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Abstract—Nowadays, cloud computing has become a very
promising solution for almost all companies, as it offers the pos-
sibility of saving costs by outsourcing computation on-demand.
However, some companies deal with private information, which
must be protected before outsourcing. Banks, whose financial
information is highly sensitive, are one remarkable example of
this problem. Their typical processes must be run on their
systems for security and regulation reasons, which impedes
to take advantage of the scalability and flexibility benefits
introduced by the cloud. A relevant example on which we
focus in this work is the case of fraud detection systems, for
which we propose the use of modern lattice-based homomorphic
encryption for its secure execution. To this end, we implement
and validate the performance of a homomorphic SVM (Support
Vector Machine) classifier for secure fraud detection, showing
the feasibility of securely outsourcing fraud detection inference.

Index Terms—Support Vector Machines, Fraud Detection,
Homomorphic Encryption, Lattice-based Cryptography

Type of contribution: Ongoing research

I. INTRODUCTION

The impact of cloud computing on industry and also end
users is difficult to estimate: many aspects of everyday life
have been transformed by the omnipresence of software run-
ning on cloud networks. On the one hand, cloud computing al-
lows companies to optimise costs and increase their offerings,
without having the need of purchasing and managing all the
hardware and software. This allows them to launch globally-
available apps and online services without having to spend
resources on the platform on which they will run. On the other
hand, end users can access these applications immediately
and without any specific requirements, as all these services
are easily available on the Internet. Unfortunately, not all
companies can benefit from the cloud computing approach.

A major disadvantage which is present in cloud-based
applications is their underlying security. Actually, the use of
cloud-based services always leads to the storage of informa-
tion in third party systems, which could be often considered
as untrusted environments. Although, in general, this is not a
problem for many applications, the situation is considerably
aggravated in those use cases which deal with especially
privacy-sensitive information, on which security is a priority
and must be maximised.

The list of related use cases encompasses companies that
must handle sensitive information, such as financial and
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medical data, religious information, etc. This type of data
is protected by law and, as companies could be exposed to
different sanctions, they are forced to guarantee a certain
level of protection. Even so, although conventional crypto-
graphic techniques allow for secure storage in the cloud,
data protection is not so easy if some sort of computation
has to be applied on the data. Thus, in view of all these
shortcomings, companies which handle sensitive data should
seemingly avoid cloud-based solutions.

Precisely, the field of privacy-preserving machine learning
(PPML) [1] deals with the different security and privacy
threats appearing in machine learning (ML). Actually, paying
attention to the scenario of cloud computing, and among
the broad set of available tools inside PPML, homomorphic
encryption techniques, which enable secure processing on
encrypted data, seem to be a perfect fit for secure outsourcing.

A. Our Contributions

Our scenario is set inside a banking fraud context [2], on
which banks make use of fraud detection systems that require
a large amount of resources to operate. Bank transactions do
not follow a uniform time distribution, so a good solution
for banks is to outsource their fraud detection systems, which
allows them to take advantage of the flexibility and scalability
provided by the cloud.

Our main contribution is to implement and showcase the
feasibility of a solution based on homomorphic cryptography
(see Section II), which enables to securely outsource the
fraud detection systems. In particular, we have implemented
a SVM (Support Vector Machine) inference algorithm in the
encrypted domain (see Sections III and IV); being this classi-
fier tailored for bank fraud detection. Our homomorphic SVM
classifier allows a bank to make secure encrypted predictions
in an untrusted environment.

In order to test its feasibility: (1) we have designed a proof
of concept based on a client-server model (see Section IV)
and, (2) we have evaluated the runtime and classification
performance of the system (see Section V).

Notation and Structure: We represent vectors and matrices
by boldface lowercase and uppercase letters, respectively.
Polynomials are denoted with regular lowercase letters, ignor-
ing the polynomial variable (e.g., a instead of a(z)). Finally,
the Hadamard product of two vectors is a ◦ b.

The rest of the paper is organized as follows: Section II
briefly reviews the used homomorphic encryption scheme.
Section III details the bank fraud detection scenario, the
dataset and the SVM classifier. Section IV introduces the
design of our system and the homomorphic classifier. Finally,
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TABLE I
HIGH LEVEL DESCRIPTION OF THE CKKS SCHEME [9]

Parameters: Let Rq [z] be the quotient polynomial ring Zq [z]/(1 + zn). Then, ciphertexts from the
ECKKS scheme are composed of two polynomial elements from Rq [z], and plaintexts belong to the
set CP such that P = n/2. Finally, q and n (for simplicity we omit some internal parameters) are
chosen in terms of the security parameter λ.

