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ABSTRACT
We consider the problem of detecting a known signal with
constant magnitude immersed in noise of unknown variance,
when the propagation channel is frequency-flat and randomly
time-varying within the observation window. A Basis Expan-
sion Model with random coefficients is used for the channel,
and a Generalized Likelihood Ratio approach is adopted in
order to cope with deterministic nuisance parameters. The
resulting scheme can be seen as a generalization of the well-
known Matched Filter detector, to which it reduces for time-
invariant channels. Closed-form analytical expressions are
provided for the distribution of the test statistic under both
hypotheses, which allow to assess the detection performance.

Index Terms— Flat fading channels, detection, General-
ized Likelihood Ratio, Matched Filter.

1. INTRODUCTION

Signal activity detection in unknown channels plays an im-
portant role in many signal processing applications, such as
sonar [1], radar [2] and spectrum sensing [3] among others.
Most detectors from the literature assume that the chan-
nel changes sufficiently slowly to allow for a block-fading
model. However, applications exist in which this assump-
tion becomes unrealistic, so that channel variations within
the observation window should be taken into account. In
narrowband wireless communication systems, for example,
the coherence time of the channel may be comparable to the
symbol period. In spectrum sensing applications, operation
in very low Signal-to-Noise Ratio (SNR) conditions [3] re-
quires long observation intervals which may invalidate the
time-invariant assumption. The large Doppler spreads found
in underwater communication systems will also give rise to
fast channel variations [1].

We address the problem of deciding on the presence of
a known constant magnitude waveform in noise of unknown
variance, when the propagation channel is frequency-flat and
randomly time-varying. To this end, the low-pass nature of
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the Doppler spectrum of typical channels found in practice
will be exploited by resorting to a Basis Expansion Model
(BEM) for the channel time variations [4, 5]. Whereas the
majority of previous work on fast fading channels has focused
on modeling, estimation, prediction and equalization as well
as coding strategies and signal design (see [6] and the refer-
ences therein), to our knowledge the issue of signal activity
detection has not been approached yet in this context.

We adopt a Generalized Likelihood Ratio (GLR) ap-
proach [7] in order to cope with nuisance parameters in the
model (signal and noise powers). The proposed detector is
thus a generalization to the time-varying channel case of the
Matched Filter (MF) detector [3]. The distribution of the test
statistic under both hypotheses is obtained analytically.

After stating the problem in Sec. 2, the GLR test is devel-
oped in Sec. 3. Performance is analyzed in Sec. 4, with results
given in Sec. 5. Sec. 6 presents the conclusions.

2. SYSTEM MODEL

A known length-N signal x ∈ CN is to be detected after
propagating through a frequency-flat, time-varying channel
h ∈ CN , and in the presence of additive noise. Thus, when
the signal is present, the observation y ∈ CN is given by

y = αXh+ σw, (1)

where α and σ are unknown constants, X .
= diag {x}, and

the noise vector w is zero-mean circularly symmetric com-
plex Gaussian with E

{
wwH

}
= IN . The signal x is as-

sumed to have unit constant magnitude, so that XHX = IN .
We model the channel time variations using the BEM

approach with random coefficients: it is assumed that h =√
N/KFc, where F ∈ CN×K has orthonormal columns

(FHF = IK) with K ≤ N , and c is zero-mean circularly
symmetric complex Gaussian with E

{
ccH

}
= IK . (Of par-

ticular relevance is the case in which the columns of F are
given by the first K vectors in the Fourier basis [4, 8], so that
K/N is proportional to the maximum Doppler shift). Thus,
the detection problem can be stated as

H0 : y = σw, H1 : y = α

√
N

K
XFc+ σw. (2)

Note that the factor
√
N/K in the signal term allows to write

the overall power under H1 as E
{
||y||2

}
= N(α2 + σ2).



It will be convenient to introduce the "fractional bandwidth"
parameter

b
.
=
K

N
≤ 1. (3)

3. DERIVATION OF THE GLR TEST

The GLR test [7] is a generalization of the Neyman-Pearson
test where nuisance parameters are replaced by their maxi-
mum likelihood (ML) estimates under the corresponding hy-
pothesis. For the problem at hand, the GLR test becomes

L(y)
.
=

max
α2≥0,σ2≥0

p(y;α2, σ2|H1)

max
σ2≥0

p(y;σ2|H0)

H1

≷
H0

γ. (4)

UnderH0, the probability density function (pdf) of y is

p(y;σ2|H0) =
1

(πσ2)
N

exp

{
− 1

σ2
||y||2

}
, (5)

and the ML estimate of σ2 under H0 is readily seen to be
σ̂2
0 = 1

N ||y||
2.

