see

e.g. [18] and the references therein), and also in certain wireline DSL systems in which a whole bundle

of twisted pairs can be accessed at both ends [10]. Multiple subchannels may be available as well by

oversampling the received signals. The MIMO channel shortening problem has been considered in [2],

[20], [22], under the assumption of a fixed order shortener. On the other hand, an analysis of single-input

realizable equalizers (rather than shorteners) has been presented in [12]; this can be seen as a special

case of the channel shortening problem in which ν = 0, so that the target impulse response reduces to a

single spike.

The paper is organized as follows. Section II introduces the input-output model and the mathematical

description of the channel shortening problem. Section III presents the optimal TIR; the optimal shortener

is given in Section IV, along with a discussion of its properties. Section V analyzes the asymptotic

performance of the realizable design for large shortening delay. Numerical results are presented in Section

VI, and the paper is concluded in Section VII.

In our notation, vectors and matrices are denoted in lowercase and uppercase respectively. Superscripts

(·)∗, (·)T , (·)H denote respectively the conjugate, the transpose and the conjugate transpose. λmin{A},

λmax{A} and trA denote the smallest and largest eigenvalues and the trace of matrix A respectively, while

‘⊗’ denotes the Kronecker product. ψk denotes a vector of all zeros except for a 1 in the k-th position,

and for a transfer function P (z), the ‘tilde’ notation denotes paraconjugation, i.e. P̃ (z) = [P (1/z∗)]H .
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Fig. 1. Illustration of the shortening error generation.

II. PROBLEM FORMULATION

We consider a MIMO channel with transfer function C(z) =
∑∞

n=0C
H
n z

−n, where each term Cn is a

nt × nr matrix. The nr × 1 received signal vector is then

uk = C(z)sk + vk, (1)

where {sk} is the nt × 1 vector sequence of transmitted symbols, assumed zero mean white with unit

covariance, i.e. E[sks
H
l ] = Int

if k = l and zero otherwise; {vk} is the nr × 1 vector noise process,

assumed independent of {sk} and zero mean with power spectral density Sv(z). It is also assumed that

{vk} is a full rank process [4], meaning that its power spectral density (PSD) Sv(z) is not singular for

all z.

Fig. 1 illustrates the problem. A virtual TIR with ν + 1 taps and nd × nt transfer function B(z) =∑ν
n=0B

H
n z

−n is introduced, and the shortening error ek is defined as the difference between the shortener

output yk = W (z)uk and the TIR output, including a delay δ. This delay is a design parameter which

can considerably impact the final performance. The goal is to determine B(z) and the n d × nr transfer

function W (z) in order to minimize the MSE

Jν
δ

∆= trE[ekeHk ], (2)

when the shortener W (z) is constrained to be realizable: it must be causal and stable and its implemen-

tation must require a finite number of delay elements. nd represents the number of effective antennas

after shortening, and may or may not be equal to nt or nr, depending on the application.

Clearly, in order to avoid the trivial solution W (z) = 0, B(z) = 0, some additional constraint must

be imposed. Traditionally, designs from the literature have considered identity tap or orthonormality

constraints on either the shortener or the TIR [3], [2]. More recently, an intuitively more appealing

constant output power constraint has been proposed in [23] for the n t = nr = nd = 1 case. Several ways

of generalizing this strategy to the MIMO case are possible. Perhaps the most natural one is to constrain

the total output power: trE[yky
H
k ] = 1. However, with this approach there is no guarantee that some of

the shortener output signals are not nulled out. To avoid this problem, we shall use instead a uniform

power constraint over the output vector, i.e. E[|yk,l|2] = 1/nd, 1 ≤ l ≤ nd, where yk,l is the l-th element

of yk.
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III. OPTIMAL TIR

To find the optimum B(z), let us introduce the overall transfer function

Q(z) = W (z)C(z) =
∞∑

n=0

QH
n z

−n. (3)

Then the error covariance can be written as

E[ekeHk ] =
δ−1∑
n=0

QH
n Qn +

δ+ν∑
n=δ

(QH
n −BH

n−δ)(Qn −Bn−δ) +
∑

n>δ+ν

QH
n Qn + E[v̄kv̄

H
k ], (4)

where v̄k = W (z)vk is the filtered noise. Since the TIR coefficients do not affect the output power