ECKKS.SecKeyGen
Input: Security parameter λ
Output: Secret key sk

ECKKS.PubKeyGen
Input: Secret key sk
Output: Public key pk, evaluation key evk and rotation key rtk

ECKKS.Enc
Input: Plaintext m ∈ CP

Output: A ciphertext c = (c0, c1) ∈ R2
q [z]

ECKKS.Dec
Input: A ciphertext c′ = (c′0, c

′
1) ∈ R2

q [z] encrypting a plaintext m′ ∈ CP

Output: A plaintext m′ ∈ CP

ECKKS.Add
Input: Ciphertexts c and c′ encrypting, respectively, m and m′

Output: A ciphertext c′′ = (c′′0 , c
′′
1 ) ∈ R2

q [z] encrypting m+m′ = m′′ ∈
CP

ECKKS.LinHadMult
Input: A plaintext m ∈ CP and a ciphertext c′ encrypting m′

Output: A ciphertext c′′ = (c′′0 , c
′′
1 ) ∈ R2

q [z] encrypting m ◦m′ = m′′ ∈
CP

ECKKS.HadMult

Input: Evaluation key evk, and ciphertexts c and c′ encrypting, respectively,
m and m′

Output: A ciphertext c′′ = (c′′0 , c
′′
1 ) ∈ R2

q [z] encrypting m ◦m′ = m′′ ∈
CP

ECKKS.Rot
Input: A ciphertext c encrypting m ∈ CP

Output: A ciphertext c′ = (c′0, c
′
1) ∈ R2

q [z] encrypting m′ ∈ CP , which is
the result of applying a rotation over the components of m

Section V evaluates the performance of our system, and
Section VI discusses some future work lines.

II. PRELIMINARIES: HOMOMORPHIC ENCRYPTION

Homomorphic encryption appears as a very promising tool
for secure processing [3]. One relevant example is the Paillier
cryptosystem [4], which has been used in a broad range of
different applications [5]. It presents a group homomorphism
which enables additions between two encrypted values, and
multiplications between a ciphertext and a plaintext.

Consequently, Paillier could be a perfect candidate to
implement our proposed encrypted detector for bank fraud
detection. However, modern lattice-based cryptosystems out-
perform Paillier in several aspects: (1) more complex applica-
tions are possible as they present a ring homomorphism which
enables multiplication between two ciphertexts (e.g., the train-
ing of a SVM [6]), and (2) better performance, as Paillier is
slower even when considering only linear operations [7], [8].

In view of the above points, we make use of the CKKS
scheme [9], which is a lattice-based cryptosystem especially
adapted to work with approximate arithmetic operations.

A. A concrete homomorphic encryption scheme

We give a brief description of the CKKS scheme ECKKS in
Table I. It is defined as a conventional public-key encryption
scheme E = {SecKeyGen,PubKeyGen,Enc,Dec}, but ex-
tended with Add, HadMult, LinHadMult and Rot procedures.
For further details of the scheme we refer the reader to [9].

III. USE CASE

Banks use fraud detection systems that require a large
amount of computational resources. This results in significant
costs for banks to keep their systems up and running. One
possible approach for banks is to outsource these systems to
the cloud where, in addition to saving costs, they would obtain
more flexible systems.

However, banking information is sensitive and traditional
techniques only allow to work with data in clear, what can be a
security problem. Consequently, we propose to implement the
evaluation phase of an important machine learning algorithm
such as Support Vector Machines (SVM) in the encrypted
domain. Therefore, by directly working with encrypted data,

banks could outsource this information securely and take
advantage of the benefits provided by the cloud.

A. Dataset

The dataset used for this paper is called IEEE-CIS Fraud
Detection [10]. It is composed of real-world e-commerce
transactions provided by Vesta, a leader payment service com-
pany. The dataset is divided into 4 files train transaction.csv,
train identity.csv, test transaction.csv and test identity.csv.
However, we only use the files train transaction.csv and
train identity.csv, as the other two are unlabeled and we could
not use the samples they contain to test the results of the
inference. Consequently, these two training files are combined,
finally obtaining a dataset with 590540 rows and 434 features.

B. Dataset pre-processing

Given the large dimensionality of the training dataset, an
adequate pre-processing is required before training. As our
main objective in this work focuses on implementing the SVM
inference function in the encrypted domain, we have followed
the guidelines for data pre-processing and feature selection
proposed in [10]. According to their recommendations:

• The number of features is reduced from 434 to 115.
• The columns with missing values are filled with the

mean, mode or the most frequent category among the
present values in the corresponding column.

