
1

Spectrum sensing exploiting guard bands and weak

channels
Gonzalo Vazquez-Vilar, Student Member, IEEE, Roberto López-Valcarce, Member, IEEE

Abstract—We address the problem of primary user detection
in Cognitive Radio from a wideband signal comprising multi-
ple primary channels, exploiting a priori knowledge about the
primary network: channelization and spectral shape of primary
transmissions. Using this second-order statistical information, a
multichannel Gaussian model is formulated. In order to obtain
a Generalized Likelihood Ratio Test, we first address Maximum
Likelihood (ML) estimation of the power levels at the different
channels, as well as of the noise variance. The ML conditions
suggest a suboptimal closed-form estimate, which takes the form
of a constrained Least Squares estimator whose asymptotic
efficiency is shown for flat bandpass spectra in white noise, a
case of practical importance. The resulting detectors exploit those
frequency bins corresponding to guard bands and to primary
channels perceived as weak to improve noise variance estimation.
Analytical expressions for the probabilities of detection and false
alarm are presented. Performance is evaluated via simulations
in the setting of a terrestrial TV primary network with realistic
channelization parameters.

I. INTRODUCTION

Cognitive Radio [1] is receiving considerable interest as a

means for wireless systems to improve spectrum usage [2].

The key idea of opportunistically accessing temporally and/or

spatially unused licensed bands requires powerful spectrum

monitoring techniques, since the interference produced to

licensed (primary) users must be kept at sufficiently low

levels [3]. The wireless medium makes reliable detection of

primary users a challenging task: due to fading and shadowing

phenomena, the received primary signal may be very weak,

resulting in very low Signal-to-Noise Ratio (SNR) operation

conditions. Although collaborative sensing has the potential to

overcome the effects of shadowing [4], [5], it still relies on

standalone detectors, whose performance should be optimized.

Certain properties of the primary signal, such as the

presence of any pilots or cyclostationary features, could in

principle be exploited in order to obtain powerful detectors.

However, such approaches often rely on some level of syn-

chronization with the primary signal, and with very low SNR

the synchronization loops of the monitoring system cannot be

expected to provide a high accuracy for the carrier frequency

and/or clock rate estimates, with the associated performance
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loss of this class of detectors [6]. Among asynchronous

schemes, Energy Detection is a popular choice due to its

simplicity. However, it requires knowledge of the background

noise variance in order to set the threshold to which the

received power is compared. If the actual noise variance

is different from its nominal value, performance is severely

degraded so that the detection/false alarm requirements may

not be satisfied [7]. This serious drawback motivates the search

for asynchronous detectors robust to noise uncertainty. Our

interest is in settings in which some information is available

about the primary network, specifically its channelization and

emission mask employed. This means that the power spectral

density (psd) of the signal transmitted by primary users can be

assumed known, up to a scaling. This knowledge should be ex-

ploited in order to improve detection performance. Availability

of such information is reasonable when operating in bands

licensed to wireless systems that make such parameters public.

Terrestrial broadcasting (TV or radio) services constitute a

prime example of interest, taking into account that cognitive

operation in TV “white spaces” is being keenly promoted by

regulators [8]–[11] and is likely to constitute the first practical

deployment of cognitive radio technology. Other scenarios for

application include primary services such as cellular telephony,

specialized mobile radio (SMR) and private land mobile radio

(PLMR) [12], [13].

If a wide frequency band comprising a large number of pri-

mary channels (say N ) is to be sensed, different strategies are

possible. While it is desirable to capture the whole bandwidth

of interest using a wideband analog front end and analog to

digital converter (ADC), this is not generally feasible due to

stringent requirements on the analog stage, as well as on the

sampling rate and resolution of the ADC. On the other hand,

selecting one channel at a time poses significant challenges

for the voltage controlled oscillator (VCO) in the mixing

stage of the front end. The VCO must maintain a minimum

performance in terms of phase noise and settling time while

being able to sweep over a large frequency range, and these

two requirements cannot be met simultaneously [14]. Dividing

the band of interest into subbands comprising M < N
primary channels allows a trade-off between ADC and VCO

complexity. In addition, the wideband approach provides more

information about the background noise level, a parameter that

must be estimated in practice.

Wideband spectrum sensing has been previously considered

by several authors. In [15], knowledge of the noise variance

is assumed, but the bandwidths and central frequencies of

primary transmissions, as well as their number, are assumed

unknown and estimated in turn. In the setting of [16], [17] pri-
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mary system channelization is known, and the noise variance is

regarded as unknown. However, these methods do not exploit

a priori information about the psd of primary transmissions,

and they assume that a minimum number of unused channels

exist in the subband under examination. In [18], the goal is to

maximize the throughput of the unlicensed user under suitable

interference constraints; to this end, the noise variance and

the channel gains from potential primary transmitters to the

spectrum monitor are assumed known.

In our setting, no knowledge about these parameters is

assumed. Since operation in low SNR conditions is mandatory,

we focus on asynchronous strategies. A Gaussian model is

adopted for the primary signals. Under these assumptions we

pose the composite Hypothesis Testing Problem for the detec-

tion of primary signals in the subband of interest. Uniformly

Most Powerful Tests [19] do not exist in general for this prob-

lem, and a Generalized Likelihood Ratio Test (GLRT) appears

as a reasonable approach. To this end, we first address joint

ML estimation of the powers of the M primary signals and the

background noise variance under the Gaussian model. While

there is no closed-form general solution for the ML estimate,

its derivation suggests a suboptimum, Least Squares (LS)

estimate which can be shown to be asymptotically efficient

in certain cases of practical interest, namely for bandlimited

signals with flat psd within the passband. We use this estimator

to derive a closed-form detection test for this scenario which

is robust to noise uncertainty.

