
Flexible Reinforcement Learning Scheduler for 5G
Networks

Aurora Paz-Pérez† , Anxo Tato† , J. Joaquı́n Escudero-Garzás† , Felipe Gómez-Cuba* .
† GRADIANT (Galician Research and Development Center for Advanced Telecommunications), Vigo, Galicia, Spain

*atlanTTic, Universidade de Vigo, Galicia, Spain
Email: {apperez, atato, jescudero}@gradiant.org, gomezcuba@gts.uvigo.es

Abstract—Resource management in 5G networks is becoming
a highly complex task with the need to handle multiple devices
and applications effectively with large data rates. In particular,
optimizing scheduling algorithms improves resource allocation
efficiency. To address this optimization, Artificial Intelligence (AI)
techniques have recently shown their effectiveness compared to
classical optimization algorithms. This work aims to design and
implement a Reinforcement Learning (RL) MAC-layer scheduler
that outperforms traditional methods in a potential real-world
deployment. The main outcomes include a high-performing RL
agent capable of adapting to diverse device types and handling a
flexible number of user equipment (UE), which adds significant
research value to the field since the current studies do not include
a variable number of UEs.

Index Terms—Artificial Intelligence, 5G, Reinforcement Learn-
ing, MAC scheduling, ns-3 simulator

I. INTRODUCTION

A crucial factor in wireless networks is the efficient and
fair distribution of resources to devices. This distribution is
managed by a scheduler, which implements specific policies
to prioritize certain users over others. This approach enhances
both real-time efficiency and adaptability. Leaving aside the
spatial component of MIMO (Multiple Input, Multiple Out-
put), the physical layer resources are organized within a two-
dimensional grid of time and frequency that the scheduler
has to optimally distribute among the users. It is difficult to
manage 5G networks with traditional scheduling algorithms
due to the large variety of devices, which increases the network
complexity. To address this problem, integrating Machine
Learning (ML), especially Reinforcement Learning (RL), has
emerged as a promising solution for making decisions in the
Medium Access Control (MAC) scheduling [1], [2].

A. Review of existing work

Among the ML paradigms for scheduling, RL algorithms
predominate due to i) the RL agent’s capacity for interacting
with the environment through actions; ii) its ability to learn
through trial and error, adjusting its decision-making strategy
and refining its policy over time, and iii) its ability to find
an optimal policy that maximize long-term rewards. In the
literature, we find that Double Deep Q Network (DQN) [3]
and Deep Deterministic Policy Gradient (DDPG) [4]–[6] stand
out from the different types of 5G MAC scheduling RL
algorithms. In [4], the scheduler proposed for New Radio
(NR) gNB considers two types of numerologies and different

Quality of Service (QoS) according to the type of traffic.
In [5] the scheduling achieves a long-term QoS trade-off
between different types of traffic. The authors of [6] present
a DDPG scheduler that uses expert knowledge (K-DDPG) to
reduce the convergence time, an aspect necessary to work in a
real system. This paper includes experimental results, though
the setting consists of one LTE eNB and two UEs. Another
popular approach is Actor-Critic (AC) learning [7]–[9], where
the actor is responsible for the action selection and the critic
predicts anticipated returns based on the policy. While Q-
Learning requires that all actions must be tested in all states,
in AC systems exploration is fully determined by the action
probabilities of the actor. In [7], the authors develop an AC
agent using a pointer network architecture to provide flexibility
and scalability and it is implemented within the Nokia Wireless
Suite simulator [10]. The authors of [8] propose an AC-
based scheduling framework for 5G networks to select a
resource allocation rule. The work of [9] presents a distributed
AC multi-agent scheme whose agents collaborate to perform
optimal scheduling, allowing the scheduler to be deployed in a
resource-limited network. Also, a recent study [11] addresses
scheduling in a multi-hop millimeter-wave mesh. They use
a model-free algorithm called Adaptive Activator RL, which
determines the subset of links to be activated during each time
slot and the power level for each link.

B. Contributions

A limitation observed in many RL-based schedulers is their
inflexibility, because their design is tailored to a specific
number of User Equipment devices (UEs). This approach
dictates the dimensions of inputs and outputs in the underlying
neural network. One distinctive aspect of this work lies in
a better adaptation to environmental changes compared to
classical scheduling algorithms, such as Proportional Fairness
(PF), since more features are taken into account. But the
most significant breakthrough is the formulation of a versatile
framework capable of managing a variable number of UEs in
an RL-based scheduler. Considering all these aspects, the main
objectives of our work are listed below:

• Design and implement an RL agent that performs the
functions of a MAC layer scheduler in a 5G base station.

