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ABSTRACT
Face recognition is a prominent application of image processing.
It is also a very sensitive application, and privacy concerns have
been lately raised and tackled in several recent papers dealing with
privacy-preserving face recognition systems. Nevertheless, the pre-
sented systems either use the knowledge of some information de-
rived from the database templates in order to perform the recogni-
tion or require several interaction rounds between client and server.
In this paper, we propose a private system that can cope with a sim-
ple verification algorithm executed in the server without interaction
(using a quasi-fully homomorphic encryption and an efficient face
features representation with Lloyd-Max quantized Gabor jets), in
which both the templates and the queried face are encrypted; we
show its performance in terms of time complexity and size of trans-
ferred encryptions, as well as in verification accuracy with respect
to the non-private system. This opens the door to completely private
and noninteractive outsourcing of face recognition.

Index Terms— Lattice cryptography, homomorphic processing,
face verification, privacy

1. INTRODUCTION

Face recognition is a prominent image processing application with
privacy constraints, due to the sensitiveness of the involved biomet-
ric signals. In a common privacy-aware face recognition scenario,
a user presents his/her face for matching against a database of en-
rolled clients; the latter must not be disclosed to the new user, as
this would harm the security of the system and the privacy of the en-
rolled users, while the face presented by the query user must not be
disclosed to the recognition system, for preserving the user’s privacy.
Recent privacy-preserving efficient solutions for this scenario com-
bine homomorphic encryption and garbled circuits [1, 2], focusing
on private face identification using the Eigenfaces algorithm, based
on applying a PCA projection matrix to the presented face.

However, this traditional scenario does not protect the privacy of
the enrolled users; it discloses the stored templates and the projec-
tion matrix to the recognition system. Currently, outsourced scenar-
ios, where Clouds or other untrusted environments are used not only
for storing the databases but for performing certain operations, are
becoming increasingly ubiquitous. If the matching database is stored
in an untrusted third party together with the detection logic, enrolled
users’ privacy must also be protected, and that party must have ac-
cess neither to the database contents nor to the fresh faces presented
against the system for recognition. Additionally, it is desirable that
the system can run autonomously without interaction rounds with the
client, requiring the lowest computational effort from the client-side,
that usually runs on an embedded or mobile device.

In this work we tackle this privacy-aware scenario, where we
aim at face verification in an outsourced system that works with a
fully encrypted template database and query faces (total privacy) and
provides a verification result without interaction with the client. For
that purpose, we provide a quasi-fully homomorphic extension of
Gentry’s fully homomorphic cryptosystem [3], and show its perfor-
mance in the envisaged biometric scenario, opening up a wide new
set of applications, and providing a first stone for the fully private
noninteractive outsourced processing in untrusted environments.

As for the used notation, matrices and (row) vectors are re-
spectively represented as uppercase and lowercase boldface let-
ters, while random variables are represented as uppercase let-
ters; [a]d represents the reduction of a mod d; vector notation
a = [a0, . . . , an−1] and polynomial notation a(x) =

∑n−1
i=0 ai · xi

will be used indistinctly when appropriate.
The rest of the paper is organized as follows: Section 2 re-

views Gentry’s cryptosystem; section 3 presents the proposed ex-
tension with a lower bound on the number of achievable sequential
homomorphic multiplications; section 4 presents the application to a
fully-private noninteractive face verification scenario, and evaluates
its performance in widely known test databases. Finally, section 5
draws some conclusions.

2. GENTRY’S FULLY HOMOMORPHIC CRYPTOSYSTEM

We take one of the latest versions of Gentry’s bootstrappable fully
homomorphic cryptosystem, presented in [3]. The cryptosystem is
GGH-type based on ideal lattices. The rationale behind GGH cryp-
tosystems lies in choosing two bases for a given lattice L, Bsk and
Bpk, respectively the secret key (a good basis with quasi-orthogonal
vectors) and the public key (a bad basis, normally chosen as the Her-
mite Normal Form, HNF, of the lattice) of the cryptosystem. The
encryption c of a message m is built adding an error vector e s.t.
||e||1 < λ1(L), that encodes m, to a point in the lattice. For de-
crypting, e is recovered using the basis Bsk as e′ = c mod Bsk.