The paper is organized as follows. Section II presents the

system model and the Hypothesis Testing Problem. The ML

and LS estimators are considered in Section III. The LS

estimate is used in Section IV to derive a detector for flat

bandpass signals in white noise; detection performance is also

analyzed in this section. Section VI presents some numerical

examples, and final conclusions are drawn in Section VII. The

proofs of all results are given in the Appendix.

Notation: lower and uppercase boldface symbols denote

vectors and matrices, respectively. For a vector x, diag(x) is

a diagonal matrix with the elements of x along the diagonal.

The n×1 vector of all ones (zeros) is denoted by 1n (0n); the

subscript will be dropped whenever vector size is clear from

the context. For real-valued x, x > 0 (x < 0) denotes that

all elements of x are positive (negative). The pseudoinverse

of A is denoted by A†.

II. PROBLEM FORMULATION

The primary network uses Frequency Division Multiple

Access (FDMA), with fixed channelization known to the

spectrum monitor. A subband comprising M primary channels

is selected and the resulting wideband signal is downconverted

to baseband. This baseband signal is sampled at its Nyquist

rate fs, thus obtaining K complex-valued samples:

rk =

M
∑

i=1

σis̃
(i)
k ej(ωik+φi) + σ0nk

=

M
∑

i=1

σis
(i)
k + σ0nk, 0 ≤ k ≤ K − 1, (1)

where rk are the observations; s̃
(i)
k are the samples of the i-th

baseband equivalent primary signal; ωi is the relative carrier

frequency corresponding to the i-th channel after downcon-

version to baseband, with φi the corresponding relative phase

offset; nk are samples of zero mean, circular complex white

Gaussian noise with unit variance; σ2
i ≥ 0 is the power of

the primary signal in the i-th channel (σ2
i = 0 if the i-th

channel is idle); and σ2
0 > 0 is the noise power. We assume

that s̃
(i)
k (and therefore s

(i)
k

.
= s̃

(i)
k ej(ωik+φi) as well) is circular

complex Gaussian, normalized to unit variance: E{|s̃(i)k |2} =

E{|s(i)k |2} = 1. The reasons for adopting a Gaussian model for

the primary signal are as follows. First, under asynchronous

sampling, the actual distribution is unknown; and since the

noise is assumed Gaussian as well, the Gaussian pdf for the

signal is the least informative one for the detection problem.

Second, if the primary system uses multicarrier modulation

with a sufficiently large number of subcarriers (which is the

case in e.g. broadcasting applications), the Gaussian model is

accurate [20]. Third, this model is tractable and leads to useful

detectors under other distributions: note that Gaussianity is a

common assumption in the development of signal detectors,

either explicitly [17], [21] or implicitly, as many ad hoc

methods that limit themselves to the use of second-order

statistics of the observations can often be derived from a

Gaussian model (the Energy Detector is the most prominent

example).

Define s
(0)
k = nk, so that (1) can be compactly written as

r =
M
∑

i=0

σisi (2)

with r
.
= [r0 r1 · · · rK−1]

T and si
.
= [s

(i)
0 s

(i)
1 · · · s(i)K−1]

T .

Hence, each si is zero-mean circular Gaussian with covari-

ance matrix Ci
.
= E{sisHi }. Regarding the asynchronously

sampled discrete-time processes s
(i)
k as wide-sense stationary,

Ci is Toeplitz with ones on the diagonal; and C0 = I

since the noise is assumed white. If the channels from the

primary transmitters to the monitor are frequency flat1, then

the Ci are known, and they summarize the knowledge about

the primary network (channelization and spectral shape of

transmissions) available to the spectrum monitor. Since si,

sj with 1 ≤ i 6= j ≤ M correspond to different primary

transmissions, they are regarded as statistically independent,

and also independent of the background noise s0. Hence,

under this model the observation r is zero-mean circular

Gaussian with covariance

R(θ)
.
= E{rrH} =

M
∑

i=0

σ2
iCi, (3)

where we make explicit the dependence of R with the vector

of unknown parameters θ
.
= [σ2

0 σ2
1 · · · σ2

M ]T .

Under the Gaussian model, second-order statistics capture

all relevant information about the problem. In order to ensure

identifiability of the parameter vector θ from (3), it is assumed

that the {Ci}Mi=0 are linearly independent. (As it turns out, this

1The effect of unknown frequency selective channels on the proposed
detectors will be considered in Section VI.
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condition amounts to requiring that the psds of the signals

{s(i)k }, denoted by {Si(ejω)}Mi=0, be linearly independent).

Were this not the case, it would be impossible to distinguish

among primary users with linearly dependent emission masks.

This assumption is clearly valid in FDMA scenarios, which are

the focus of our work2.

The problem is to determine the subset of idle channels

in {1, . . . , M}. This could be cast as an Hypothesis Testing

Problem with 2M different hypotheses; however, multiple

hypothesis testing in the presence of unknown parameters

is a difficult problem [19], so we consider instead succesive

detection of the M channels, one by one. For the m-th channel,

the problem becomes:

Hm
0 : σ2

m = 0 (primary is absent in channel m), (4)

Hm
1 : σ2

m > 0 (primary is present in channel m). (5)

This is a composite problem, since the probability density

function (pdf) f of the observations under the two hypotheses

depends on the vector of unknown parameters θ. We consider

the Generalized Likelihood Ratio Test (GLRT), see e.g. [19]:

TGLRT
.
=

f(r | θ̂ML,0)

f(r | θ̂ML,1)

Hm
0

≷
Hm

1

γ′, (6)

with γ′ a threshold, and θ̂ML,j the ML estimate of θ under Hm
j .