E[|yk,l|2], minimization of the trace of (4) w.r.t. B(z) can be done directly, leading to

Bn = Qn+δ, 0 ≤ n ≤ ν. (5)

With this, the ‘reduced MSE cost’ becomes

Jν
δ = tr

( ∞∑
n=0

QH
n Qn −

δ+ν∑
n=δ

QH
n Qn + E[v̄k v̄

H
k ]

)
(6)

= trE[yky
H
k ] − tr

(
δ+ν∑
n=δ

QH
n Qn

)
, (7)

which gives, in view of (5) and the output power constraints E[|yk,l|2] = 1/nd,

Jν
δ = 1 − ||B(z)||2 = 1 − 1

2π

∫ π

−π
tr[B(ejω)B̃(ejω)]dω. (8)

Hence, minimizing Jν
δ s.t. E[|yk,l|2] = 1/nd, 1 ≤ l ≤ nd, is equivalent to maximizing tr

∑δ+ν
n=δ Q

H
n Qn

subject to the same constraint.

Let us introduce the signal-to-interference-plus-noise ratio (SINR) as the ratio of the signal power

inside the window δ ≤ n ≤ δ + ν to that outside (the ‘interference’) plus the noise power, all measured

at the shortener output. Then we can write

SINRν
δ =

tr
∑δ+ν

n=δ Q
H
n Qn

tr(E[yky
H
k ] −∑δ+ν

n=δ Q
H
n Qn)

=
trE[yky

H
k ]

Jν
δ

− 1. (9)

From (9), it is seen that maximizing SINRν
δ s.t. E[|yk,l|2] = 1/nd, 1 ≤ l ≤ nd is equivalent to minimizing

Jν
δ subject to the same constraints. Therefore, under a constant output power constraint on the shortener

outputs, the MMSE and maximum SINR designs are equivalent.

Recently, Daly et al. [6] have proposed a design where they showed to achieve near-optimal bit rate

performance in (single-input single-output) DMT transceivers. It is based on minimization of the sum of

the interference plus noise powers at the shortener output, subject to the constraint of keeping constant

the output useful (that is, inside the window) signal power. Since interference plus noise power equals

the total power minus the useful signal power, this amounts to minimizing the total output power while

keeping constant the useful signal power. The corresponding solution is the same (up to a scaling constant)

as that in the MMSE or maximum SINR design with constant output power constraints; therefore the

MMSE design can be expected to achieve good performance in DMT systems in terms of bit rate as

well.
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IV. OPTIMAL SHORTENER

In this section we derive the structure of the MMSE shortener as well as several of its properties.

Following a Lagrange multiplier approach, we show that it consists of a prewhitener applied to the

received signal followed by an FIR filter with δ+ν+1 (matrix valued) taps. Then it will be seen that the

optimal shortener results in a drastic reduction of the diversity present in the output vector yk. We get

around this problem by suitably selecting a suboptimal shortener that preserves the degree of diversity

available. Next it is found that the resulting TIR corresponding to the shortener output with largest SINR

is devoid of zeros inside the unit circle. Certain relations in the achieved performance in terms of ν and

δ are then given.

A. Shortener structure

Let Su(z) = C(z)C̃(z) + Sv(z) be the PSD of the received signal {uk}. It can be factored as

Su(z) = F (z)ΩF̃ (z), (10)

where Ω = ΩH is positive definite because {vk} (and hence {uk}) is assumed to be a full rank process,

and F (z) is nr ×nr causal, monic (F (z) = I for z−1 = 0) and minimum phase (all poles lie in |z| < 1,

and F (z) has constant rank in |z| ≥ 1). We shall further assume that F (z) has finite McMillan degree

[21], so it is realizable. This will be the case provided that C(z) has finite degree (though possibly IIR),

and that {vk} can be accurately modeled as an ARMA process of finite order. In that case, we can assume

without loss of generality that the shortener includes a prewhitening filter as front end,

W (z) = G(z)F−1(z), (11)

(note that F−1(z) is realizable), and then perform the optimization in terms of G(z) =
∑∞

n=0G
H
n z

−n.

