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Abstract

The problem of frequency estimation of a real-valued sinusoid in colored noise is addressed.

A new estimator using higher-order lags of the sample autocorrelation is proposed, and a statistical

analysis is provided. By choosing the number of lags to include in the estimation process, a tradeoff

between performance and complexity can be easily achieved.

I. INTRODUCTION

Detection of sinusoidal components and estimation of their frequencies in the presence of broadband

noise are common problems in signal processing with a broad range of areas of application; numerous

techniques have been developed for the white noise case [1]. The Maximum Likelihood (ML) method

is statistically efficient, achieving the Cramer-Rao Lower Bound (CRLB) asymptotically, but it is

computationally demanding [2]. Simpler, suboptimal frequency estimators can be obtained using

the Linear Prediction properties of sinusoidal signals, such as the Pisarenko Harmonic Decomposer

(PHD) [3], Reformed PHD [4] and Modified Covariance (MC) [5] methods; a number of statistical

analyses have shown their inefficiency [6], [7].

For the single sinusoid case, these simple estimators make use of just two coefficients of the sample

autocorrelation. Using multiple autocorrelation lags has been considered in [8], [9] for the complex-

valued (cisoid) case, as well as in [10] (the so-called P -estimator) for the real-valued case. Although

these approaches result in performance improvement, they require phase unwrapping to resolve the
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frequency ambiguities that then appear. The phase unwrapping stage adds extra complexity to the

procedure, which is clearly undesirable in applications requiring rapid frequency estimation.

We focus on the real-valued case, and present a novel estimator that exploits higher lags of the

sample autocorrelation. It enjoys low computational complexity since no phase unwrapping is required.

The new method compares favorably to its forerunners, and it is applicable to environments with

colored noise of finite memory (e.g. Moving Average (MA) noise models).

Section II states the problem and presents the new estimator. A statistical analysis is given in

Section III. Section IV shows some numerical examples, and conclusions are drawn in Section V.

II. NOVEL FREQUENCY ESTIMATOR

Consider the problem of estimating the unknown frequency ω0 ∈ [0, π] of a real-valued sine wave

sn immersed in colored noise un. The N available samples of the observed signal, yn, are given by

yn = sn + un (1)

= α sin(ω0n + ϕ) + un, 1 ≤ n ≤ N,

where α is the sinusoid amplitude and ϕ is a random phase uniformly distributed in [−π, π[. The

noise process {un} is zero-mean wide-sense stationary and Gaussian, and independent of {sn}. It

is modeled as an MA(M ) process, generated by passing a white Gaussian process with variance σ 2

through an order-M FIR filter. The noise autocorrelation is denoted E{unun−k} = σ2ρk; thus, ρk = 0

for k > M . The power spectral density of {un} is Su(ejω) = σ2
∑M

k=−M ρke
−jkω. It will also be

useful to define βl
.=

∑M
k=−M ρkρk−l. The Signal to Noise Ratio is defined as SNR

.= α2/(2σ2).

The autocorrelation sequence of the observations is

rk
.= E{ynyn−k} =

α

2
cos kω0 + σ2ρk. (2)

Thus, using trigonometric relations one can show that

rk−1 + rk+1 = 2rk cos ω0, for all k > M + 1. (3)

Hence, we observe that for any integers q > p > M + 1,
q∑

k=p

rk(rk−1 + rk+1) = 2 cos ω0

q∑
k=p

r2
k. (4)

Eq. (4) suggests a means to obtain an estimate â0
.= cos ω̂0 as

â0 =

∑q
k=p r̂k(r̂k−1 + r̂k+1)

2
∑q

k=p r̂2
k

, (5)

where r̂k is the unbiased autocorrelation estimate

r̂k
.=

1
N − k

N∑
n=k+1

ynyn−k. (6)
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III. PERFORMANCE ANALYSIS

Let r̂
.= [ r̂p−1 r̂p · · · r̂q+1 ]T . We can express the novel estimator as â0 = f(r̂), where f is

defined by (5). A first-order Taylor expansion of f(r̂) around r
.= [ rp−1 rp · · · rq+1 ]T yields