• Create a standardized simulation environment capable of
realistic radio resource allocation.



• Compare the RL agent with conventional baseline algo-
rithms, aiming for enhanced efficiency and adaptability.

• Elevate the current state-of-the-art by introducing a flex-
ible RL agent capable of managing a varying number of
UEs.

The article is structured as follows. After this introduction,
Section II presents the proposed RL-based scheduling system
as well as the simulation environment. Then, Section III
evaluates the proposed scheme in two different scenarios.
Lastly, the main conclusions and future work are drawn in
Section IV.

II. RL-BASED SCHEDULING SYSTEM

We developed the RL-based scheduling system showed in
Fig. 1, consisting of a cellular simulation environment, an RL
agent, a learning mechanism, a set of features and a reward
function (RF). The characteristics of each of these components
are described below:

A. Environment

We consider a 5G cellular network simulated with the 5G-
LENA module of the ns-3 simulator. This module is aligned
with NR Release 15 TS 38.300 and allows us to emulate
the communications of a base station (gNB) with a set of N
UEs. Particularly, 5G uses a Orthogonal Frequency Division
Multiple Access (OFDMA) physical layer where the MAC
scheduler assigns Physical Resource Blocks (PRBs) of 12
subcarriers to the instantaneous number of active UEs (Na),
as depicted in Fig. 1.

The simulated scenarios consist of hexagonal 5G cells as
depicted in Fig. 2. The RL scheduler controls a urban microcell
(UMi) with the gNodeB (gNB) in its center at height hgNB m
and a maximum number of N UEs at height hUE, in random
positions and moving on average vUE m/s. Both UEs and gNB
have isotropic antennas. We conducted simulations where UEs
have one of the following profiles:

• Voice/video application: rate ≥ rvvmin = 7.5 MB/s,
Packet Delay Budget (PDBvvmax) = 100 ms.

• Low latency application: rate ≤ rllmax = 100 kB/s,
PDBllmax = 30 ms.

B. RL Agent

An RL agent is a type of Markov decision scheme that,
for a given environment state St, chooses an action At. The
action on the environment produces the next state St+1, and
a value of the reward function Rt as shown in Fig. 3. A
good policy π(At|St) chooses a sequence of actions given
the current states in order to maximize the long-term sum of
rewards Rt. Therefore, in our environment, the RL agent faces
the following optimization problem:

max
π,At

Rt(At, St) (1a)

s.t. rvv ≥ rvvmin (1b)
PDBvv ≤ PDBvvmax (1c)
PDBll ≤ PDBllmax, (1d)

where the objective is to maximize the Rt designed in the
following sections by selecting the optimal actions At, sub-
ject to the constraints for each application (“vv” represents
voice/video and “ll” low latency).

In RL, the state-space of the environment is enormous or
unknown for conventional optimization, so ML is applied. For
the RL agent, we use the Proximal Policy Optimzation (PPO)
algorithm [13] from the open-source library Ray RLlib. Ray
RLlib gives a rich set of RL algorithms, distributed training
capabilities and an interface for managing RL experiments.
The PPO is an AC, on-policy and model-free algorithm
with many benefits, as simplicity, stability, sample efficiency
and scalability. This algorithm is composed of two neural
networks, the actor and the critic, represented in Fig. 4. The
actor network learns the policy πϕ(At|St). The critic network
”learns to train” the first network, by predicting the expected
return obtained by acting with the current policy starting from
a specific state. In this type of on-policy algorithms, the current
policy is first executed during a number of interactions and
these experiences are stored in a rollout buffer. Then this data
is used to train the two neural networks (the actor and the
critic) with a gradient descent algorithm.

C. Flexible Learning Mechanism

Neural networks’ inputs and outputs must be vectors of a
fixed length. Most research papers propose schedulers that
only manage a fixed number of UEs [14]. To avoid this
shortcoming, we propose a Flexible Learning Mechanism
(FLM) to support a variable number of UEs, both in training
and operating time, having a fixed number of inputs and
outputs of the PPO neural networks.