Conditioned on θ, the observations are Gaussian distributed:

f(r | θ) = exp
{

−rHR−1(θ)r
}

πK detR(θ)
. (7)

Note that θ̂ML,1 is the maximizer of (7) w.r.t. θ subject to

σ2
i ≥ 0, whereas θ̂ML,0 is obtained by fixing σ2

m = 0 and max-

imizing (7) w.r.t. the remaining parameters in θ under the same

constraint. Consequently, one has f(r | θ̂ML,1) ≥ f(r | θ̂ML,0),
so that the test statistic in (6) satisfies 0 ≤ TGLRT ≤ 1.

III. PARAMETER ESTIMATION

It is seen in (7) that the unknown parameter θ appears in

the pdf through the covariance matrix R(θ) only. Therefore

the problem reduces to the estimation of a covariance matrix

with structure given by (3) with σ2
i ≥ 0 for i = 0, . . . ,M

and thus it fits in the framework addresed by Burg et al.

in [22]. Here we follow a slightly different approach to derive

the conditions on the unconstrained ML estimate, which leads

to a simplified closed-form estimator which is asymptotically

efficient for certain cases of practical interest.

A. Unconstrained ML estimation

ML estimation amounts to minimizing the negative of the

log-likelihood function

L(r; θ)
.
= ln detR(θ) + rHR−1(θ)r. (8)

The partial derivatives of L(r; θ) w.r.t. σ2
i are

∂L(r; θ)

∂σ2
i

= −Tr{R−1(θ)Ci}+ rHR−1(θ)CiR
−1(θ)r.

(9)

2Linear independence of emission masks may not hold if, for example,
different primary users share the same bandwidth using Code Division
Multiple Access.

Neglecting the positivity constraints σ2
j ≥ 0, the unconstrained

ML estimate of θ satisfies ∂L/∂σ2
i = 0 for 0 ≤ i ≤ M . In

view of (9), the natural approach to solving these equations

seems to be the diagonalization of the matrices involved.

While in general the K × K covariance matrices Ci need

not share common eigenvectors, we can exploit a well-known

result regarding the asymptotic diagonalization of Toeplitz

matrices [19]: as K → ∞, the following approximation holds:

Ci ≈ WΛiW
H , i = 0, 1, . . . ,M, (10)

where W denotes the K×K orthonormal IDFT matrix, Λi
.
=

diag(λi), and λi
.
= [λ

(i)
0 λ

(i)
1 · · · λ

(i)
K−1]

T with

λ
(i)
k

.
= Si(e

j 2πk
K ), 0 ≤ k ≤ K − 1. (11)

The approximation in (10) is justified by the asymptotic equiv-

alence of the sequences of matrices {Ci} and {WΛiW
H} for

K = 1, 2,. . . [23], and has been exploited extensively in the

literature; as shown in [24], the loss in detection performance

when adopting this approximation often becomes negligible

for very moderate values of K .

Substituting now (10) into (3), it follows that, as K → ∞,

R ≈ W∆(θ)WH , with ∆(θ)
.
=

M
∑

i=0

σ2
iΛi. (12)

Note that ∆(θ) = diag{[ δ0(θ) δ1(θ) · · · δK−1(θ) ]}
contains uniformly spaced samples of the psd of the observa-

tions, given by

δk(θ)
.
=

M
∑

j=0

σ2
jλ

(j)
k , 0 ≤ k ≤ K − 1. (13)

With this asymptotic diagonalization of R, we can substi-

tute (12) back into (9) to obtain

∂L(r; θ)

∂σ2
i

≈ −Tr
{

∆
−1(θ)Λi

}

+ vH
∆

−1(θ)Λi∆
−1(θ)v, (14)

where v
.
= WHr = [v0 v1 · · · vK−1]

T is the DFT of the

observations. Then, equating (14) to zero, we find that as K →
∞ the unconstrained ML estimate θ̂ML will satisfy

K−1
∑

k=0

λ
(i)
k

δk(θ̂ML)
=

K−1
∑

k=0

|vk|2λ(i)
k

δ2k(θ̂ML)
, 0 ≤ i ≤ M. (15)

While in general it is not possible to obtain θ̂ML in closed

form3 from the conditions (15), it is possible to obtain approx-

imate closed form solutions as we will see next.

B. Unconstrained Least Squares estimation

The left-hand side of (15) can be rewritten as

K−1
∑

k=0

λ
(i)
k

δk
=

K−1
∑

k=0

δkλ
(i)
k

δ2k
(16)

=
M
∑

j=0

σ2
j

(

K−1
∑

k=0

λ
(j)
k λ

(i)
k

δ2k

)

. (17)

3These nonlinear equations can be solved numerically by efficient fixed-
point iterative algorithms [22], [25].
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Substituting (17) into (15), one obtains, in matrix form,

LH
∆

−2(θ̂ML)Lθ̂ML = LH
∆

−2(θ̂ML)p, (18)

where the K× (M +1) matrix L and the K×1 vector p (the

periodogram) are respectively defined as

L
.
= [ λ0 λ1 · · · λM ], (19)

p
.
= [ |v0|2 |v1|2 · · · |vK−1|2 ]T . (20)

Note that the periodogram p is an asymptotically unbiased

estimate of the psd of the observations [26], and therefore

p⋆
.
= limK→∞ E{p} = Lθ, with θ the vector of true

parameters. Thus, asymptotically, the expected value of p lies

in the subspace spanned by the columns of L. The linear

independence assumption on the psds {Si(ejω), 0 ≤ i ≤ M}
implies that L has full column rank, so that L†L = IM+1.