To do so, let us introduce the prewhitened channel

H(z) = F−1(z)C(z) =
∞∑

n=0

HH
n z

−n. (12)

With this, the matrix Q = [ QH
δ QH

δ+1 · · · QH
δ+ν

]H of the coefficients in the window of interest of

the overall transfer function (3), given by Q(z) = G(z)H(z), can be written as Q = Hδ G, where Hδ is

a (ν + 1)nt × (δ + ν + 1)nr block Toeplitz matrix given by

Hδ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Hδ Hδ−1 · · · H0 0 · · · 0

Hδ+1 Hδ · · · H1 H0 · · · 0
...

...
. . .

...
...

. . .

Hδ+ν Hδ+ν−1 · · · Hν Hν−1 · · · H0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

and G = [ GH
0 GH

1 · · · GH
δ+ν

]H . Therefore, the quantity to maximize can be written as

δ+ν∑
n=δ

QH
n Qn = QHQ = GH HH

δ Hδ G. (14)
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That is, the signal power inside the window [δ, δ + ν] depends only on the first δ+ ν + 1 coefficients of

the impulse response of G(z).
Now note that the output of the front end prefilter F−1(z) is a temporally white process with covariance

equal to Ω, so that the shortener output covariance reads

E[yky
H
k ] =

∞∑
n=0

GH
n ΩGn = GHΩδG+

∑
n>δ+ν

GH
n ΩGn, (15)

where Ωδ = Iδ+ν+1 ⊗ Ω. Then, from (14) and (15), the problem is seen to become

maximize trGH HH
δ Hδ G subject to ψH

l

⎛
⎝GHΩδG+

∑
n>δ+ν

GH
n ΩGn

⎞
⎠ψl =

1
nd
, 1 ≤ l ≤ nd.

(16)

The corresponding Lagrangian for this problem is

L = trGH(HH
δ Hδ)G+

nd∑
l=1

λl

⎛
⎝ 1
nd

− ψH
l G

HΩδGψl −
∑

n>δ+ν

ψH
l G

H
n ΩGnψl

⎞
⎠ ,

where λl are the Lagrange multipliers. Let Λ ∆= diag(λ1, · · · , λnd
). Equating the partial derivatives of

L w.r.t. G and Gi with i > δ + ν to zero, we obtain the following equations:

ΩGiΛ = 0, i > δ + ν (17)

HH
δ Hδ G = ΩδGΛ, (18)

plus the original constraint (16). At any stationary point satisfying these equations, for each l = 1, . . . ,

nd, either (i) λl = 0 and HH
δ Hδ Gψl = 0, or (ii) (λl, Gψl) is a generalized eigenpair of the matrix pencil

(HH
δ Hδ,Ωδ), and Giψl = 0 for all i > δ + ν. The value of trQHQ at these candidate points becomes

trQHQ = trGHΩδGΛ

=
nd∑
l=1

λl · ψH
l G

HΩδGψl

=
nd∑
l=1

λl

⎛
⎝ 1
nd

− ψH
l

∑
n>δ+ν

GH
n ΩGnψl

⎞
⎠

=
1
nd

nd∑
l=1

λl −
∑

n>δ+ν

tr(GH
n ΩGnΛ︸ ︷︷ ︸

=0

)

=
1
nd

nd∑
l=1

λl. (19)

Observe that this value is unaffected by the value of Gi, i > δ + ν. Hence, in order to satisfy (17), we

can choose Gi = 0, i > δ + ν without any loss of optimality, concluding that the optimum postfilter

G(z) is FIR of order δ + ν.

The operation of the optimal shortener is most easily visualized in the high SNR, SISO case. With

nt = nr = nd = 1 and neglecting the noise, the effect of the prewhitening filter f−1(z) is seen to be

(i) cancel all of the channel poles, (ii) cancel all channel zeros inside the unit disk, and (iii) place poles
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at the reciprocal of the channel zeros outside the unit disk. The resulting effective channel h(z) is an

allpass system. If the order of h(z) (which is the number of original channel zeros outside the unit disk)

is no larger than ν, then ν + 1 degrees of freedom in the postfilter g(z) are spent in canceling the poles

of h(z), while the remaining δ degrees introduce the required delay (recall that g(z) has δ+ ν+ 1 taps).

When the noise power is not negligible, the prewhitening filter has to account for noise presence (and

possibly coloring) as well, and the action of the FIR postfilter is not as easily perceived.

B. SINR vs. diversity

The global maximum of (19) is obtained when all λl’s are equal to the largest generalized eigenvalue

of (HH
δ Hδ,Ωδ). However, this solution may not be acceptable in terms of channel capacity, as explained

next.