In our scenario, the input features received by the neural
network (represented as sub-observation in the Fig. 1) are
composed of three metric types: individual variables of a fixed
number of W UEs, global statistics of all UEs and global
cell features. Then, the neural network is fed with a batch of
K = ⌈Na

W ⌉ sub-observations. The output of the neural network
is a batch of K actions. They are aggregated (to obtain Na

values) and normalized with the SoftMax function to obtain a
valid action to be sent to the environment (list of percentages
of PRBs assigned to each active UE).

One drawback of this solution is that some information
is lost since the neural network never sees the complete
landscape with the individual metrics of all UEs. However,
the possibility of choosing the value of W brings flexibility
to the system, allowing the RL agent to manage a dynamic
number of UEs. Selecting a small W allows us to have simpler
neural networks (less inputs and outputs), reducing the training
and inference time. Moreover, W can be much smaller than
N (our experiments show that the RL-based scheduler can
work even with a value of just W = 1). In addition, the
batch processing is a natural way of leveraging the parallel
processing capabilities of Graphical Processing Units (GPUs).
With the proposed FLM, a variable number of UEs, N , can be
handled by just increasing or decreasing the size of the batch
K. It should be noted that sub-observation size W is a design



Fig. 1. Architecture of the RL-based scheduling system.

Fig. 2. Simulated scenario with a gNB and 11 UEs.

parameter that must be chosen and fixed in advance, since it
conditions the size of the neural networks and, its modification

Agent

Environment

Fig. 3. RL interactions with the environment.

would require a new re-training of the RL agent.
In summary, the process (represented in Fig. 1) consists of

the following steps (blocks in bold):

• The sub-observation size W is provided to the RL Agent
so it scales the number of inputs and outputs of the neural
networks accordingly.

• In each step UE-specific metrics and global cell features
are obtained from the Simulation environment, repre-
sented by the Observation block.



Fig. 4. Scheme of the PPO algorithm (taken from [12]).

• The interface between the Simulation environment and
the RL Agent creates a batch of Sub-observations,
which contains the three types of features described
previously. This process is represented by the Process
observation block.

• All the sub-observations are introduced to the RL Agent
in a batch of size K.

• The Output of the RL Agent (batch of size K) is ag-
gregated and normalized with a SoftMax layer, resulting
in the Actions. Then the Actions (list of percentages
of PRBs assigned to each UE) are provided to the
Simulation environment as the next scheduling decision.

D. Features

The created simulation environment exposes features to
the agent (observation). For each time instant, it obtains
individual metrics of each UE (queues state, throughput, delay,
SINR, etc) and global cell features (applications information,
number of UEs (N ), bandwidth, etc). With this information we
compute the statistics of the global UE population (minimum,
average and maximum of each metric). Moreover we calcu-
late other global information, such as Jain’s Fairness index
(JFI) [15]. The complete list of dynamic features is shown in
Table I. This list is updated at each time instant with the new
values collected from the environment.

TABLE I
INPUT FEATURES TO THE RL AGENT.

Features per UE and Global cell
min/avg/max stats features

Queues: Number of bytes Applications: Type flag,
in buffers, traffic pending avg packets, PDB
flag, packets transmitted, and number of active UEs

packets received in each application type
and packets lost

Environment: N , W , bandwidth,
Channel: Throughput, transmit power, TDD/FDD flag,

delay, SINR TDD pattern, DL enabled,
UL enabled, notched RBs

Min, avg and max values JFI index
of the previous metrics

E. Reward function

Other objective of this work is to design the most suitable
reward function Rt(At, St). This function provides a quanti-
tative metric indicating the desirability of each behavior. By
choosing the algorithm, the features and the Rt, our agent is
fully defined. We followed an iterative reward-design process,
starting with a basic proposal and modifying it based on
experimental observation. We begin with the following general
structure

Rt(At, St) =


−1 UE with empty buffer but other UEs not.

0 all buffers are empty.
V packets UE buffer has packets.

(2)

where the first case penalizes the allocation of resources to
inactive UEs when active users exist. The second case is a
neutral reward as there are no UEs with traffic. For the rest
of our work, we focused on designing different formulas for
the reward value of UEs with packets V packets.