The somewhat homomorphic scheme presented by Gentry in [3],
following the same approach as Smart and Vercauteren [4], uses
a principal-ideal lattice J , generated by a chosen polynomial v(x)
with t-bit signed random integer coefficients (v in its vector nota-
tion), in the ring of polynomials modulo fn(x) � xn + 1, with a

specific structure for its HNF B = HNF (J) =
(

d 0

r In−1

)
,

where d can be defined as d = det(J) or, equivalently, as the re-
sultant of the polynomials v(x) and fn(x), and r is a root of fn(x)
mod d, that forms the vector r = [−r,−[r2]d, . . . ,−[rn−1]d]

t. B
is the public-key encryption matrix, completely determined by the
integers d, r, while the private key is given by v(x) and its scaled (
mod fn(x))-inverse w(x) (v(x)× w(x) = d mod fn(s)).
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As defined, this cryptosystem is quasi-homomorphic under ad-
dition and multiplication, that are directly mapped from the crypto-
text ring (errors w.r.t. lattice points) to the clear-text ring. There is,
however, a restriction to this homomorphism, as both operations are
only correctly mapped when the error lies within the same Voronoi
region of the lattice L after applying the operation.

3. EXTENDING GENTRY’S CRYPTOSYSTEM

Gentry’s cryptosystem can only cope with binary numbers, allowing
for homomorphic and and xor gates; hence, simple arithmetic cir-
cuits with b-bit numbers need a high amount of binary homomorphic
operations that increase the noise within the Voronoi region of the
lattice, whose volume bounds the number of operations that do not
lead to a decoding error. Gentry and Halevi [3] empirically calculate
the maximum depth of an executable polynomial, for bootstrapping
the squashed decryption circuit and achieving a full homomorphism.

In this section we extend the plaintext-size, allowing for homo-
morphic additions and multiplications in Z2k (powers of two are
chosen for convenience); we also give a theoretical bound on the
maximum number of executable multiplications, that also supports
Gentry’s empirical study for Z2. The extension seeks to enhance
the efficiency of arithmetic non-interactive operations and decrease
the cipher expansion rate and to trade the full homomorphic prop-
erty by the possibility of dealing with a limited but high number of
sequential arithmetic processing without interaction.

3.1. Encryption

In Gentry’s original cryptosystem, the encryption operation of a bit
b ∈ Z2 uses a random noise vector u ∈ {0,±1}n, with each entry
chosen as 0 with probability q and ±1 with probability (1 − q)/2
each; we extend the encryption for coping with m ∈ Z2k :

a = 2ku+m · e1; c = a mod B = [a(r)]d · e1.

The vector c, as in the original construction, has only one non-zero
component, representative of the encryption: c = [a(r)]d = [m +
2k

∑n−1
i=0 uir

i]d. The complexity of encrypting a k-bit number is
the same as for encrypting a bit in the original system. Furthermore,
the security in terms of Birthday-type attacks is not altered either, as
the noise vector has the same bits of entropy; hence, given a security

level λ, q may still be chosen as 2(1−q)n ·

(
n
qn

)
> 22λ.

3.2. Decryption

For the decryption, the original scheme uses an optimized proce-
dure that only needs one of the odd coefficients of w mod d, de-
noted wi. Hence, the decryption for a k-bit message m becomes
m = [c · wi]dw

−1
i mod 2k. The only difference w.r.t. the original

decryption is the product by w−1
i mod 2k; being wi odd, it always

exists: the choice of powers of two for the extended plaintext allows
for keeping the same key generation process, while the added de-
cryption complexity is negligible compared to mod d operations.

3.3. Homomorphically Achievable Polynomial Degree

Incorrect decryption may only happen when the error vector added to
a lattice point lies outside the Voronoi region of the used lattice. This
condition boils down to ||a ·W ||∞ < d/2, where W is the rotation
basis that generates (w(x)), having in each row the coefficients of
w(x) · xi mod fn(x). We can bound

||aW ||∞ ≤ ||a||∞||W ||∞ = max
i

(|ai|) ·

n−1∑
i=0

|wi| ≤

n−1∑
i=0

|wi|

n−1∑
i=0

|ai|,

n−1∑
i=0

|wi|

n−1∑
i=0

|ai| < d/2 ⇒ ||aW ||∞ < d/2.

The number of non-zero elements (Nzj) of a chosen uj follows
a Binomial distribution Nzj ∼ Bi(n, 1− q). In a fresh encryption,
each of these elements has modulus 2k, while the message has a
modulus |m| < 2k. Hence,

∑n−1
i=0 (|ai|) < 2k(1 +Nzj).