Suppose that this largest generalized eigenvalue had multiplicity one. In such case, the columns of the

optimal (in the MSE sense) matrix G are all equal (up to a scaling), and hence the rows of the transfer

function G(z) will be all equal as well, resulting in yk,1 = yk,2 = · · · yk,nd
for all k. This means that

the rank of the overall shortened channel W (z)C(z) is at most one for all z, even if that of the original

channel C(z) was larger. This in turn implies a drop in the capacity of the overall nd×nt MIMO system

(which grows with the channel rank, see [19]), a clearly undesirable effect.

A more sensible solution is to allow some excess MSE in order to avoid this potential capacity reduction

of the global MMSE shortener:

choose λ1, . . . , λnd
to be the nd largest generalized eigenvalues (counting their multiplicities) of

(HH
δ Hδ,Ωδ), with the columns of G the corresponding generalized eigenvectors.

In that case the columns of G (the corresponding generalized eigenvectors) can be chosen to be linearly

independent, thus avoiding the rank drop problem. With this design, the covariance matrix of the shortener

output becomes diagonal:

E[yky
H
k ] = GHΩδG = n−1

d Ind
, (20)

due to the orthogonality property of the generalized eigenvectors.

Using (19), one finds that ψH
l E[ekeHk ]ψl = (1 − λl)/nd. Therefore, at each of the shortener outputs

yk,l, 1 ≤ l ≤ nd, the individual MMSE will follow the same ordering as the eigenvalue assignment. Note

also that if nd > r
∆= rankHH

δ Hδ, then one would end up with λr+1 = · · · = λnd
= 0 and therefore

E[ek,le
∗
k,l] = E[yk,ly

∗
k,l] = 1/nd, for r + 1 ≤ l ≤ nd. This means that for these values of l, the l-th

shortener output yk,l comprises noise and interference only, but no useful signal. In view of this, it is of

no advantage to increase nd beyond r. Further, we have from (13) that

r ≤ nt · (ν + 1), (21)

with equality holding if at least one of the taps H0, . . . , Hδ has full column rank. Thus the number of

effective antennas cannot exceed the product of the number of transmit antennas times the number of

taps in the target impulse response (a manifestation of transmit and multipath diversity).
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C. Maximum phase property

Note from (18) that the matrix Q = Hδ G satisfies

HH
δ Q = HH

δ Hδ G = ΩδGΛ (22)

and therefore

Hδ Ω−1
δ HH

δ Q = Hδ GΛ = QΛ. (23)

That is, the columns of Q are the eigenvectors of the nt(ν + 1)-square matrix Rν
δ

∆= Hδ Ω−1
δ HH

δ

associated to its largest eigenvalues λ1 ≥ . . . ≥ λnd
. This in turn implies the following fact about the

row of the attained TIR B(z) =
∑ν

n=0Q
H
n+δz

−n corresponding to the output with largest SINR.

Property 1: The 1×nt transfer function b1(z)
∆= ψH

1 B(z) has no zeros inside the unit disk, provided

that the largest eigenvalue λ1 of Rν
δ is simple.

The proof is given in the Appendix. The following remarks are in order:

1) Observe that if nt > 1, then b1(z) need not have any zeros at all, i.e. the entries of b1(z) may be

coprime. Property 1 shows that the greatest common divisor of these entries is a maximum phase

polynomial. (If nt = 1, then b1(z) itself is a scalar maximum phase polynomial).

2) When the largest eigenvalue of Rν
δ has multiplicity m > 1, then multiple choices are possible for

b1(z). While not all of these are necessarily devoid of zeros inside the unit disk in that case, at

least one of them will have this property, as can be deduced following [13].

3) It must be noted that this result applies to realizable shorteners only. When the channel shortener

is constrained to be FIR with a prespecified number of taps, as is the case with more traditional

designs, the resulting MMSE TIR need not satisfy this maximum phase property.

4) It is known that in nt = nd = 1 systems, the performance of suboptimum trellis-based equalizers

such as delayed decision-feedback sequence estimation (DDFSE) [7] or reduced-state sequence

estimation (RSSE) [8] can be severely degraded if the overall discrete-time channel impulse response

is not minimum phase. If the channel is shortened using the realizable design with the ultimate goal

of using one of these sequence estimators, one possibility is to operate in reversed time (i.e. the

receiver waits until reception of a data burst is complete and then the stored received samples are

time-reversed and fed to the sequence estimator). This method effectively converts the maximum-

phase TIR into a minimum-phase one.