Then it holds that

LL†p⋆ = LL†Lθ = Lθ = p⋆, (21)

which suggests the approximation p ≈ LL†p. Substituting

this in (18),

θ̂ML ≈
[

LH
∆

−2(θ̂ML)L
]−1

LH
∆

−2(θ̂ML)LL†p

= L†p
.
= θ̂LS. (22)

The LS subscript refers to the fact that this estimate is

the solution to the unconstrained Least Squares problem

min
θ̂
‖Lθ̂−p‖22. The rows of L† can be interpreted as matched

filters that combine the power in the different frequency bins

(the entries of p) in order to estimate the variances in each

channel. The LS estimate is asymptotically unbiased, with

covariance given by Cov(θ̂LS) = L†Cov(p)(L†)H . Since the

asymptotic covariance of p is given by limK→∞ ∆
2(θ) [26],

one finds that

lim
K→∞

Cov(θ̂LS) = lim
K→∞

L†
∆

2(θ)(L†)H . (23)

C. Cramér-Rao Lower Bound

Under the Gaussian model, the elements of the Fisher

information matrix (FIM) F (θ) are given by (see e.g. [27]):

[F (θ)]ij = Tr

{

R−1(θ)
∂R(θ)

∂σ2
i

R−1(θ)
∂R(θ)

∂σ2
j

}

. (24)

The Cramér-Rao Lower Bound (CRLB) for any unbiased

estimator of θ is then given by var(σ̂2
i ) ≥ [F−1(θ)]ii. In

our case, ∂R(θ)/∂σ2
i = Ci. Then, using the asymptotic

approximations (10) and (12),

[F (θ)]ij ≈ Tr
{

∆
−1(θ)Λi∆

−1(θ)Λj

}

(25)

=

K−1
∑

k=0

λ
(i)
k λ

(j)
k

δ2k(θ)
. (26)

Thus, the asymptotic FIM is given by

lim
K→∞

F (θ) = lim
K→∞

LH
∆

−2(θ)L. (27)

D. Quasi-GLRT detection

Let θ̂j = [ σ̂2
0j σ̂2

1j · · · σ̂2
Mj ]T denote an estimate

(ML, LS, or other) of θ under Hm
j , j ∈ {0, 1}. Using these

estimates in the detection test, we obtain an approximation to

the GLRT. Using the asymptotic diagonalization (12), we can

write

detR(θ̂j) ≈ det∆(θ̂j) =

K−1
∏

k=0

[

M
∑

i=0

σ̂2
ijλ

(i)
k

]

, (28)

rHR−1(θ̂j)r ≈ vH
∆

−1(θ̂j)v =
K−1
∑

k=0

pk
∑M

i=0 σ̂
2
ijλ

(i)
k

. (29)

The resulting “Quasi-GLRT” (QGLRT) can be written as

log
f(r | θ̂0)

f(r | θ̂1)
≈ logT

.
=

K−1
∑

k=0

log

[

∑M

i=0 σ̂
2
i1λ

(i)
k

∑M

i=0 σ̂
2
i0λ

(i)
k

]

+

K−1
∑

k=0

[

pk
∑M

i=0 σ̂
2
i1λ

(i)
k

− pk
∑M

i=0 σ̂
2
i0λ

(i)
k

]

(30)

This detector can be implemented once θ̂j are available, either

by numerical means (ML) or in closed form (LS). However,

it is difficult in general to evaluate the performance of this

detector or to obtain some intuition about its operation. In the

next section we focus on a particular scenario whose structure

will allow further simplification of (30).

IV. DETECTION OF ORTHOGONAL FREQUENCY-FLAT

SIGNALS IN WHITE NOISE

For FDMA-based primary networks, the signals in different

channels are orthogonal, i.e. their psds have disjoint supports.

In addition, the psd of a multicarrier signal is approximately

constant within its support. The QGLRT (30) will be particu-

larized to this setting.

Definition 1: A signal is frequency-flat bandpass if its psd

takes only two levels: zero or a given constant value.

Definition 2: Two signals s
(i)
k , s

(j)
k are non-partially over-

lapping if either their psds have disjoint supports, or the

support of one of them contains that of the other.

For this class of signals, it turns out that the LS estimate (22)

is asymptotically efficient:

Theorem 1: If the signals s
(i)
k and s

(j)
k are frequency-flat

bandpass and non-partially overlapping for any 0 ≤ i, j ≤ M ,

then the asymptotic covariance matrix (23) of the uncon-

strained LS estimate equals the inverse of the asymptotic

FIM (27).

In the following we will assume that s
(i)
k , i = 1,. . . , M ,

are frequency-flat bandpass with disjoint frequency supports.

Since s
(0)
k (white noise) is frequency-flat bandpass covering

the whole bandwidth, it follows that s
(i)
k , s

(j)
k are non-partially

overlapping for any 0 ≤ i, j ≤ M . This is a special case

of the broader family of non-partially overlapping frequency-

flat bandpass signals, and will be denoted here as orthogonal

frequency-flat signals in white noise. For this class of signals,

Theorem 1 motivates the use of LS estimates in the QGLRT.
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A. QGLRT with unconstrained LS estimates

Let Wi denote the set of frequency bins within the support

of Si(e
jω), i = 1,. . . , M , and let the set of “noise-only”

frequency bins (comprising all guard bands in the captured

bandwidth) be

W0
.
= {k : k ∈ {0, 1, . . . ,K − 1} andk /∈ ∪M

i=1Wi}. (31)

We also define the fractional bandwidths wi
.
= |Wi|/K , 0 ≤

i ≤ M , such that 0 < wi < 1 and
∑M

i=0 wi = 1. Since the

signals are normalized to unit variance, it follows that

[L]ki = λ
(i)
k =







1, i = 0,
1
wi

, k ∈ Wi, i = 1, . . . ,M,

0, otherwise.