On the other hand, underH1, the pdf of y is given by

p(y;α2, σ2|H1) =
1

πN detC
exp

{
−yHC−1y

}
, (6)

where the covariance matrix1 is given by

C = α2N

K
XFFHXH + σ2IN . (7)

Note that maximizing (6) w.r.t. α2, σ2 amounts to minimizing

yHC−1y + log detC, (8)

and the natural approach is to diagonalize C. Let G ∈
CN×(N−K) have orthonormal columns and FHG = 0,
so that W

.
= [ F G ] is unitary and F = W [ IK 0 ]

T .
Hence XW is also unitary, and it is clear from (7) that
C = XW D WHXH constitutes an eigenvalue decompo-
sition of C, where

D
.
=

[
(NKα

2 + σ2)IK 0
0 σ2IN−K

]
. (9)

Therefore, with z
.
= WHXHy = [ z0 z1 · · · zN−1 ]T , min-

imizing (8) amounts to minimizing zHD−1z + log detD.
Let us introduce the quantities

p̂
.
=

1

K

K−1∑
i=0

|zi|2 and q̂
.
=

1

N −K

N−1∑
i=K

|zi|2 (10)

1The dependence of C with α2 and σ2 is not explicitly written so as not
to overburden the notation, but must be kept in mind.

which are the estimated average powers in the signal and
noise-only subspaces, respectively. Then

zHD−1z + log detD = (N −K)

[
q̂

σ2
+ log σ2

]
+K

[
p̂

N
Kα

2 + σ2
+ log

(
N

K
α2 + σ2

)]
. (11)

The minimizer of (11), subject to α2 ≥ 0 and σ2 ≥ 0, is

(α̂2
1, σ̂

2
1) =

{
( 0 , bp̂+ (1− b)q̂ ) if q̂ ≥ p̂,

( b(p̂− q̂) , q̂ ) if q̂ < p̂. (12)

(The proof is ommitted due to lack of space). Evaluating
L(y) in (4) with the expressions obtained for σ̂2

0 , α̂2
1 and σ̂2

1

and subsequently rearranging terms yields

logL(y) =

{
N · log A.M.

G.M. , if p̂ > q̂,
0, otherwise.

(13)

where A.M. and G.M. stand for "arithmetic mean" and "geo-
metric mean" respectively, and are given by

A.M. .
= bp̂+ (1− b)q̂], (14)

G.M. .
= p̂bq̂1−b. (15)

It is readily checked that N log A.M.
G.M. depends on the data only

through the ratio p̂/q̂, and moreover, it is a monotonically
nondecreasing function of p̂/q̂ in the range p̂/q̂ ≥ 1. Hence,
for a given threshold γ > 1 in (4), there exists another thresh-
old γ′ > 1 such that the test (4) is equivalent to p̂/q̂≷H1

H0
γ′.

Observe that this test is intuitively satisfying. The first
step in the detection process is to correlate the observation
with the template signal, obtaining the vector XHy. This
does not change the statistics of the noise component and
’wipes out’ the modulation in the signal term. Then the rep-
resentation of this vector in the orthonormal basis W is ob-
tained as z = WH(XHy). Note that if the Fourier basis
is chosen for the BEM, then z is the Discrete Fourier Trans-
form of XHy, and p̂, q̂ are the average values of the peri-
odogram over the "signal bins" and "noise bins", respectively.
The GLR test then compares these two values.

An equivalent description of the test is obtained by noting
that bp̂+ (1− b)q̂ = ||z||2

N = ||y||2
N , from which

p̂

q̂
=

1− b(
Np̂
||y||2

)−1
− b

, (16)

which is a monotonically nondecreasing function ofNp̂/||y||2.
Thus the GLR test can be recast as Np̂/||y||2 ≷H1

H0
γ′′.

Also note that the time-invariant case is recovered if K =
1 and F = 1√

N
1, with 1 the vector of all ones. In that case,

since z0 = 1√
N
1TXHy = 1√

N
xHy, the detector reduces to

|xHy|2/||y||2 ≷H1

H0
γ′′, which is the Matched Filter detector

(normalized by the total observed power in order to account
for the lack of knowledge about the noise variance).
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Fig. 1. Comparison between theoretical and Monte Carlo re-
sults for several BEM and Jakes’ channels.