On the other hand, after a multiplication between two ciphertexts
c1 and c2 (in the polynomial quotient ring Zd[x]/(fn(x))), the re-
sulting point must also be within the Voronoi region. The product of
two polynomials modulo fn(x) is equivalent to a cyclic convolution
of their coefficient vectors (with a sign change for the overlapped
subvector). Furthermore, as fresh encryptions have the same abso-
lute value (2k) for all the non-zero coefficients of u, the L1 norm of
the resulting coefficient vector of the product of a given ciphertext c1
and a fresh encyrption c2 is upper-bounded by ||c1||1 ·2k(1+Nz2).
In general, we have that, after nm successive products of a cipher by
fresh encryptions, we can bound the probability of decryption error

P [dec error] = P [||aW ||∞ ≥ d/2] ≤

P

⎡
⎢⎢⎢⎢⎣

nm∑
i=0

log(1 +Nzi)︸ ︷︷ ︸
Nnm

≥ log

(
d

2k(nm+1)+1
∑n−1

l=0 |wl|

)⎤
⎥⎥⎥⎥⎦ ,

where Nnm can be accurately approximated, using the CLT,
by a Gaussian variable with mean (nm + 1) · μ = (nm + 1) ·

·
∑n

i=0 log2(1 + i)

(
n
i

)
(1 − q)iqn−i and variance (nm + 1) · σ2 =

(nm + 1) ·
∑n

i=0(log2(1 + i) − μ)2
(

n
i

)
(1 − q)iqn−i.

We may bound the maximum number of bits to which we can
extend the ciphertext for allowing a given number nm of successive
multiplications with a given probability of error pe:

kmax =

⌊
log2(d/||w||1)− 1

nm + 1
− μ− Q−1(pe)σ√

nm + 1

⌋
. (1)

As expected, the maximum number of bits decreases with
1/(nm + 1), and it is heavily influenced by the quotient d/||w||1,
that intuitively indicates the effective radius of the Voronoi region,
supporting noise addition. On the other hand, the choice of t (bit-
size of each vi) determines the minimum value of this quotient: as
the polynomial product of v(x)×w(x) = d mod fn(x), in vector
notation this means that, using the Hölder inequality:

d = v · [w0,−wn−1, . . . ,−w1]
t
≤ ||v||∞||w||1 < 2

t
||w||1 ⇒

d

||w||1
< 2

t
.

Hence, for a good lattice, the maximum decodable noise norm
(decryption radius) will be close to t bits, and we can provide an
estimation of the maximum plaintext bit-size for correct decryption
after a given number of multiplications for a generic good lattice, just
substituting log2(d/||w||1) by t in Eq. (1). Reciprocally, the inverse
of this expression yields the maximum number of affordable mul-
tiplications without decryption error. It must be noted that ns con-
secutive homomorphic additions can increase at most in log2(ns)
bits the size of the ∞-norm of the noise vector (Eq. (1) can take
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Table 1: Lower bound on the maximum number of products and
Gentry’s empirically obtained maximum degree polynomial as a
function of t, with n = 128

t 64 128 256 384

Lower bound 10 22 46 69
Empirical [3] 13 33 76 128

this into account by subtracting log2(ns) from t). Hence, when
determining the maximum degree of a polynomial run on fresh ci-
phered variables, the maximum number of multiplications is the de-
termining factor. Gentry and Halevi provide an approximation of
the maximum degree deg of an elementary symmetric polynomial
evaluated on m encrypted binary variables, bounding the decryption
radius by the approximated Euclidean norm of the polynomial out-

put: 2t ≥ cdeg

√(
m
deg

)
; the results deviate from this expression

for large m due to the overestimation of the effect of additions, as
the combinatorial number of summed monomials grows above the
dimensionality of the lattice, and cannot be considered independent
anymore. Table 1 shows the validity of our bound compared to the
experimental results obtained by Gentry.