Next, we sketch the main steps towards the final expression
of V packets. We start with the following expression:

V packets
CQI and HoL =

CQI[i] + 1

16
− 1

2 ∗Na
∗

Na−1∑
k=0

HoL[k]

PDB[k]
. (3)

This expression depends on the values of the Head of
Line (HoL) delay and the channel quality indicator (CQI) of
the selected UE i, CQI[i]. It seeks to prioritize UEs with
better signal quality without sacrificing the average delay
normalized by UEs’ PDB. We observe that this reward, in
case of network congestion, discriminates certain UEs starving
them of resources. To solve this problem, we multiply (3) by
the term log2(

PDB
HoL ). In this way, if the selected UE has a

very small delay compared to the average, the obtained reward
worsens. On the contrary, if the selected UE has a delay greater
than average, a higher reward should be provided so the UE
is preferentially selected.

During our experiments, these functions did not provide
satisfying results. Therefore we replace the logarithmic func-
tion by an exponential term. This is due to the fact that, with
the logarithmic function, the reward grows with a very small
slope in case of congestion. That does not guarantee choosing
the UE with highest delay, thus causing more congestion.
However, by simply substituting the logarithmic function for
the exponential term, it occurs that, in case of high average
delays, the agent forces to defer an UE to get a better reward
a posteriori. To deal with this problem, we looked for the
Rt to reduce the average normalized delay, in this way not
discriminating any UE.

In addition, another relevant parameter to take into account
is the percentage of occupied buffer (%buffer). Minimizing
this parameter helps to reduce packet losses. With all these



considerations, the final version of Rt was designed combining
the following expression with (2) where i = UEselected:

V packets
final = a−b−c+2 where


a = 2

CQI[i]∗HoL[i]
PDB[i] ,

b = 2
CQI[i]

Na
∗
∑Na−1

k=0
HoL[k]
PDB[k] ,

c = 2
max(%buffer)+1
%buffer[i]+1.01

∗1.01.
(4)

Our experiments (see Section III) show that (4) is the reward
function that provides the best overall results in terms of
throughput, delay, fairness and packet loss.

F. Integration

The complete system is depicted in Fig. 1. It shows the
interactions between the elements of the architecture. Since
5G-LENA is not compatible with OpenAI Gym, an extra
module called ns3-gym [16] was adapted to our use case.
This module requires to define different elements: observation
space, action space, end condition of the simulation, function
to create the observations, reward function and the function
that executes the actions.

The integration of this module with RLlib requires some
modifications. The PPO implementation in RLlib allows to
receive a batch of sub-observations, provided by Gym, as an
input to the agent. As the agent receives an input batch of size
K, it returns the actions also in batch of size K. Then we have
to group these actions to send them to the environment jointly.
In this way, the environment is not aware of the existence of
the FLM, so it can communicate with all types of es of RL
agents. To summarize, the environment sends one observation
and one reward at each time instant and receives the actions
grouped in one item while the agent operates with batches.

III. EVALUATION

We consider a single cell with a different number of N UEs
with voice/video and low latency applications with hgNB = 10
m, hUE = 1.5 m and vUE = 5 m/s. The numerology is 0
(subcarrier spacing of 15 kHz). The gNB employs the n70
band in FDD mode with bandwidth of 10 MHz for both
downlink and uplink. The simulations run over 2 s with a step
of 1 ms between re-assignations of the PRBs. It should be
noted that a hyperparameter tuning is performed. Specifically,
the hyperparameters are the Generalized Advantage Estimate
(GAE) parameter, the surrogate slipping parameter, the learn-
ing rate, the number of Stochastic Gradient Descent (SGD)
iterations in each loop, the total SGD batch size and the
training batch size.

Firstly, we compare our RL-based scheduler with other clas-
sical schedulers [17] already implemented in 5G-LENA, i.e.
PF, Round Robin and Maximum Rate. It was found that PF is
the classical algorithm that performs best in our environment.
For this reason our proposed RL-based schedulers will be
compared with the PF algorithm in this evaluation.

Secondly, one important aspect that should be taken into
account is the training and inference time. The FLM allows a
reduced size in the RL agent’s neural networks, independently
of the maximum number of users N . The sub-observation size,

W , determines the number of inputs and outputs of the neural
networks. It is a design parameter of the RL-based scheduler
that cannot be changed without a model re-training. Moreover,
the processing of the information is done in parallel, in batches
of variable size K. These aspects allow a reduction in training
and inference time compared with rigid RL schedulers tuned
for a big number of UEs.