â0 ≈ a0 + vT (r̂ − r) , (7)

with v
.= ∇f(r)|r=r̂. Thus, E{(â0 − a0)

2} ≈ vT Cv, with C the covariance matrix of r̂. One has

v =
1

α2Δ(ω0)

[
cos pω0 − cos(p − 1)ω0 0 · · · 0 − cos(q + 1)ω0 cos qω0

]T
, (8)

with Δ(ω) .=
∑q

k=p cos2 kω. It is shown in the Appendix that

C ≈ 1
N

[
σ4B + 2α2Su(ejω0)wwT

]
, (9)

with B a Toeplitz matrix with elements [B]i,j = βi−j , and w a vector with elements [w]i = cos(p+i−
2)ω0. It turns out that vT w = 0, and thus, using (8)-(9) and E{(ω̂0−ω0)2} ≈ E{(â0−a0)2}/ sin2 ω0,

one obtains

E{(ω̂0 − ω0)2} ≈ Γ(ω0)
4NSNR2Δ2(ω0) sin2 ω0

, (10)

where Γ(ω) =
∑

i∈I βiΓi(ω), with I = {0, 1, q − p, q − p + 1, q − p + 2} and

Γ0(ω) .= cos2(p − 1)ω + cos2 pω + cos2 qω + cos2(q + 1)ω (11)

Γ1(ω) .= −2[cos(p − 1)ω cos pω + cos qω cos(q + 1)ω] (12)

Γq−p(ω) .= 2cos(p − 1)ω cos(q + 1)ω (13)

Γq−p+1(ω) .= −2[cos pω cos(q + 1)ω + cos(p − 1)ω cos qω] (14)

Γq−p+2(ω) .= 2cos pω cos qω. (15)

Note that if q, p are chosen such that q − p > 2M , then βq−p = βq−p+1 = βq−p+2 = 0. For the case

of white Gaussian noise, βl = δl and thus the Mean Square Error (MSE) of the estimator is

E{(ω̂0 − ω0)2} ≈ cos2(p − 1)ω0 + cos2 pω0 + cos2 qω0 + cos2(q + 1)ω0

4NSNR2
(∑q

k=p cos2 kω0

)2
sin2 ω0

. (16)

The influence of the design parameters p, q in the MSE is via the factor Γ(ω0)/Δ2(ω0). Although this

term is highly oscillatory, the amplitude of the oscillations decreases as q increases. It is instructive to

consider (16) for ω0 = π
2 , for which Γ(ω0) = 2 and Δ(ω0) ≈ (q−p+1)/2; thus, the MSE behaves as

1/(q−p+1)2. Roughly speaking, by doubling the number of lags included in the estimation process,

the MSE is decreased by 6 dB. Of course, this reduction of the MSE cannot be achieved indefinitely

by increasing q, since the finite sample size limits the number of autocorrelation estimates available;

at the same time, the approximations used when deriving (10) become less accurate with larger q.
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Fig. 1. MSE vs. ω0. White noise case, SNR = 10 dB, N = 100, p = 2.

IV. SIMULATION RESULTS

Fig. 1 shows the MSE of several estimators in a white noise setting as a function of ω0, for

N = 100 and SNR = 10 dB. The RPHD [4] and MC [5] schemes use two autocorrelation coefficients

only, performing worse than methods exploiting higher-order lags. Among these, the P -estimator [10]

suffers from the so-called ’edge frequency’ problem: performance degrades for ω0 close to kπ/P ,

with 0 ≤ k ≤ P − 1 (P = 20 in this example). For the new estimator (5), p = 2 was taken, and two

different values of q (7 and 20) were considered. As expected, performance improves with increasing q,

since more autocorrelation lags are then included in the estimation process. Good agreement with the

approximate MSE (16) is observed. With q = 20, the novel estimator is very close to the CRLB [11]

for a wide range of frequencies.