Fig. 1 represents the number of sequentially performed prod-
ucts with new fresh ciphers before a decryption error occurs (for
n = 512, t = 380 and q = 1 − 20/512, picking the minimum of
1000 trials), compared to the given lower bound for pe = 10−4. Our
worst-case bound is fairly conservative for small plaintexts that al-
low for a high amount of products, but it becomes tight for medium-
to-high k, even when the Gaussian approximation in those cases pro-
vides an overestimation of the decryption error. We have also ob-
tained very similar results with bigger lattices (as Gentry and Halevi
did for the binary case), due to the quotient log2(d/||w||1) being
virtually constant for all the found lattices, and the binomial distri-
bution barely changing with high n when fixing the rate (1− q) · n.
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Fig. 1: Minimum number of multiplications (Eq. (1)) without de-
coding error after 1000 trials as a function of k

4. FULLY PRIVATE NONINTERACTIVE FACE
VERIFICATION

In order to test the benefits and versatility of the extended cryp-
tosystem in a typical scenario, we have tested it for outsourced face
verification with privacy constraints. In this scenario, a query user
presents his face features and a tentative ID against a database;
the system must determine if those features actually correspond to
the previously enrolled ID. The target of the outsourced privacy-
preserving system is to conceal both the presented face features and
the database templates to the party that runs the verification process,
while the database templates are also not disclosed to the query user.

We have chosen the face representation in [5], that employs
quantized Gabor features using a Lloyd-Max quantization based on

Table 2: Average correct recognition rate for LFW’s view 2 for Ga-
bor coefficients quantized with N levels and for Eigenfaces

Gabor unquant. N = 8 N = 4 N = 2 Eigenfaces
65.95% 62.90% 62.60% 60.65% 60.02%

an accurate model of Gabor coefficients’ moduli. Other privacy-
preserving systems presented in the literature, like [1], are based
on Eigenfaces. In the clear, Gabor filters provide a slightly more
complex solution with a better performance (about 8% increase) in
known databases like LFW [6], due to the biological models that
support the use of Gabor filters. Unlike in [5], we work with indices
of quantized coefficients instead of the actual quantized values; this
allows for a hugely reduced plaintext size without much degradation
in system performance (cf. Section 4.1), and benefits from an inher-
ent normalization of the Jets provided by the quantization process
itself. The verification algorithm is based on either average correla-
tion (cosine distance) or average Euclidean distance.

In the enrollment phase, the presented feature vectors are en-
crypted and stored in a central database for later use as templates.
The verification threshold η is a system parameter also kept en-
crypted. In the verification phase, a user presents an ID to be
matched together with the encrypted quantized Gabor coefficients
g from his face. The database holder homomorphically calculates
the encryption of the soft score

∑Ntemplates

i=0 dist(templatei, g) −
Ntemplatesη, that is provided as the output of the verification pro-
cess. If a binary hard score is needed, then known comparison
protocols could be used afterwards, involving interaction with the
client, but we are aiming at a fully noninteractive solution, testing
the raw performance of the extended cryptosystem in this scenario.

4.1. Performance and evaluation results

We have tested the application of the developed encrypted verifica-
tion system using the Euclidean distance metric in several commonly
used databases; due to space constraints, we show only the results on
the challenging LFW (Labelled Faces in the Wild). Regarding the
recognition accuracy, Fig. 2 and Table 2 respectively show the ROC
curves and correct recognition rate for the biometric system using
2,4 or 8-level Lloyd-Max quantization of Gabor coefficients’ mod-
uli, compared to the original unquantized clear-text system and an
Eigenfaces detector. Correct recognition rate for the quantized Ga-
bor system (8-levels) is around 63%, approximately the same perfor-
mance as baseline V1-like recognition systems [7]; the degradation
with respect to the original unquantized system (around 3%) stems
from using just quantization indices instead of the truly quantized
values; nevertheless, original performance can be recovered even for
4 quantization levels by applying precalculated weights to the Gabor
coefficients [5]. Conversely, Eigenfaces’ performance goes down to
near 60%, on the order of baseline pixel-space recognition systems.
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Table 3: Efficiency figures for the privacy-preserving face-
verification algorithm: client times, server homomorphic processing
(HP) time and needed bandwidth

Execution times Client Server Bandwidth
Cipher Decrypt (HP)

Proposed 0.4s 0.0026s 12.3s 127MB
Gentry (binary) 1.3s 0.052s 883.4s 380MB

PaillierCT 15.4s 0.0043s 57.99s 5.3MB
PaillierE 22s 43.2s 479.0s 13.3MB

We take the 8-level quantization for its good compromise be-
tween clear-text cardinality and recognition performance. Lattice
dimensions have been fixed to n = 512, with t = 380 and q =
1− 20/n, for a security parameter of λ ≈ 70. We work with 5200-
dimensional Gabor vectors for each face (13 × 10 localizations, 8
orientations and 5 scales) with 3-bit coefficients, so calculating the
Euclidean distance between two vectors needs one multiplication per
pair of values, 5199 additions and one subtraction. Hence, starting
from 8-level coefficients, the resulting score is correctly represented
using 	log2(5200 · 2 · 82)
 = 19 bits), so we use k = 19 bits for the
extended cryptosystem. Taking into account the log2(5200) = 12.3
bits of decrease for the effective decryption radius, Eq (1) yields 13
supported consecutive multiplications, so the extended cryptosystem
can perfectly cope with the whole distance calculations, without in-
curring in decryption errors (but with negligible probability).