(32)

The pseudoinverse of L is given in this case by

[L†]ik =















1
Kw0

, k ∈ W0, i = 0,
−wi

Kw0
, k ∈ W0, i 6= 0,

1
K
, k ∈ Wi, i 6= 0,

0, k ∈ Wj , j 6= i, j 6= 0.

(33)

Denote the averaged periodogram over Wi by qi
.
=

1
Kwi

∑

k∈Wi
pk, 0 ≤ i ≤ M . The unconstrained LS estimate

of θ under Hm
1 is just L†p, and is given by

σ̂2
i1 =

{

q0, i = 0,
wi(qi − q0), i 6= 0.

(34)

On the other hand, the unconstrained LS estimate under Hm
0

is such that the subband corresponding to channel m is

consolidated into the “noise-only” set:

σ̂2
i0 =







q0m, i = 0,
0, i = m,
wi(qi − q0m), i 6= 0, i 6= m,

(35)

where q0m
.
= (w0q0 + wmqm)/(w0 + wm). If the esti-

mates (34)-(35) are used in the QGLRT, then some straight-

forward algebra shows that (30) reduces to

1

K
logT = (w0 + wm) log

(qw0

0 qwm
m )

1
w0+wm

q0m
. (36)

The argument of the log in (36) is the weighted geometric to

arithmetic mean ratio of q0 and qm, with respective weights

w0, wm. This ratio, which is a function of qm/q0 alone, is

always less than or equal to one, with equality iff q0 = qm.

It is monotonically increasing for qm/q0 < 1, and decreasing

for qm/q0 > 1. Thus, the QGLRT with unconstrained LS

estimates decides that channel m is idle if qm/q0 ∈ [α, β],
for some α < 1 < β depending on the threshold, and busy

otherwise. This is against intuition, since qm < q0 is always

a reasonable indicator of an idle channel. As the number of

samples K increases, one has qm/q0 → 1+σ2
m/(σ2

0wm) ≥ 1,

which suggests the use of a simplified test

qm
q0

Hm
1

≷
Hm

0

γ ⇔ qm
Hm

1

≷
Hm

0

γq0, (37)

in which the power measured in channel m is compared to a

threshold that now depends on the noise power measured in

the guard bands. Were this noise power known, the threshold

could be set independently of the observations, resulting in the

commonly employed energy detector.

Intuition suggests that the test statistic should be monotonic

in qm/q0. Note that if qm < q0, then the unconstrained LS

estimate of σ2
m under Hm

1 is σ̂2
m1 = wm(qm − q0) < 0,

which is against prior knowledge. This motivates the use of

constrained estimators in the QGLRT.

B. QGLRT with constrained LS estimates

The constrained LS estimate of θ for orthogonal frequency-

flat signals in white noise is given next.

Theorem 2: Let L be given by (32). The minimizer of

‖Lθ̂−p‖22 subject to σ̂2
i ≥ 0, 0 ≤ i ≤ M (i.e. the constrained

LS estimate under Hm
1 ), takes the following form:

σ̂2
j1 =











w0q0+
∑

l∈U1
wlql

w0+
∑

l∈U1
wl

, j = 0,

0, j ∈ U1,
wj(qj − σ̂2

01), otherwise,

(38)

where U1
.
= {j : qj < σ̂2

01, j 6= 0}.

Analogously, the minimizer of ‖Lθ̂−p‖22 subject to σ̂m =
0, σ̂2

i ≥ 0, i 6= m (i.e. the constrained LS estimate under Hm
0 ),

is given by:

σ̂2
j0 =











w0q0+wmqm+
∑

l∈U0
wlql

w0+wm+
∑

l∈U0
wl

, j = 0,

0, j ∈ U0 ∪ {m},
wj(qj − σ̂2

00), otherwise,

(39)

where U0
.
= {j : qj < σ̂2

00, j 6= 0, j 6= m}.

Note that (38)-(39) are implicit expressions, since they

depend on the sets U1, U0 whose definitions are in terms of

σ̂2
01 and σ̂2

00 respectively. Nevertheless, these estimates and

sets can be easily obtained using the algorithm in Table I.

It is straightforward to verify that this algorithm outputs sets

U1, U0 and estimates {σ̂2
j1}, {σ̂2

j0} satisfying (38) and (39)

respectively. This scheme successively includes the “weakest”

channel (i.e., the channel with smallest averaged periodogram

over the corresponding frequency support) into the computa-

tion of the noise variance estimate, until this estimate falls

below the estimated power levels of the remaining channels.

In order to obtain the QGLRT based on the constrained LS

estimates above, we distinguish two cases, depending on the

strength with which channel m is perceived relative to the

noise level. Note that by construction, m /∈ U0, whereas m
may or may not belong in U1.

Case 1: m ∈ U1, so that channel m is perceived as “weak”

under Hm
1 . Then we have the following.

Proposition 1: If m ∈ U1, then U1 = U0∪{m}, so that the

constrained LS estimates under Hm
1 and Hm

0 are the same.

Therefore, if m ∈ U1, then from (30) we have logT = 0,

i.e. the QGLRT declares channel m as idle.

Case 2: m /∈ U1, so that channel m is perceived as “not

weak” under Hm
1 . Then one has:

Proposition 2: If m /∈ U1, then U1 ⊆ U0.

Hence, if m /∈ U1, then U0 = U1 ∪ S for some set S
with S ∩ U1 = ∅. For j /∈ U0 ∪ {0,m}, it turns out that

wj σ̂
2
01 + σ̂2

j1 = wj σ̂
2
00 + σ̂2

j0, and thus these indices do not
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TABLE I
COMPUTATION OF THE CONSTRAINED LS ESTIMATE.