D. Performance properties

Let us denote by λν
δ [1] ≥ λν

δ [2] ≥ · · · ≥ λν
δ [nd] the nd largest eigenvalues of the matrix Rν

δ . The

realizable design in section IV-B results in an MMSE

Jν
δ = 1 − 1

nd

nd∑
l=1

λν
δ [l]. (24)
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It is readily checked that

Rν
δ+1 = Rν

δ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Hδ+1

Hδ+2

...

Hδ+ν+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ω−1
[
HH

δ+1 HH
δ+2 · · · HH

δ+ν+1

]
, (25)

which implies λν
δ+1[l] ≥ λν

δ [l] for each l, and consequently

Jν
δ+1 ≤ Jν

δ , (26)

meaning that for a given target length ν, increasing the delay improves performance (always measured

in terms of SINR or MSE). On the other hand, it is also seen that the nt(ν + 1) × nt(ν + 1) southeast

submatrix of Rν+1
δ−1 is Rν

δ , so that λν+1
δ−1 [l] ≥ λν

δ [l] in view of Cauchy’s interlacing theorem [17]. Therefore

Jν+1
δ−1 ≤ Jν

δ , (27)

i.e. performance also improves if the target length is increased by one tap while the lag is decreased by

the same amount. (By doing this, one is changing the ‘don’t care’ window from [δ, δ+ν] to [δ−1, δ+ν],
which contains the primitive window). Iterating this argument, the following relation is obtained:

Jδ+ν
0 ≤ · · · ≤ Jν+1

δ−1 ≤ Jν
δ ≤ Jν−1

δ+1 ≤ · · · ≤ J0
δ+ν . (28)

Finally, (26)-(27) together imply that Jν+1
δ ≤ Jν

δ . That is, for a given delay, increasing the target length

cannot result in worse performance, which is not surprising: it comes at the expense of lower bandwidth

efficiency in a multicarrier system, or higher complexity for a trellis-based sequence estimator.

V. ASYMPTOTIC RESULTS

We now explore the properties of the solution as the delay δ is allowed to increase. The general MIMO

case is examined first; then, several properties applicable to the single-input channel are presented.

A. The general case

We begin by introducing the nt(ν + 1)-square matrix

Rν ∆= lim
δ→∞

Rν
δ . (29)

It can be easily checked that the (i, j) block of size n t × nt of Rν is given by

(Rν)i,j =
∞∑

n=0

HnΩ−1HH
n+j−i

∆= Kj−i, 0 ≤ i ≤ j ≤ ν. (30)

Thus Rν is a block Toeplitz Hermitian matrix. As a consequence, if (λ, q) is an eigenpair of Rν and λ is

simple, then q must be either ‘block symmetric’ or ‘block skew-symmetric’, i.e. it must satisfy q = cXq∗
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where c is a scalar with |c|2 = 1 and X is the nt(ν + 1)-square block reversal matrix

X =

⎡
⎢⎢⎢⎢⎣

Int

. .
.

Int

⎤
⎥⎥⎥⎥⎦ .

Recall that the transfer function b1(z) = ψH
1 B(z) that featured in Property 1 was constructed from an

eigenvector of Rν
δ associated to the largest eigenvalue. Thus, for δ → ∞, it follows that if the largest

eigenvalue of Rν is simple, then b1(z) = cz−ν [b̃1(z)]T for some c with |c|2 = 1. Hence, if b1(z0) = 0,

one must have b1(1/z∗0) = 0 as well. In addition, from Property 1, b1(z) has no zeros inside the unit

disk, so it is concluded that all of the zeros of the asymptotic transfer function must be located on the

unit circle. This fact was first pointed out in [1] for the nt = nd = 1 case; see also [14].