For implementation we have used the GMP and NTL libraries
for C++, and tested the time efficiency without any kind of paral-
lelization in one core of an Intel i5 at 3.30GHz with 8GB of RAM.
Table 3 shows the efficiency figures for the proposed algorithm com-
pared to the expected running times of a traditional implementation
based on an additive homomorphism (Paillier-based [8], using a
2048-bit modulus), with either clear-text templates (PaillierCT, par-
tial privacy) and with encrypted templates (PaillierE, total privacy
using interactive multiplication protocols); in both Paillier-based
systems the client provides the encryptions of both his face co-
efficients and their squared value, in the most favorable case for
Paillier’s homomorphism; we have also included, for reference, the
estimated execution time of Gentry’s original binary cryptosystem
using binary circuits for addition and multiplication; this system
cannot provide valid outputs without using homomorphic decipher-
ing circuits, as the degree of the distance circuit exceeds the noise
capacity of the used lattice; each of these circuits (for bootstrapping
the cipher of a bit), that needs to be applied after each binary mul-
tiplication gate, runs in about 8 seconds in our test machine; with
about 3.2 · 105 products, the computational load using the binary
version of Gentry would become infeasible; we do not include them
into the time evaluation, but they are an inherent limitation of the
original binary cryptosystem.

Thanks to the extension the system becomes feasible both in
terms of bandwidth and server processing time overcoming the
pointed out limitation; the use of homomorphic operations in Z2k

instead of Z2 reduces the server computation time in almost two or-
ders of magnitude (furthermore, binary encryptions do not provide
a correct output without the needed deciphering circuits), while the
bandwidth is divided by a factor of three.

In terms of computational efficiency, the extended cryptosystem
yields a clear advantage w.r.t. any of the others, even for Paillier with
clear-text templates. The load for the client is decreased in two or-
ders of magnitude w.r.t. Paillier, while the server’s load decreases in
a factor of almost 50. This is due to the lighter homomorphic opera-
tions for Gentry’s even when they work with larger ciphertexts. Con-
versely, the transferred encryptions for the proposed system are less
than one order of magnitude higher than for encrypted Paillier tem-

plates, due to the larger expansion factor that lattice cryptosystems
like Gentry’s present; this is the main fact that holds back the per-
formance of the homomorphism; the presented extension advances
in this path, reducing the expansion factor and greatly increasing the
efficiency of the operations performed noninteractively at the server.
Furthermore, when the scenario of interest is an outsourced system
that processes private data, the initial bandwidth is not critical: the
more operations can be performed unattendedly, the more versatile
and powerful the system becomes.

5. CONCLUSIONS

We have presented an extension of Gentry’s fully-homomorphic
cryptosystem, in which the homomorphic decryption capability is
traded for high gains in efficiency when executing low-to-medium
degree arithmetic operations. We provide a bound for the number
of allowed sequential multiplications, and show the performance of
the cryptosystem in a practical scenario dealing with Lloyd-Max
quantized moduli of Gabor coefficients for face verification. Con-
trary to traditional systems based on additive homomorphisms, the
presented one allows for a completely private verification, with both
encrypted templates and queried faces, opening up the possibility
of outsourced noninteractive face recognition within an untrusted
environment like a Cloud, being the only needed interaction in that
case the initial transmission of the encrypted inputs.

Several future research lines can be highlighted: the specifica-
tion of the homomorphic decryption circuit for the non-binary case;
achieving other ways of decreasing the cipher expansion of the cryp-
tosystem while keeping the good homomorphic properties, either in-
creasing the plaintext size or decreasing the public key size for big-
ger lattices; finally, providing a noninteractive solution for compari-
son operations and other nonlinear operations that cannot be directly
mapped by the nonbinary homomorphism is also challenging.
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