Under Hm
1 : Under Hm

0 :

1) Set U1 = ∅. 1) Set U0 = ∅.
2) Set σ̂2

j1 = 0 for all j ∈ U1. 2) Set σ̂2
j0 = 0 for all j ∈ U0 ∪ {m}.

3) Obtain the unconstrained estimates σ̂2
j1 for j /∈ U1: 3) Obtain the unconstrained estimates σ̂2

j0 for j /∈ U0 ∪ {m}:

σ̂2
01

=
w0q0+

∑
l∈U1

wlql

w0+
∑

l∈U1
wl

σ̂2
00

=
w0q0+wmqm+

∑
l∈U0

wlql

w0+wm+
∑

l∈U0
wl

σ̂2
j1 = wj(qj − σ̂2

01), j /∈ U1 ∪ {0} σ̂2
j0 = wj(qj − σ̂2

00), j /∈ U0 ∪ {0, m}

4) If the obtained estimate is feasible, stop. 4) If the obtained estimate is feasible, stop.

5) Else, let j⋆ = argminj /∈U1∪{0}{qj}, 5) Else, let j⋆ = argminj /∈U0∪{0,m}{qj},

set U1 ← U1 ∪ {j⋆}, and go back to Step 2. set U0 ← U0 ∪ {j⋆}, and go back to Step 2.

contribute to the QGLRT (30), which after some algebra is

found to yield

1

K
logT = log

(σ̂2
01)

w0+
∑

j∈U1
wjqwm

m

∏

j∈S q
wj

j

(σ̂2
00)

w , (40)

where w
.
= w0 + wm +

∑

j∈U0
wj . Note that if S = ∅,

then this ratio becomes a monotonically decreasing function

of qm/σ̂2
01 ≥ 1. Hence, if U1 = U0, the QGLRT can be

written as
qm
σ̂2
01

Hm
1

≷
Hm

0

γ (Test 1). (41)

Similarly to (37), Test 1 compares the power measured in

channel m to a threshold γσ̂2
01 proportional to the measured

noise power. The main difference is that now this noise

power is estimated using not only the guard bands, but also

those channels perceived as weak (i.e. channels for which the

constrained LS power estimate yields a zero value).

If S 6= ∅, then it is not possible to reduce (40) to a simple

ratio of averaged powers. A possible approach is to disregard

the influence of channels with indexes j ∈ S, obtaining (41).

Another possibility is to take these channels into account in

order to obtained a new estimate of the noise power

σ̂2
02

.
=

w0q0 +
∑

j∈U0
wjqj

w0 +
∑

j∈U0
wj

, (42)

and then use (42) in the following test:

qm
σ̂2
02

Hm
1

≷
Hm

0

γ (Test 2), (43)

which reduces to (41) if S = ∅.

V. STATISTICAL ANALYSIS

The detectors from Section IV-B are based on the random

variables qi, 0 ≤ i ≤ M . Note that v = WHr is Gaussian

with a diagonal (asymptotic) covariance matrix ∆(θ). For

orthogonal frequency-flat signals in white noise, the diagonal

of ∆(θ) is piecewise constant, and in particular, its elements

are constant over the bins corresponding to the i-th channel

(this also applies to the set of “noise-only” bins). Hence,

qi is the sum of square magnitudes of zero-mean Gaussian

random variables, asymptotically uncorrelated and with the

same variance. Thus, for large K , qi becomes chi-squared

distributed with Kwi degrees of freedom; in turn, as K → ∞,

this distribution converges to a Gaussian distribution: qi ∼

N (µi, α
2
i ). Moreover, qi, qj are asymptotically uncorrelated

for i 6= j, since the two sets of bins used for their computation

are disjoint. In terms of the SNR in channel i, defined as

ρi
.
= σ2

i /(wiσ
2
0), the mean and variance of qi are given by

µi
.
=

{

σ2
0 , i = 0,

σ2
0(1 + ρi), i > 0,

(44)

α2
i

.
=







σ4
0

Kw0
, i = 0,

σ4
0

Kwi
(1 + ρi)

2, i > 0.
(45)

A. Single-channel detection with guard bands

As a first step, we analyze the case M = 1, for which all

of the proposed detectors boil down to the same test. This test

can be expressed as z
.
= q1 − γq0 ≷H1

H0
0, where γ > 1 is a

threshold and the statistic z follows a Gaussian distribution:

z ∼ N
(

σ2
0(1 + ρ1 − γ),

σ4
0

K

[

(1 + ρ1)
2

w1
+

γ2

w0

])

. (46)

Since σ2
0 > 0, the probabilities of false alarm and detection

can be respectively written as PFA = Pr{(z/σ2
0) > 0 | ρ1 = 0}

and PD = Pr{(z/σ2
0) > 0 | ρ1 > 0}. These probabilities do

not depend on the noise power σ2
0 , as expected. In order to

set the threshold γ, two approaches are possible:

1) Threshold for fixed PFA: In view of (46), it is readily

found that, for PFA ≤ 0.5,

γ(PFA) =

1 +

√

1−
(

1− [Q−1(PFA)]2

Kw0

)(

1− [Q−1(PFA)]2

Kw1

)

1− [Q−1(PFA)]2

Kw0

,

(47)

where Q(·) is the complementary Gaussian cumulative distri-

bution function, and Q−1(·) denotes its inverse. The resulting

probability of detection for an SNR ρ1 is then given by

PD = Q





√

Kw0
γ(PFA)− (1 + ρ1)

√

γ2(PFA) +
w0

w1
(1 + ρ1)2



 . (48)