From (30), the power spectral density associated to Rν is readily found to be

K(z) =
∞∑

n=−∞
Knz

−n = H̃(z)Ω−1H(z)

= C̃(z)S−1
u (z)C(z). (31)

Let us introduce the spectral SNR matrix (which has size nt × nt)

Γ(ejω) ∆= C̃(ejω)S−1
v (ejω)C(ejω). (32)

Then, as shown in the Appendix, one has

K(z) = Γ(z)[Int
+ Γ(z)]−1 = Int

− T (z) with T (z) ∆= [Int
+ Γ(z)]−1. (33)

In view of (24) and (33), it is seen that the asymptotic MMSE J ν ∆= limδ→∞ Jν
δ is just the average of

the nd smallest eigenvalues of the nt(ν+ 1)×nt(ν + 1) covariance matrix I −Rν , which is constructed

from T (z). From [16, Theorem 3.1], it follows that the eigenvalues of this matrix lie in the interval

[minω λmin{T (ejω)},maxω λmax{T (ejω)}]. This means that the asymptotic MMSE can be bounded in

the same way for all ν:

min
ω
λmin{T (ejω)} ≤ Jν ≤ max

ω
λmax{T (ejω)}. (34)

A better upper bound is obtained by noticing that J ν ≤ J0 for all ν, and that

J0 ≤ 1
nt

tr(Int
−R0) =

1
nt

1
2π

∫ π

−π
trT (ejω)dω, (35)

with equality holding in (35) if nd = nt.

Note that the SINR is related to the MMSE via SINRν
δ = (1/Jν

δ )− 1. From this and (33), the bounds

in (34) can be rephrased in terms of the SINR to obtain

min
ω
λmin{Γ(ejω)} ≤ SINRν ≤ max

ω
λmax{Γ(ejω)}, (36)
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where SINRν ∆= limδ→∞ SINRν
δ . In addition, as ν → ∞ the nd smallest eigenvalues of I−Rν converge

to minω λmin{T (ejω)} [16, Corollary 3.5], so that the lower (resp. upper) bound in (34) (resp. (36)) is

attained asymptotically:

lim
ν→∞Jν = min

ω
λmin{T (ejω)}, lim

ν→∞SINRν = max
ω

λmax{Γ(ejω)}. (37)

Thus, the asymptyotic SINR is given by the peak value of the largest eigenvalue of the spectral SNR.

B. The single-input case

When nt = nd = 1, the matrix Rν becomes Toeplitz and J ν reduces to the smallest eigenvalue of

I − Rν . The spectral SNR (32) becomes a scalar γ(ejω), and so does t(z) = 1/[1 + γ(z)]. Then the

MMSE bounds (34)-(35) read as

min
ω
t(ejω) ≤ Jν ≤ 1

2π

∫ π

−π
t(ejω)dω, (38)

and they are attained for ν → ∞ and ν = 0 respectively.

Observe now that, from the Cauchy-Schwarz inequality,(
1
2π

∫ π

−π
t(ejω)dω

)(
1
2π

∫ π

−π

1
t(ejω)

dω

)
≥ 1,

and therefore the asymptotic MMSE value for ν = 0 is upper bounded as

J0 =
1
2π

∫ π

−π
t(ejω)dω ≥ 1

1 + 1
2π

∫ π
−π γ(ejω)dω

. (39)

Hence, from (36) and (39) it follows that the arithmetic mean of the spectral SNR lies between the

asymptotic values of SINR for ν = 0 and ν → ∞:

SINR0 ≤ 1
2π

∫ π

−π
γ(ejω)dω︸ ︷︷ ︸

∆
= γam

≤ lim
ν→∞SINRν . (40)

It is noteworthy that, in general, the arithmetic mean γam does not equal the average per subchannel

SNR as usually defined:

β
∆=

1
2π

∫ π
−π ||c(ejω)||2dω

1
2π

∫ π
−π trSv(ejω)dω

. (41)

Using the following factorization of the noise PSD,

Sv(ejω) = Ũ(ejω)Σ(ejω)U(ejω) (42)

where Σ(ejω) > 0 is diagonal and U(z) is paraunitary, i.e. Ũ(ejω)U(ejω) = Inr
, it is shown in the

Appendix that, in the special case of Σ(ejω) = Σ constant, then

β ≤ γam. (43)

If Σ = σ2Inr
, corresponding to temporally and spatially white noise, then γam = nr · β, which shows

the diversity advantage of having nr subchannels.

