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ABSTRACT

Intrinsic statistical properties of natural uncompressed images
can be used in image forensics for detecting traces of previous pro-
cessing operations. In this paper, we extend the recent theoretical
analysis of Benford-Fourier coefficients and propose a novel foren-
sic detector of JPEG compression traces in images stored in an un-
compressed format. The classification is based on a binary hypoth-
esis test for which we can derive theoretically the confidence in-
tervals, thus avoiding any training phase. Experiments on real im-
ages and comparisons with state-of-art techniques show that the pro-
posed detector outperforms existing ones and overcomes issues due
to dataset-dependency.

Index Terms— Binary hypothesis testing, Image Forensics,
JPEG Compression.

1. INTRODUCTION

Multimedia forensics techniques deal with the recovery of informa-
tion that can be used to authenticate and measure the trustworthiness
of digital multimedia contents. The inspiring principle is that inher-
ent traces are left in a digital data both when the content is created
and during successive processing.

In this framework, the traces left by JPEG compression, the most
popular coding scheme for images, have been widely studied and ex-
ploited in different forensic scenarios, allowing the identification of
previous compression in uncompressed images [1, 2, 3], of the num-
ber of compression steps applied to a given content (e.g., detecting a
double compression) [4, 5, 6], of inconsistencies of the traces within
the same image [7], and possibly of the coding parameters used [8].
In an adversarial perspective, procedures designed to hide these kind
of traces have also been proposed, which modify the DCT coeffi-
cients [9, 10, 11] and their First Significant Digits [12, 13, 14].

In this paper we focus on the problem of detecting JPEG com-
pression traces in images stored in uncompressed format. A first ap-
proach to this issue was presented in [1] with an analysis of blocking
artifacts left by the 8 x 8-block DCT transformation within the JPEG
compression, and then further improved in [8]. The distribution of
First Significant Digits (FSD) of DCT coefficients is exploited in [2],
since for uncompressed images it can be modeled very accurately by
Benford’s law, while the compression introduces a deviation from
this known distribution or a generalized version of it. Finally, in [3]
a theoretic study about the distribution of DCT coefficients in un-
compressed images is carried out, where the Benford-Fourier coeffi-

cients are defined in the first place and, in [15], exploited as features
to train an SVM, achieving very high accuracies.

Inspired by the results obtained in [3] and [15], in this paper
we extend the Benford-Fourier theory and design a binary decision
test to distinguish natural uncompressed images from images that
underwent a generic processing, in particular JPEG compression.
The statistics used are an estimate of the Benford-Fourier coeffi-
cients obtained from the analyzed image by using a sample mean,
thus avoiding the computation of any histogram (which can generate
ambiguities due to the choice of the bin width) and leading to a very
low computational complexity. Moreover, we have derived the pdf
of such estimate for the case of uncompressed images as a function
of the size of the image, which allows us to theoretically determine
a threshold once that an upper bound to the false alarm probabil-
ity is fixed. As a result, the proposed detector is size-adaptive and
does not require a training phase to be performed on an extensive
data collection, as usually happens in state-of-art statistically-based
techniques.

In the following, the existing Benford-Fourier theory and the
novel extensions are presented in Section 2, while in Section 3 we
report the results of the experiments we performed with different
datasets and detectors. Finally, in Section 4 we conclude the paper
discussing open problems and future research directions.

2. BENFORD-FOURIER COEFFICIENTS
FOR FORENSIC ANALYSIS

In this section, we present the Benford-Fourier theory, on which our
forensic analysis is based. We first review the results reported in [3],
which constitute the basis of our new study on the statistical estima-
tion of Benford-Fourier coefficients starting from a given image, that
is presented in Section 2.2. Finally, we design the binary hypothesis
test used to classify images as uncompressed or JPEG compressed.