2) Threshold for fixed PD: In the context of cognitive

radio systems, a false alarm results in a missed opportunity

of using an idle channel, and therefore PFA is related to the

throughput efficiency of the secondary system. However, this

parameter is irrelevant to the primary network. On the other

hand, a missed detection may result in the secondary user

accessing a channel in use, thus producing interference to
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the primary system. Regulatory bodies are likely to require

a minimum detection performance to avoid collisions with

primary (licensed) users [8], i.e. PD ≥ P ∗
D at some target SNR

ρ⋆1. The threshold γ is then determined for P ∗
D ≥ 0.5 as

γ(P ∗
D ; ρ

⋆
1) = (1 + ρ⋆1)

1−
√

1−
(

1− κ
Kw0

)(

1− κ
Kw1

)

1− κ
Kw0

,

(49)

with κ
.
= [Q−1(P ∗

D)]
2. This yields

PFA = Q





√

Kw0
γ(P ∗

D ; ρ
⋆
1)− 1

√

γ2(P ∗
D ; ρ

⋆
1) +

w0

w1



 . (50)

Comparison with previous detectors: In order to study the

benefits of the proposed approach in the single-channel setting,

we compare its performance with that of two state-of-the-art

detectors that exploit prior knowledge on the second-order

statistics of primary signal. This is a fair comparison, since

this is also the information available to the proposed detector.

• In [21] Quan et al. propose a detector which correlates

the (known) spectral shape of the primary signal with the

periodogram of the observations; the resulting statistic is

then compared with a noise-dependent threshold. In the

case of flat bandpass signals, this amounts to using q1 as

test statistic.

For a fixed threshold γ the distribution of q1 yields PFA =
Q(

√
Kw1(

γ

σ2
0

− 1)) and PD = Q(
√
Kw1(

γ

σ2
0
(1+ρ1)

− 1)).

If the threshold is set for a given value P ∗
D at a target

SNR ρ∗1 using a nominal value σ̂2
0 of the noise power,

the resulting performance is given by

PFA = Q

(

√

Kw1

(

σ̂2
0

σ2
0

(

1 +
Q−1(P ∗

D)√
Kw1

)

(1 + ρ∗1)− 1

))

,

(51)

PD = Q

(

√

Kw1

(

σ̂2
0

σ2
0

(

1 +
Q−1(P ∗

D)√
Kw1

)

(1 + ρ∗1)

(1 + ρ1)
− 1

))

.

(52)

• Chaudhari et al. propose in [28] a detector exploiting the

presence of the cyclic prefix in multicarrier transmissions.

The test statistic is given by the empirical autocorrelation

coefficient at the lag corresponding to the useful duration

Td of the multicarrier symbol (normalized by the esti-

mated received power).

Fig. 1 shows the results obtained by the proposed detector

and by those of Quan et al. and Chaudhari et al. in a single-

channel scenario in which the channel and signal bandwidths

are 8 MHz and 7.61 MHz respectively (w1 ≈ 0.95, w0 ≈
0.05). Multicarrier modulation is assumed, with useful symbol

duration Td = 896 µs and cyclic prefix length Tc = 224
µs. These parameters are consistent with those of the DVB-

T standard for terrestrial digital TV broadcasting for 8 MHz

channels with 8K mode and guard interval 1/4 [29]. The

sampling rate is fs = 8 Msps and the observation interval is

2.5 ms, thus K = 20 · 103 samples. The detection thresholds

−30 −25 −20 −15 −10
0

0.2

0.4

0.6

0.8

1

SNR [dBs]

P
D

 

 

Proposed
Quan et al.
Chaudhari et al.

PFA = 0.8

No mismatch
PFA = 10−5

0.15dB mismatch
PFA = 3 · 10−20

PFA = 0.5

-0.15dB mismatch
PFA = 0.75

Fig. 1. Performance comparison of different detectors (single-channel case).
Thresholds are set for a probability of detection of 0.9 at a target SNR of
−14 dB. K = 20 · 103, w0 = 0.05, w1 = 0.95. Noise mismatch is defined
as the ratio of nominal to actual noise powers, σ̂2

0
/σ2

0
.

are tuned in order to satisfy the requirement that PD ≥ 0.9 for

SNR ≥ −14 dB.

In Fig. 1 analytical results are shown for the proposed detec-

tor and that of Quan et al., whereas the performance of the test

of Chaudhari et al. was evaluated by Monte Carlo simulation

using a synthetic multicarrier signal with the parameters given

above. When σ2
0 is exactly known, the detector of Quan et al.

yields the best performance, satisfying the constraints with

PFA ≈ 10−5. However, this scheme is severely affected by

noise uncertainty: underestimating the noise power greatly

increases PFA, with the subsequent throughput penalty for

the secondary system; whereas overestimating this parameter

results in the detection requirements not being satisfied. Al-

though the other two tests are robust to noise uncertainty, the

detector of Chaudhari et al. results in PFA ≈ 0.8 and is clearly

outperformed by the proposed scheme (PFA ≈ 0.5). Note that

among the possible values for the cyclic prefix length in the

DVB-T standard (1/4, 1/8, 1/16 and 1/32), the 1/4 choice is

the most favorable one for the detector of Chaudhari et al. In

terms of computational load, the proposed detector and that of

Quan et al. are based on the periodogram of the observations,

and hence their complexity is basically O(K logK) due to the

FFT operation. The detector of Chaudhari et al. requires the

computation of a single autocorrelation coefficient, and thus

its complexity is O(K).