Note that in the SISO channel case (nt = nr = 1), one has γ(ejω) = |c(ejω)|2/Sv(ejω) which is

unaffected if a channel zero is reflected with respect to the unit circle, i.e. if c(z) = (1 − z0z
−1)c̄(z) is

changed to (z∗0 − z−1)c̄(z), and therefore the asymptotic performance of the realizable shorteners does

not change. However, the rate of convergence in terms of δ will be different in general.
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Fig. 2. Channel impulse and frequency responses of CSA loop 2 with splitter and front end filter.

VI. NUMERICAL EXAMPLES

In our first example we consider a single-input single-output channel as given by the standard DSL test

loop CSA 2, combined with a POTS splitter and a twelfth-order Chebyshev bandpass filter for the 30-

1000 kHz frequency band (see Fig. 2). The sampling frequency is 2.208 MHz. The resulting discrete-time

impulse response is well approximated by an ARMA(4,34) system. Fig. 3(a) shows the asymptotic SINR

for ν ≤ 30 (13.59 µs) considering a noise PSD of the form Sv(ejω) = α2(1 + a2 − 2a cosω)/(1 + a2 +
2a cos ω) with a = 0.5, 0 and −0.5, corresponding to highpass, white and lowpass noise respectively.

The factor α2 is adjusted to yield a received SNR of 10 dB in all cases. The less harmful effect of

highpass noise agrees with the fact that, in view of the channel transfer function, the maximum value of

the spectral SNR γ(ejω) = |c(ejω)|2/Sv(ejω) is larger in that case.

In practice, inclusion of a prewhitening filter in the design need not be resource optimal. The realizable

(δ, ν) MMSE shortener has a total of N ν
δ = NF + δ + ν + 1 coefficients (in the SISO case), where NF

is the number of coefficients of the prewhitener. In this DSL example, the ARMA(4,34) channel model

assuming white noise yields NF = 38. Fig. 3(b) shows the SINR attained by the realizable design, as

well as that of an N -tap FIR MMSE design optimized in terms of the overall delay, both as functions

of the total number of shortener coefficients N and assuming ν = 15. Observe that the smallest possible

number of taps in the realizable design is N 15
0 = 54. However, the performance of this approach can

be attained by the FIR design with a much smaller number of taps, by optimizing over the delay range.

This does not contradict the optimality of the realizable MMSE design, since it is possible for an FIR

shortener with N ν
δ taps to outperform the realizable (δ, ν) MMSE shortener for some delay δ ′ > δ.

For the second example we present the results obtained with a single-input two-output L-tap channel

under Rayleigh fading with a constant power delay profile and white noise (Sv(ejω) = σ2
vI2). The channel

taps are generated as complex zero-mean independent Gaussian random variables with variance σ 2
c , and
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Fig. 3. (a) Asymptotic SINR for different noise spectral densities. (b) Comparison of MMSE realizable and MMSE FIR designs

in terms of total number of taps.

performance is averaged over 1000 channel realizations. The target length is ν = 6. Fig. 4(a) shows the

attained SINR as a function of the number of channel taps, for an average SNR Lσ 2
c/σ

2
v = 18 dB and for

several values of the delay. It is evident that the longer the channel delay spread, the larger the value of

δ required for a given performance level. Also shown is the maximum of the spectral SNR (asymptotic

SINR for an infinite target length) which, interestingly, increases with the channel length. Next we fixed

L = 16 taps to estimate the performance of the realizable design for an SNR range of 10-30 dB; the

results are shown in Fig. 4(b). The SINR is seen to increase linearly with the received SNR. For this

value of L the SNR gap between the curves for δ = 0 and δ = ∞ is of 5 dB.

VII. CONCLUDING REMARKS

Given a channel and a noise power spectral density, we have seen that the realizable MMSE (or

maximum SINR) channel shortener for a target length ν and a given delay δ consists of a whitening

prefilter followed by a (δ+ν+1)-tap FIR filter. For multiple-input channels, a tradeoff between shortening

SINR and channel diversity is reached by assigning linearly independent generalized eigenvectors to

different shortener outputs. The resulting shortened impulse response for the largest SINR output will be

maximum phase, and the covariance matrix of the shortener output vector will be diagonal. Performance

becomes a monotonic function of δ, and its asymptotic value (as the delay is increased) has been related

to the spectral SNR available at the receiver.