2.1. Statistics of Benford-Fourier coefficients

In [3], the authors have studied the distribution of DCT coefficients
in the modular logarithmic domain. Precisely, they considered a
random variable X with a symmetric probability density function
fx (z) with respect to 0. The following theoretical analysis holds
both when X models all the 8 x 8-block DCT coefficients of a 2-D



image and when only the coefficients of given frequency are consid-
ered. In this paper, we exploit the second case, i.e., the r.v. we study
is related to a generic frequency (4, 5), although we will omit this
dependency for the sake of clarity.

Then, Z is the r.v. determined by the pdf

fﬂ@_{hu»—wﬂn,z>o

0, z <0.

(thus modeling with Z the behavior of | X| in RY) and the distribu-
tion of the following r.v.’s is studied:
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It has been shown that, for a generic continuous r.v. Z, the pdf of Z
can be expressed as follows:
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where a, = |an|e?®" is the Fourier transform of 5/ (z') evaluated
at 2mn, with n € N. The values a,, are called Benford-Fourier
coefficients (BF).

As it is has been widely investigated in the literature [16], in nat-
ural uncompressed images the distribution of X is accurately mod-
eled by a Generalized Gaussian (GG) pdf with standard deviation o
and shaping factor c:
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For such case, the expression of a,, n € N, and their magnitude
have been derived in [3]
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As seen in (2), the magnitude of the coefficients increases with ¢ and
does not depend on the variance of the GG; in particular, when n >
3 and ¢ < 2 (which is the case of natural uncompressed images),
these values are lower than 10~ 2. This suggests that the behavior
of the a,,n € N can be used to characterize uncompressed images
and detect images that underwent some processing. In [15], a first
approach in this direction has been proposed, which discriminates
uncompressed and JPEG compressed images.

2.2. Estimation of Benford-Fourier coefficients

In order to use BF coefficients for analyzing an image and determine
whether it is uncompressed or not, we need a numerical procedure
to estimate such coefficients given the subject image.

By definition, the BF coefficients are given by
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In other words, they are the expected value of the complex random
variable g,,(Z) = e 772" 1°810 Z whose values lie on the unit circle.

We can then obtain an estimation of such coefficients starting
from a set of M samples by computing the sample mean
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Qn = m:L...,M (3)
where Z,,, are the r.v.’s representing the DCT coefficients at the cho-
sen frequency in the m-th block, that we suppose independent and
identically distributed.

Although the sample mean is a minimum variance unbiased esti-
mator of the expected value (i.e., E{an} = ax), we should consider
the fact that the actual accuracy of a,, as estimator of a,, depends on
the size of the sample considered. For this reason, we are interested
in studying its distribution as a function of the number of samples
M.

To this end, we can observe that a,, is a sum of M independent
and identically distributed random variables g (Z,). Then, by ap-
plying the Central Limit Theorem to the real and imaginary parts of
an, we have that their distribution is asymptotically Gaussian with
expected values R(a, ) and S(ay ), respectively [17]. In other words,

an = an + Wo

where W) is a zero-mean complex normal random variable.

A necessary and sufficient condition for Wy to be circularly
symmetric (i.e. with real and imaginary parts independent and iden-
tically distributed [17]) is that E{W¢} = 0. Starting from the defi-
nition of G, it is easy to prove that

BWE} = B{(an — @)’} = o (02 —a2). @b

As we mentioned before, |a,| is very small for uncompressed im-
ages and the value of (4) will be very close to 0, therefore a, is
approximately a circular bivariate normal r.v. with non-zero mean.
It is well known that the distribution of R := |ay| is given by the
Rice distribution with parameters |a,| and o, where o is the standard
deviation of its real and imaginary parts [18]. Similarly as before, we
can now obtain o2 by exploiting the fact that for a Rice distribution
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As we observed, |a,| is extremely small when n > 3. This leads
to serious issues in the evaluation of the Rice pdf, due to numerical
overflow/underflow of the exponential term and the Bessel function,
respectively. Because of that, we can reasonably assume |a,| =~ 0
and consider the special case of Rice distribution with mean param-
eter 0, i.e., the Rayleigh distribution, and o = 1/v2M:

Fr(r) = 2Mre ™", (5)

This formula allows us to predict the distribution of BF coefficients
G, estimated from an uncompressed natural image by means of (3).
From the properties of the Rayleigh distribution, we have that
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It means that R is in any case an overestimate whose expected accu-
racy increases linearly with v/ M and its variance decreases linearly
with M.
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Fig. 1. Histograms of the BF coefficients of the frequency (4, 2) estimated from each dataset with n = 4 are reported in grayscale according
to their quality factors. Because of visual issues, the x-axis has been scaled by a factor of M (equal to the number of blocks in the images of
each dataset) and converted to dB. Squared sum differences between the theoretical model (the Rayleigh pdf in red) and the data obtained are

also reported.

2.3. Design of a binary hypothesis test

Since we know the pdf of the BF coefficients for the case of uncom-
pressed images, we can now design a binary hypothesis test on the
statistics R = |Gn| (for some n > 3), where

Hy: the image is uncompressed

H,: the image is single compressed

The upper and lower thresholds U and L (the test is two-tailed) can
be theoretically derived by fixing a type I error probability and using
the cdf of the Rayleigh distribution in (5), given by

Fr(r)y=1- e M

As a general approach, once a type I error probability upper bound
« is fixed, we can reject the null hypothesis when the value of r
obtained from the image is such that

r<L o r>U
where

FR(L):% and 1— Fr(U) =

| Q

3. EXPERIMENTAL RESULTS

In order to verify the validity of our theoretic predictions, we carried
out several experimental sessions on three datasets of uncompressed
color images with different sizes, each of them being previously used
in the literature for image forensics:

e LIU: a set of 1000 uncompressed images (resolution 256 x
256, 1024 blocks) selected from the database used in [19];

e UCID: a set of 1338 uncompressed images (resolution 384 x
512, 3072 blocks) from the UCID [20];

e NIKON D70: a set of 320 uncompressed images (resolu-
tion 2000 x 3008, 94000 blocks) selected from the Dresden
database [21].

For each dataset, we first computed the BF coefficients at ev-
ery DCT frequency on the luminance channel for the uncompressed
images, and then for the same images compressed at quality fac-
tors {90, 80, 70, 60, 50}. Matlab built-in functions have been used
for applying this processing. We report their histograms in Figure
1, where the uncompressed case is represented by black bars, and
quality factors 90, 80, 70, 60, 50, respectively, are represented by
grayscale tones fading to white. In red, we plot the Rayleigh dis-
tribution, computed as in (5). For each dataset, we also report the
squared sum of the differences between the predicted probabilities
and the empirical ones, both for the frequency considered and the
average value over all the 64 frequencies. As it can be seen, in each
case the actual distribution of the BF coefficients for uncompressed
images is accurately modeled by the Rayleigh pdf predicted from the
theory. In this figure, we considered n = 4 (so that |a,, | is very small
and the approximation |a,| & 0 holds) and the frequency (4, 2),
which are the values that we used for our experiments, but similar
results were obtained for different frequencies and values of n > 2.
On the other hand, the behavior of BF coefficients for compressed
images depends on the quality factor and the frequency considered.
We empirically chose the frequency (4,2) from preliminary tests
as the one that achieved the higher average precision over the three
datasets with an average false alarm rate lower than 0.01.