C. SVM linear kernel

We have chosen a Support Vector Machine (SVM) clas-
sifier due to its good performance for the fraud detection
scenario [10]. SVMs correspond to a type of binary classifiers
which, given a set of training samples, maximize the gap
between the two considered groups (e.g., 1 fraud vs −1 non-
fraud in our scenario).

Specifically, in this work we are interested in the expression
of the SVM classifier:

sign


L∑

i=1

yiαiK(xi,x) + b︸ ︷︷ ︸
score

, (1)

where x is the input sample, and the rest of parameters are
obtained through the SVM training: b is the bias, αi are the
dual coefficients, and xi and yi are, respectively, the support
vectors together with their associated label (1 or −1). We refer
to [11] for more details on the training of SVMs.

However, due to the limitations of homomorphic encryption
schemes, two additional points must be considered:

• The sign(·) function can be very costly to be homomor-
phically computed. As it does not introduce a relevant
overhead, we have moved it to the client side, which
calculates it after decryption.

• Among the possible choices for the kernel K(·, ·) func-
tion, we make use of a linear kernel K(u,v) = u · v;
mainly due to its simplicity and good behaviour for
the fraud detection problem [10]. Additionally, it brings
about an important efficiency advantage thanks to the fact
that the inner product is distributive over vector addition,
which enables to considerably simplify the classifier.



Consequently, taking into account the above changes, our
homomorphic classifier turns out to be:

score =

(∑
i

yiαixi

)
︸ ︷︷ ︸
linear SVM model

· x︸︷︷︸
input sample

+ b. (2)

For more details on its homomorphic computation and the dif-
ferent packing methods, we refer the reader to Section IV-B.

IV. SVM HOMOMORPHIC INFERENCE

So as to showcase the potential and practicability of homo-
morphic encryption for PPML, and more specifically, for the
encrypted execution of SVM inference, we have implemented
a client-server prototype. Starting from the use case, bank
fraud detection with a SVM, the needed homomorphic oper-
ations for both encryption/decryption and for the encrypted
inference using a linear kernel have been implemented.

A. Design

The design of the prototype follows a client-server approach
to emulate the client and cloud side for an scenario of
outsourced computation in an untrusted environment. The
client is responsible of encryption and decryption, so the input
data is protected from the moment it leaves the client. The
server is responsible of processing the encrypted data, and of
finally sending back to the client the encrypted result. Figure 1
depicts the main components of the secure SVM prototype.

Fig. 1. System architecture

As shown in Figure 1, the prototype is composed of two
different clients (one is web based and the other one command
line based) and one server. All 3 components make use of
a database and of a cryptographic library that implements
the needed cryptographic primitives for each component. The
clients database stores the user homomorphic cryptographic
keys and the transactions data samples that are classified
with the Homomorphic SVM Inference. The server database
stores users authentication details, users public homomorphic
cryptographic keys and parameters, and the SVM model. The
clients cryptographic library implements the generation of
cryptographic keys and parameters, and also the data pack-
ing/unpacking and encryption/decryption primitives, while the
server cryptographic library implements the encrypted kernel
evaluation primitives. In order to implement the primitives for
encrypted processing, the cryptographic libraries make use of

Microsoft Seal [12] and Lattigo [13] libraries. For running the
homomorphic inference, the following steps must be followed:

1) The Client authenticates to the server
2) The Client creates a key pair and sends its public part

to the server
3) The Client packs and encrypts the data samples that

wants to infer and sends them to the server
4) The Server retrieves the SVM model and public keys

from database
5) The Server does the Homomorphic SVM Inference and

sends the result to the client
6) The Client decrypts the result and shows it to the user

B. Data packing

As the CKKS scheme [9] allows for homomorphic approx-
imate additions and Hadamard products between encrypted
vectors (see Section II), finding the best way of packing
the data before encryption is fundamental to optimize the
performance of our encrypted SVM classifier.

With this aim, we have explored two different packing
methods [2], which we denote in this work as column packing
and flattened packing respectively. Let X be a matrix of size
N × M where N represents the number of input samples
we want to query for detection, and M corresponds to the
number of features for each input sample. We also assume
that the instantiated CKKS scheme has a packing capacity of
P complex slots. We briefly describe these two methods next:

• Column packing: It encodes the columns of X separately
in different ciphertexts. This packing naturally fits into
the SIMD (Single Instruction, Multiple Data) paradigm,
which makes it convenient for those cases where the
number of input samples N in the client query is large.

• Flattened packing: We represent the matrix X as
a reshape on which all the rows are concatenated
into a “flattened” vector of length N · M such as
[row1(X), . . . , rowN (X)]. Then, we encrypt all the rowi

blocks using the minimal possible number of ciphertexts,
i.e., each ciphertext has b PM c different rows from X .