Next we consider a colored noise case in which the noise coloring filter has transfer function

B(z) = 1 + 0.1z−1 + 0.7z−2 + 0.05z−3 + 0.3z−4. Since M = 4, now p = 6 > M + 1 is adopted

for the novel estimator. The RPHD and MC estimates are biased in the presence of noise coloring,

resulting in the poor MSE behavior observed in Fig. 2. The novel estimator still offers a means to

trade off performance and complexity by increasing q. Fig. 3 shows the MSE of the estimators as

a function of the SNR, fixing ω0 = 0.4π. Using (p, q) = (6, 30), the novel estimate asymptotically

achieves the CRLB.
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Fig. 2. MSE vs. ω0. Colored noise case, SNR = 10 dB, N = 100, p = 6.
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Fig. 3. MSE vs. SNR. Colored noise case, ω = 0.4π, N = 100, q = 30, p = 6.

V. CONCLUSION

A frequency estimator for real-valued sinusoids in noise exploiting higher-order lags of the sample

autocorrelation has been presented. For MA noise, if an upper bound is available for the order of the

noise coloring filter, the ’corrupted’ low-order lags can be left out, and thus bias is avoided. Knowledge

of the MA noise model parameters is not needed. The proposed method compares favorably to previous

DRAFT



6

approaches and allows a tradeoff between performance and complexity by choosing the number of

lags to be included in the estimation process.

APPENDIX

Let k, m > M . One has E{(r̂k − rk)(r̂m − rm)} = E{r̂k r̂m} − rmrk, and

E{r̂k r̂m} =
1

N2

N∑
i=k+1

N∑
j=m+1

E{yiyjyi−kyj−m}

=
α4

4
cos kω0 cos mω0 + T0 + T1, (17)

where T0 and T1 are defined as

T0
.=

1
N2

N∑
i=k+1

N∑
j=m+1

[
E{si−ksj−m}E{uiuj} + E{sisj}E{ui−kuj−m}

+ E{sisj−m}E{ui−kuj} + E{si−ksj}E{uiuj−m}

+ E{sisi−k}E{ujuj−m}︸ ︷︷ ︸
=0 for m>M

+E{sjsj−m}E{uiui−k}︸ ︷︷ ︸
=0 for k>M

]
, (18)

T1
.=

1
N2

N∑
i=k+1

N∑
j=m+1

E{uiujui−kuj−m}. (19)

Assume w.l.o.g. that k ≥ m, and define a trapezoidal window w l as

wl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N − k − |l|, −N + k + 1 ≤ l ≤ 0,

N − k, 0 < l ≤ k − m,

N − m − |l|, k − m < l ≤ N − m − 1.

(20)

Then, for large N , the following approximation holds:

1
N2

N∑
i=k+1

N∑
j=m+1

E{si−ksj−m}E{uiuj} =
1

N2

N−m−1∑
l=k+1−N

wlE{sn−ksn+l−m}E{unun+l}

≈ 1
N

∞∑
l=−∞

E{sn−ksn+l−m}E{unun+l}

=
1
N

∞∑
l=−∞

α2

2
cos(l − m + k)ω0 · σ2ρl

=
1
N

α2

2
cos(k − m)ω0Su(ejω0).

The remaining terms in (18) are obtained analogously, yielding

T0 ≈ 2α2

N
Su(ejω0) cos kω0 cos mω0. (21)

Now, since {un} is Gaussian,

E{uiujui−kuj−m} = E{uiuj}E{ui−kuj−m} + E{uiuj−m}E{ui−kuj} + E{uiui−k}︸ ︷︷ ︸
=0 for k>M

E{ujuj−m}︸ ︷︷ ︸
=0 for m>M

,

(22)
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and therefore

T1 =
1

N2

N∑
i=k+1

N∑
j=m+1

E{uiuj}E{ui−kuj−m} + E{uiuj−m}E{ui−kuj}

=
σ4

N2

N−m−1∑
l=k+1−N

wl(ρlρl−k+m + ρl+mρl−k)

≈ σ4

N

M∑
l=−M

ρl(ρl−k+m + ρl−k−m) =
σ4

N

M∑
l=−M

ρlρl−k+m, (23)

where the last step follows from the fact that l − k − m < −M .
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