4. PERFORMANCE ANALYSIS

Since z = WHXHy is zero-mean Gaussian with diagonal
covariance D given by (9), p̂ and q̂ are the sum of squared
magnitudes of complex zero-mean i.i.d. Gaussian random
variables. Thus, it can be readily checked that:

k0 p̂ ∼ χ2 (2K) underH0, where k0 = 2/σ2,

k1 p̂ ∼ χ2 (2K) underH1, where k1 = 2/(
N

K
α2 + σ2),

k0 q̂ ∼ χ2 (2(N −K)) underH0 andH1,

where χ2(d) denotes a chi-square distribution with d degrees
of freedom. The GLR test statistic p̂/q̂ is, therefore, the quo-
tient of two independent chi-square random variables, which
is F -distributed [9]. Hence, underH0,

k0 p̂/(2K)

k0 q̂/(2(N −K))
=
N −K
K

p̂

q̂
∼ F (2K, 2(N −K)),

and, underH1,

k1 p̂/(2K)

k0 q̂/(2(N −K))
=
k1
k0

N −K
K

p̂

q̂
∼ F (2K, 2(N −K)).

Let ρ .
= α2

σ2 denote the SNR. Then one has

k1
k0

=
b

ρ+ b
. (17)

Denoting by FK,N (x) the cumulative distribution function
(cdf) of a F (2K, 2(N −K))-distributed random variable, the
probabilities of detection and false alarm can be written as

PD = 1−FK,N
(
1− b
ρ+ b

γ′
)
, PFA = 1−FK,N

(
1− b
b

γ′
)
.

(18)
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Fig. 2. Probability of detection vs SNR for several BEM and
Jakes’ channels. The Doppler spread of the channel is known.

Eliminating the threshold γ′ from (18) yields

PD = 1−FK,N
(

b

ρ+ b
· F−1K,N (1− PFA)

)
. (19)

5. SIMULATION RESULTS

We illustrate the performance of the GLR test for two kinds
of flat-fading Rayleigh channels: namely, the BEM model
described in the previous sections, and the dense scatterer
(Jakes) model [6,10]. The basis functions used to generate the
BEM channel samples are theK elements in the Fourier basis
corresponding to the low frequency region, chosen symmetri-
cally around DC. K is taken odd, so that the Doppler spread
is ωd = K−1

2
2π
N . On the other hand, under Jakes’ model, the

channel covariance matrix E
{
hhH

}
is Toeplitz with the ele-

ment (k, l) given by J0(ωd(k − l)), where again ωd denotes
the maximum Doppler frequency (Doppler spread).

The GLR test considered is based on the Fourier basis.
Hence, if ωd is assumed known, a reasonable choice for K
satisfies ωd = K−1

2
2π
N . Thus, unless otherwise stated, the

detector uses the value K = 1 + dNωd

π e.
Fig. 1 shows the Receiver Operating Characteristic (ROC)

of the detector for both channels, for several Doppler spreads.
In the BEM case, the observations fit the model used to de-
velop the test, and hence simulation results perfectly agree
with the analytical result (19). As expected, the detection per-
formance degrades for Jakes’ model, although this degrada-
tion is small. This is also seen in Fig. 2, which shows the
probability of detection (PD) vs SNR. The SNR penalty in-
curred with Jakes’ channels is in the order of 0.5 dB for this
example.

The impact of the Doppler spread on the performance is
shown in Fig. 3. As it can be seen, PD worsens as ωd in-
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Fig. 3. Probability of detection vs the (known) Doppler spread
for several SNR values.

creases, even when the latter is perfectly known. Note that
for ωd = π (the largest Doppler spread possible) one has
PD = PFA and the detector becomes useless. This is because
in that case the distributions of y under both hypotheses co-
incide.

Finally, we consider the case in which the actual value
of the channel Doppler spread is not available to the detec-
tor. Fig. 4 shows PD vs the actual Doppler spread for several
values of K used in the detection. Although the Matched Fil-
ter detector (i.e., the GLR detector with K = 1) is the best
choice for time-invariant channels, its performance quickly
degrades as soon as fading is introduced. It is clear from Fig. 4
that overestimating the true Doppler spread is less detrimental
than underestimating it.

6. CONCLUSIONS

A novel detector for known constant magnitude signals in
frequency-flat fast fading channels was presented. The test
is robust to uncertainties in the noise variance. Channel time
variations are dealt with by resorting to a Basis Expansion
Model; the selection of the number of elements in the basis
can be done if some rough estimate of the channel Doppler
spread is available. The distributions of the test statistic under
both hypotheses were developed in closed form. As expected,
faster time variations introduce a degradation in detection per-
formance, but the proposed methods are much more robust in
that sense than the standard Matched Filter detector, which
was designed for time-invariant channels.

The coefficients used in the basis expansion of the channel
were modeled as i.i.d. Gaussian. It is of interest to explore
other options, for example to use a deterministic but unknown
model for the channel. Future work should also address the
case of unknown and/or nonconstant magnitude signals.
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Fig. 4. Probability of detection vs the (unknown) Doppler
spread for different assumed values of K.
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