Contrarily to the former, the use of a flattened packing
optimizes the storage in those cases on which N is small
in relation to the ciphertext packing capacity P .

Homomorphic inference: Regarding the concrete algorithms
in the encrypted domain, there are also some important
differences for each packing:

• Inference with column packing: It follows the same
structure as its counterpart in clear. We homomorphically
compute Eq. (2) by means of both ECKKS.LinHadMult
and ECKKS.Add primitives. It is worth noting that, as a
different score is calculated by default in parallel for P
complex slots, we directly obtain the inference for P
different input samples in each output ciphertext.

• Inference with flattened packing: It requires a more cum-
bersome algorithm on which not only ECKKS.LinHadMult
and ECKKS.Add primitives are needed, but also
ECKKS.Rot must be applied to relocate the partial results
of the inner product. In this case each output ciphertext
contains b PM c different score values.

Tables II and III include a summary of the existing trade-
offs between both packing methods. Note that the flattened



TABLE II
COMPUTATIONAL COST FOR EACH PACKING METHOD

Method Ciphertext operations

Column packing dN
P
e(M mult. +M add.)

Flattened packing
⌈

N

b P
M

c

⌉
(1 mult. + log2 dMe add. + log2 dMe rot.)

TABLE III
STORAGE REQUIREMENTS FOR EACH PACKING METHOD

Method # of ciphertexts

Column packing MdN
P
e

Flattened packing
⌈

N

b P
M

c

⌉
packing also requires to generate the rotation key matrices
rtk which are used for the homomorphic slot rotations.

V. IMPLEMENTATION RESULTS

In this section we show the results obtained in our imple-
mentation. All the experiments were conducted using a test-
bed composed of a physical device with a CPU i7-4710HQ,
12GB of RAM and Ubuntu Desktop 20.04.

In the first place, we evaluate the quality of the inference of
our implementation against the inference in the clear. These
results are shown in Table IV. In order to test the classification
performance, we have considered three different metrics:

• Accuracy: % of correct predictions.
• Precision: % of correctly detected positives among all

detected positives.
• Recall: % of correctly detected positives among all

positives.

TABLE IV
INFERENCE RESULTS: MACHINE LEARNING CONTEXT

Library Packing Accuracy Precision Recall
Plain - 96.6% 5.44% 46.8%
SEAL Flattened 96.4% 4.39% 32.5%
SEAL Column 96.6% 3.72% 70.4%
Lattigo Flattened 96.6% 3.72% 70.4%
Lattigo Column 96.6% 3.72% 70.4%

TABLE V
INFERENCE RESULTS: PERFORMANCE CONTEXT

(N = 147635,M = 114, P = 4096)

Library Packing PS time (ms) PC time (ms) Size (KB)
SEAL Flattened 4.03 3.66 31.3
SEAL Column 0.12 1.69 14.0
Lattigo Flattened 2.34 16.8 41.9
Lattigo Column 0.03 8.29 18.7

Another important aspect that we have assessed is the
runtime performance. In this case, Table V includes:

• Server (PS) runtime: the required time to perform the
inference function in the server.

• Client (PC) runtime: total time taken by the client to
encode/decode + encrypt/decrypt the different samples.

• Size: size of the information sent from client to server.

Note that our results consider the execution of several
inferences in parallel, so the included runtimes are normalized
to measure the estimated runtime for a single inference of each
type of packing. As the transmission times have not been taken
into account, we include the size of transmitted information
per inference.

VI. CONCLUSIONS AND FUTURE WORK

This work shows that homomorphic encryption is a key
enabler technology for migrating highly sensitive process to
the cloud. Our proof of concept prototype demonstrates the
feasibility of running the fraud detection inference in the un-
trusted domain, while maintaining the prediction performance
and also with a feasible execution performance. As future
work, we envision several extensions for our prototype:

• A more complete comparison considering other alter-
native cryptographic schemes/techniques as Paillier [4],
BFV [14], and functional encryption [15]

• Deploy the server in a real cloud environment in order
to measure the instantiation costs in a realistic scenario.

• Protect the model in the execution environment. This
corresponds to the case on which the server infrastructure
provider and the model owner are not the same entity.

• Extend the prototype considering more complex kernels;
e.g., polynomial and RBF (Radial Basis Function).

• The implementation in the untrusted domain of the
sign(·) function. Currently, there exist mechanisms for its
homomorphic approximation with CKKS [16]. Note this
adds an additional degree of protection to the model, as
it is harder for the client reverse engineering the model.
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