These schemes provide an upper bound to the performance of any practical shortener for a given (δ, ν)
pair. However, it is possible for a constrained shortener with fewer taps to yield higher SINR for some

other delay δ′ > δ (which in practice must be optimized by exhaustive search). Analytically relating the

performance of constrained shorteners to delay remains an interesting open problem. Extension of the
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realizable design to allow for temporally and spatially colored transmit signals constitutes another open

problem.

APPENDIX

Proof of Property 1: Note that the coefficients of b1(z) are given by the first column of Q, which

from (23) is seen to be an eigenvector of Rν
δ associated to its largest eigenvalue λ1. Let us partition Rν

δ

into blocks as

Rν
δ = [Rij ]0≤i,j≤ν

where each Rij has size nt × nt, and then introduce the block displacement matrix

∆ ∆= [Rij ]1≤i,j≤ν − [Rij ]0≤i,j≤ν−1.

It can be readily checked that ∆ satisfies

∆ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Hδ+1

Hδ+2

...

Hδ+ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ω−1
[
HH

δ+1 HH
δ+2 · · · HH

δ+ν

]
≥ 0. (44)

Using (44), a straightforward modification of Lemma 2 from [13] shows that if the eigenvalue is simple

and b1(z0) = 0, then |z0| ≥ 1 must follow.
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Proof of (33): Starting with the expression (31) for K(z), and ommitting the argument z for clarity,

one has

K(z) = C̃S−1
u C

= C̃(CC̃ + Sv)−1C

= C̃[S−1
v − S−1

v C(Int
+ C̃S−1

v C)−1C̃S−1
v ]C

= Γ − Γ(Int
+ Γ)−1Γ

= Γ − Γ(Int
+ Γ)−1[(Int

+ Γ) − Int
]

= Γ − Γ[Int
− (Int

+ Γ)−1]

= Γ(Int
+ Γ)−1.

In the third line we have used the matrix inversion lemma (a.k.a. Woodbury formula [11, p. 51]), and in

the fourth, the definition of the spectral SNR (32). Now,

Int
−K(z) = Int

− Γ(Int
+ Γ)−1

= Int
− [(Int

+ Γ) − Int
](Int

+ Γ)−1

= Int
− [Int

− (Int
+ Γ)−1]

= (Int
+ Γ)−1,

which proves the last part of (33).

Proof of (43): Write Σ = diag( σ2
1 · · · σ2

nr
), and let d(ejω) = U(ejω)c(ejω). Note that ||d(ejω)||2 =

||c(ejω)||2. Then

γ(ejω) = d̃(ejω)Σ−1d(ejω) =
nr∑

k=1

|dk(ejω)|2
σ2

k

.

Now note that, for arbitrary {xk}p
k=1 and nonzero {yk}p

k=1, the following holds:( p∑
k=1

x2
k

y2
k

)( p∑
n=1

y2
n

)
=

p∑
k=1

⎛
⎝x2

k + x2
k

∑
n �=k

y2
n

y2
k

⎞
⎠ ≥

p∑
k=1

x2
k. (45)

Therefore,

γam =
nr∑

k=1

1
σ2

k

(
1
2π

∫ π

−π
|dk(ejω)|2dω

)

≥
∑nr

k=1
1
2π

∫ π
−π |dk(ejω)|2dω∑nr

k=1 σ
2
k

=
1
2π

∫ π
−π ||c(ejω)||2dω
trSv(ejω)

= β,

since trSv(ejω) = tr Σ is a constant in this case.
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Interestingly, if the noise eigenvalues σ2
k are allowed to vary with ω, it is possible to have γam < β.

To see this, consider the nt = 1 case in which Sv(ejω) is not constant; assume that Sv is normalized so

that the noise power is 1. If the channel transfer function is proportional to the noise PSD, i.e.

c(ejω) = αSv(ejω),

then, on the one hand,

γam =
1
2π

∫ π

−π

|α|2S2
v(ejω)

Sv(ejω)
dω = |α|2 1

2π

∫ π

−π
Sv(ejω)dω = |α|2,

while on the other hand

β =
1
2π

∫ π
−π |α|2S2

v(ejω)dω
1
2π

∫ π
−π Sv(ejω)dω

= |α|2 1
2π

∫ π

−π
S2

v (ejω)dω > |α|2,

since the Cauchy-Schwarz inequality shows that 1
2π

∫ π
−π S

2
v(ejω)dω ≥ 1, with equality holding iff Sv(ejω)

is constant.
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