To show the improvement in training time, a experiment has
been made. The RL-agent is trained in two scenarios, with
N = 8 and N = 4 UEs. For each scenario, three different
sub-observation sizes W are tested: 4, 2, and 1. The obtained
training times are shown in Table II. It can be seen that the
time decreases when more sub-observations are included (for
smaller W ) since they are processed in batch. Because the
neural networks size is linear with W , a similar reduction in
the inference time would be obtained.

The performance evaluation of the proposed RL-based
scheduler is done by means of two different scenarios. A
simpler one, with N = 4 UEs and a more complex one with
up to N = 11 UEs. Each one has different application types,
as shown in Tables III and V. Regarding the sub-observation
size, W , values of 1, 2 and 4 are tested in each scenario. The
number of instantaneous active users at each time step Na and
thus K are automatically determined.

The selection of the first scenario has two objectives. On
the one hand, it shows that an RL-based scheduler with
the PPO algorithm can outperform the well-known classical
PF algorithm. On the other hand, it shows the good results
obtained using our FLM, even if the agent only receives
specific information from a subset of W UEs in each item
of the batch (note that global statistics of all the active UEs
Na are also provided).

Regarding the second evaluation scenario, a higher number
of UEs is selected, N = 11, to obtain a best approximation to
a real scenario. We have not chosen a much larger value since
the simulation time would be extremely long.

A. Scenario with 4 UEs

We first analyze the scenario with N = 4 UEs, whose
arrangement in space is similar to Fig. 2. Moreover, the types
of applications, their rate and when they start and finish trans-
mitting are configured as illustrated in Table III. No UE leaves
the cell during the simulation and, according to Table III, the
range of active UEs is from 0 to 3. This scenario allows to
see the difference between choosing different W values. The

TABLE II
TIME IMPROVEMENT USING THE FLEXIBLE LEARNING MECHANISM.

Number of Sub-observation Training
UEs N size W time (s)

8
4 118 840
2 11 712 (90% faster)
1 5 844 (95% faster)

4
4 15 580
2 5 712 (63% faster)
1 2 929.7 (81% faster)



TABLE III
APPLICATION DIAGRAM FOR 4 UES.

UE Start time Finish time Type Rate
0 0.10 s 1.70 s Voice/video 12.5 MB/s
1 0.25 s 2.00 s Voice/video 15.1 MB/s
2 0.40 s 0.60 s Low latency 60 kB/s
3 1.50 s 1.75 s Low latency 85 kB/s

agents are going to manage 4 UEs in sub-observations with
size W = [4, 2, 1] UEs. In the first case, all the information is
available as inputs of the agent. The other two are examples of
the FLM, having the first one more specific information than
the last one.

The metrics obtained are illustrated in Table IV. In this sce-
nario, using the PPO algorithm the delay drops in some cases
to almost half compared to the PF algorithm. The throughput
increases in all cases by more than 10%. This scenario verifies
the advantages of using an RL-based MAC scheduler. It adapts
to the typology of the different applications, achieving a great
improvement in terms of throughput and delay compared with
the PF classical algorithm. Moreover, the scenario demon-
strates the good performance of the proposed FLM. Even
if only one UE per sub-observation is given to the agent
(W = 1), it still learns a good policy, as can be concluded
from the results of Table IV. The search for an optimum value
W is left as future work.

B. Scenario with 11 UEs

Finally, a scenario with N = 11 UEs is studied. The
distribution of the devices in the space is illustrated in Fig. 2
and the application diagram is reflected in Table V. Similarly,
no UE leaves the cell during the simulation and, according to
Table V, the range of active UEs is from 0 to 7.

In this case we analyze the fact that the total number of UEs
N is not a multiple of the number of UEs per sub-observation
W . Note that in this case we approach a more realistic scenario
taking into account a greater amount of UEs. The ratio of
information per sub-observation versus the total is smaller in
this case since the number of UEs is larger and W takes the
same values, compared to the previous scenario.

Through the results we can observe how the RL agent main-
tains lower buffer occupancy compared to the PF algorithm,
preventing network congestion and packet loss. It can also be
seen how the delay is reduced compared to the PF algorithm,
especially for low latency applications. This improvement can
be seen in Fig. 5 with the maximum delays over time. The

TABLE IV
PERFORMANCE FOR SCENARIO WITH 4 UES.