We compared our detector with type I error probability upper
bound equal to 0.01 (NEW BF'), with three methods proposed in the
literature for the same forensic problem. The first one is the ap-
proach proposed in [15] (indicated as BF SVM), which is also based
on BF theory but there the authors consider the DCT coefficients of
the whole image and estimate the BF coefficients by computing the
FFT of the empirical distribution of Z. Then, the first five coeffi-
cients are used as feature to train an SVM discriminating between
natural uncompressed images and images that underwent a JPEG
compression. The second one, FSD SVM, was proposed in [2] and
extracts the empirical frequencies of the 9 significant digits of DCT
coefficients as features for training an SVM. Finally, we considered
the compression detector presented in [1] (BLOCK), where inter- and
intra-block pixel differences are computed and combined in a final
statistic K, expressing the strength of blocking artifacts in the pixel
domain: images presenting a value of K higher than a certain thresh-
old are classified as compressed.
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Table 1. The table contains the results obtained by applying the four methods considered to the three different datasets. In each subtable,
we report the performance of the detector in terms of false alarm rate, detection rate, and accuracy percentage. In the first five columns, the
testing set is composed of uncompressed images and images compressed with a fixed quality factor in {50, 60, 70, 80,90} (the same as the
training set), while in the last column (labeled as R) we considered images compressed with random quality factors in {50, 51, ...,89,90}.

These previous methods require a dataset for a training phase:
training features need to be available for the SVMs and in the BLOCK
method it is necessary to determine a good threshold value for the
classification. Therefore, each dataset was randomly divided in two
equal parts, one for training, and another for testing. Images in the
former were compressed at quality factors {90, 80, 70, 60, 50}, fea-
tures were extracted from each version (as well as the original un-
compressed ones) and used for training the SVMs or determining
the optimal threshold. Finally, we created a first testing set by using
the same quality factors as in the training set and a second one with
random quality factors in {50, 51,...89,90}.

We report the results obtained by applying each method on the
testing set in Table 1. It can be observed that the two methods based
on an SVM behave quite differently when changing the dataset and
the quality factor, especially in terms of false alarm. On the other
hand, the performance of NEW BF and BLOCK are very good for
UCID and NIKON D70 datasets, while for the LIU dataset the
method BLOCK shows a generally low detection probability."

In general, determining the threshold according to the size of the
image helps our method in keeping a good detection rate, with a low
false alarm rate. Moreover, we should consider that for the other
three methods the training phase has been carried out separately
for each dataset and could lead to different results when applied to
an image with different size and source. For instance, by apply-
ing the method BLOCK (which achieves very good performance in
both cases) on UCID using the threshold trained from NIKON D70,
we obtain a very high false alarm rate. This is due to the fact that,
according to our experimental results, the values of K for uncom-
pressed images generally decrease as the image size increases, but
no theoretical model that makes it possible to generalize the classi-
fier is available for such statistics.

'The method BF SVM was originally applied to 8-bit grayscale images,
while here we work on the luminance channel in a non-integer domain. For
this reason, together with the random choice of the training and testing sets,
the results on the UCID dataset are slightly different with respect to those
reported in [15], where the SVM classifier achieved better performance.

4. CONCLUSIONS

We have proposed a method that detects JPEG compression opera-
tions in images stored in uncompressed formats, which is based on
the extraction of a single feature. The results of our experiments
on three different datasets and the comparison with state-of-the-art
methods are encouraging and show that the size-adaptive hypothe-
sis test helps in increasing the flexibility of the detector with respect
to the images considered, despite the low computational complexity
and the absence of a training phase.

However, some issues are still open and will be subject of future
research. The first one is that currently the choice of the frequency
used is based on preliminary tests, although it is constant over the
different datasets. Hence, the development of an effective strategy
to combine the estimation of BF coefficients obtained from multiple
and automatically selected frequencies is a primary goal. To this
end, it is worth pointing out that the frequency selection process
strictly depends on the effects of the processing operation consid-
ered, in this case the JPEG compression, since the model for natural
uncompressed images is accurate for any frequency. Indeed, deriv-
ing a theoretical model also for the alternative hypothesis would be
another step forward, since it would completely determine the test
and open the way for the estimation of the quantization table. Fi-
nally, we remark that the binary hypothesis test could be adapted to
the detection of other processing operations that modify the distribu-
tion of the DCT coefficients, since the theoretical model applies to
the null hypothesis. For instance, studying the effects of double or
multiple JPEG compression seems a natural extension of this work.
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