Scheduler Average throughput Average delay
Classical: PF 8.69 Mbps 13.4 ms

RL: PPO with W = 4 9.83 Mbps 7.64 ms
RL: PPO with W = 2 10.4 Mbps 8.98 ms
RL: PPO with W = 1 10.0 Mbps 7.64 ms

TABLE V
APPLICATION DIAGRAM FOR 11 UES.

UE Start time Finish time Type Rate
0 0.10 s 1.70 s Voice/video 12.5 MB/s
1 0.40 s 1.80 s Voice/video 18.8 MB/s
2 0.20 s 2.00 s Voice/video 15.1 MB/s
3 0.25 s 1.80 s Voice/video 11.3 MB/s
4 0.30 s 1.90 s Voice/video 12.5 MB/s
5 0.40 s 0.60 s Low latency 80 kB/s
6 1.50 s 1.75 s Low latency 70 kB/s
7 0.50 s 0.80 s Low latency 60 kB/s
8 0.80 s 1.00 s Low latency 85 kB/s
9 1.25 s 1.65 s Low latency 75 kB/s

10 1.70 s 1.90 s Low latency 65 kB/s

Fig. 5. Maximum delay (ms) for 11 UEs scenario.

RL agents consistently achieve maximum values near 30 ms,
whereas the PF algorithm peaks at around 50 ms. Hence,
despite not achieving substantial average differences, the im-
provement provided by the RL agents is deemed significant for
reducing network congestion. Furthermore, Fig. 6 illustrates
that the PF algorithm experiences high buffer occupancies,
whereas the RL agents consistently maintain low and stable
levels. This also verifies the enhancement in mitigating buffer
congestion. Despite handling a much larger number of UEs,
these RL-based schedulers either outperform or match the
performance of the well-known classical PF algorithm.

In summary, through these experiments it can be seen
how RL-based schedulers provide a better performance than
classical schedulers, such as PF. It was possible to validate that
the RL agent, in which W = 2, achieves optimal metrics while
preserving the simplicity of the network. This is a desirable
aspect to reduce computation times given that it is a process
that must work in real time. Moreover, the simulations show
that the proposed FLM enables to build simpler RL-based
schedulers without loss of performance. With FLM the RL
agents can manage a variable number of UEs with neural
networks of bounded complexity.

IV. CONCLUSIONS AND FUTURE WORK

The MAC-layer scheduler is a breaking point in a cellular
network, whose optimization is of paramount importance. Us-
ing RL-based schedulers for this task provides certain benefits
such as real-time adaptability to the state of the network. It



Fig. 6. Maximum buffer occupancy (bytes) for 11 UEs scenario.

also provides the possibility of balancing a wide range of
network metrics at the same time through the RL agent’s
neural networks.

The main work of this paper is on the design and develop-
ment of an RL-based scheduler that allocates radio resources.
It improves the performance of traditional algorithms, such
as PF, in terms of metrics like throughput or delay. It also
adapts well to the different types of applications that arise
in a realistic environment. The simulation results using the
5G-LENA module verify the effectiveness of the proposed
scheduler, embracing the designed reward function, the se-
lected features and the PPO RL algorithm.

On the other hand, the current state of the art is advanced by
designing and implementing a Flexible Learning Mechanism
(FLM) that allows an RL-based scheduler to handle a flexible
number of UEs. This completely functional scheduler comes
also with a remarkable improvement in training and infer-
ring time, enabling the adoption of this RL-based approach
for MAC-layer schedulers ready for being integrated in real
cellular networks.

A future work that could be performed is a detailed analysis
of the optimal values of the variable W for different N as
well as the configuration of the N applications. Due to the
long training time required to perform this analysis, no further
tests were performed to determine the optimal values within
this work. Another future direction of this research involves
implementing the developed RL-based scheduler on a real
base station. The open-source NR library OpenAirInterface
integrates the NVIDIA Aerial as a hardware accelerator. This
element would allow the scheduler to run on GPU, decreasing
the inference times of the neural network. In this way, tests
could be performed with a larger number of connected UEs
using a real base station.

ACKNOWLEDGMENT

This research was supported in part by the Spanish Center
for the Development of Industrial Technology (CDTI) and the
Spanish Ministry of Economy, Industry and Competitiveness
under grant CER-20191015 Open-VERSO, by the Galician

Agency of Innovation (GAIN) under grant IN854A2020/01
Facendo 4.0 and the Spanish Ministerio de Ciencia e Inno-
vación (MICINN) PID2021-122483OA-I00.

REFERENCES

[1] Y. Arjoune and S. Faruque, “Artificial Intelligence for 5G Wireless
Systems: Opportunities, Challenges, and Future Research Direction,”
in 2020 10th Annual Computing and Communication Workshop and
Conference (CCWC), 2020, pp. 1023–1028.

[2] R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang,
“Artificial Intelligence-Enabled Cellular Networks: A Critical Path to
Beyond-5G and 6G,” IEEE Wireless Communications, vol. 27, no. 2,
pp. 212–217, 2020.

[3] F. Al-Tam, N. Correia, and J. Rodriguez, “Learn to Schedule (LEASCH):
A Deep Reinforcement Learning Approach for Radio Resource Schedul-
ing in the 5G MAC Layer,” IEEE Access, vol. 8, pp. 108 088–108 101,
2020.

[4] S.-C. Tseng, Z.-W. Liu, Y.-C. Chou, and C.-W. Huang, “Radio Resource
Scheduling for 5G NR via Deep Deterministic Policy Gradient,” in 2019
IEEE International Conference on Communications Workshops (ICC
Workshops), 2019, pp. 1–6.

[5] J. Li and X. Zhang, “Deep Reinforcement Learning-Based Joint Schedul-
ing of eMBB and URLLC in 5G Networks,” IEEE Wireless Communi-
cations Letters, vol. 9, no. 9, pp. 1543–1546, 2020.

[6] Z. Gu, C. She, W. Hardjawana, S. Lumb, D. McKechnie, T. Essery,
and B. Vucetic, “Knowledge-Assisted Deep Reinforcement Learning in
5G Scheduler Design: From Theoretical Framework to Implementation,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 7, pp.
2014–2028, 2021.

[7] F. AL-Tam, A. Mazayev, N. Correia, and J. Rodriguez, “Radio Resource
Scheduling with Deep Pointer Networks and Reinforcement Learning,”
in 2020 IEEE 25th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), 2020, pp.
1–6.

[8] I.-S. Coms, a, R. Trestian, G.-M. Muntean, and G. Ghinea, “5MART:
A 5G SMART Scheduling Framework for Optimizing QoS Through
Reinforcement Learning,” IEEE Transactions on Network and Service
Management, vol. 17, no. 2, pp. 1110–1124, 2020.

[9] D. Corcoran, P. Kreuger, and M. Boman, “A Sample Efficient Multi-
Agent Approach to Continuous Reinforcement Learning,” in 2022 18th
International Conference on Network and Service Management (CNSM),
2022, pp. 338–344.

[10] Nokia, “nokia/wireless-suite,” 2020, accessed September 14th, 2023.
[Online]. Available: https://github.com/nokia/wireless-suite

[11] B. Gahtan, R. Cohen, A. M. Bronstein, and G. Kedar, “Using Deep
Reinforcement Learning for mmWave Real-Time Scheduling,” 2023.

[12] H.-K. Lim, J.-B. Kim, J.-S. Heo, and Y.-H. Han, “Federated
Reinforcement Learning for Training Control Policies on Multiple
IoT Devices,” Sensors, vol. 20, no. 5, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/5/1359

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” 2017.

[14] S. Mollahasani, M. Erol-Kantarci, M. Hirab, H. Dehghan, and R. Wilson,
“Actor-Critic Learning Based QoS-Aware Scheduler for Reconfigurable
Wireless Networks,” IEEE Transactions on Network Science and Engi-
neering, vol. 9, no. 1, pp. 45–54, 2022.

[15] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure Of Fairness
And Discrimination For Resource Allocation In Shared Computer Sys-
tems,” 1998.

[16] P. Gawłowicz and A. Zubow, “Ns-3 Meets OpenAI Gym: The
Playground for Machine Learning in Networking Research,” in
Proceedings of the 22nd International ACM Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, ser. MSWIM
’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 113–120. [Online]. Available: https://doi.org/10.1145/3345768.
3355908

[17] B. G. Lee, D. Park, and H. Seo, Wireless Communications
Resource Management. Wiley, Nov. 2008. [Online]. Available:
http://dx.doi.org/10.1002/9780470823583