B. Multichannel detection

Single-channel spectrum sensing, as described in Sec-

tion V-A, exploits the presence of upper and lower guard bands

to estimate the noise power. In practice these guard bands may

appear distorted due to the transition bands of the analog filter

used for channel extraction. This may preclude the use of those

frequency components for noise variance estimation. When

M > 1 channels are simultaneously captured, the guard bands

between adjacent channels remain undistorted, and therefore

this problem is alleviated.
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Without loss of generality, let m = M , so that the channel

under scrutiny is the M -th one. In order to simplify the

presentation, we restrict our analysis to the case in which all

channels have the same bandwidth4: w1 = w2 = · · · = wM .

Whereas finding analytical expressions for the performance of

the QGLRT detector (40) seems intractable, an analysis of the

simplified tests (41) and (43) is given next. Up to this point,

no assumptions have been made about the occupancy of the

band in the derivation of these detectors but, as it turns out,

in a multichannel scenario their performance depends on the

a priori probability of any given channel being in use by the

primary network. This probability, or activity factor, will be

denoted by a in what follows.

1) Test 1 from (41): This test is given by z1 ≷
HM

1

HM
0

0, with

z1
.
= qM−γσ̂2

01, γ > 1, and σ̂2
01 a linear combination of q0 and

{qj , j ∈ U1}, as in (38). Denote by It the event of having t of

the channels 1,. . . ,M − 1 not in use by the primary network,

so that Pr{It} =
(

M−1
t

)

aM−1−t(1 − a)t. In addition, denote

by Un the event |U1| = n. Then we can write

Pr{z1 > 0} =

M−1
∑

t=0

Pr{It}Pr{z1 > 0 | It}

=

M−1
∑

t=0

Pr{It}
M−1
∑

n=0

Pr{z1 > 0, Un | It}

≈
M−1
∑

t=0

Pr{It}
t
∑

n=0

Pr{z1 > 0, Un | It}, (53)

where in the last step we have neglected the probability

of a busy channel j 6= M being included in the set U1

by the constrained LS estimate. This amounts to assuming

that busy channels have sufficiently high SNRs. Without this

approximation, Pr{z1 > 0} would depend on the SNRs of

the (busy) channels other than channel M , which is clearly

undesirable. The accuracy of this assumption will be validated

by the simulation results.

Let us define the vectors

xn
.
=







q1
...

qn






− σ̂2

011n, yt−n
.
=







qn+1

...

qt






− σ̂2

011t−n.

(54)

Now, when computing (53), we can assume that the t idle

channels are channels 1 through t (due to the equal bandwidth

assumption), so that

Pr{z1 > 0} ≈
M−1
∑

t=0

Pr{It}
t
∑

n=0

(

t

n

)

Pr{z1 > 0, xn < 0, yt−n > 0 | It}.

(55)

Note that xn < 0, yt−n > 0 imply that U1 = {1, · · · , n}, so

that σ̂2
01 = (

∑n

l=0 wlql)/(
∑n

l=0 wl). Now one has that

Pr{z1 > 0, xn < 0, yt−n > 0 | It} =

Pr{[z1 − xT
n yT

t−n]
T /σ2

0 > 0 | It}, (56)

4The analysis can be readily modified in order to account for channels with
different bandwidths, although the notation becomes somewhat cumbersome.

which is the integral of a (t+1)-variate Gaussian distribution

over the positive orthant. The mean of this distribution is

µ1 = [ (1 − γ + ρM ) 0T
t ]T , and the covariance matrix is

found blockwise from the following, where w̄n
.
= w0+nwM :

Cov(z1, z1) =
σ4
0

K

(

(1 + ρM )2

wM

+
γ2

w̄n

)

, (57)

Cov(xn,xn) =
σ4
0

K

(

1

wM

I − 1

w̄n

1n1
T
n

)

, (58)

Cov(yt−n,yt−n) =
σ4
0

K

(

1

wM

I +
1

w̄n

1t−n1
T
t−n

)

, (59)

Cov(z1,yt−n) =
σ4
0

K

γ

w̄n

1t−n, (60)

Cov(z1, xn) = 0, Cov(xn,yt−n) = 0. (61)

Thus, Pr{z1 > 0} is independent of σ2
0 and can be computed

numerically using any multivariate Gaussian integration pack-

age, such as Matlab’s mvncdf. Note that PFA = Pr{z1 >
0 | ρM = 0}, whereas PD = Pr{z1 > 0 | ρM > 0}.

2) Test 2 from (43): This test is given by z2 ≷
HM

1

HM
0

0, with

z2
.
= qM − γσ̂2

02, γ > 1, and σ̂2
02 a linear combination of q0

and {qj , j ∈ U0}, as in (42). Denote by Ũn the event |U0| = n.

Then, similarly to (53),

Pr{z2 > 0} ≈
M−1
∑

t=0

Pr{It}
t
∑

n=0

Pr{z2 > 0, Ũn | It} (62)

=

M−1
∑

t=0

Pr{It}
t
∑

n=0

(

t

n

)

Pr{z2 > 0, x̃n < 0, ỹt−n > 0 | It},

(63)

where now

x̃n
.
=







q1
...

qn






− σ̂2

001, ỹt−n
.
=







qn+1

...

qt






− σ̂2

001. (64)

In this case, x̃n < 0, ỹt−n > 0 imply that U0 = {1, · · · , n},

and thus σ̂2
00 = (wMqM +

∑n

l=0 wlql)/(wM +
∑n

l=0 wl). The

probability in (63) can be written again as the integral of a

(t+1)-variate Gaussian distribution over the positive orthant:

Pr{z2 > 0, x̃n < 0, ỹt−n > 0 | It} =

Pr{[z2 − x̃T
n ỹT

t−n]
T /σ2

0 > 0 | It}. (65)

The mean of this distribution is in this case

µ2 =
[

(1− γ + ρM ) wMρM

w̄n+1
1
T
n

−wMρM

w̄n+1
1
T
t−n

]T

,

(66)
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whereas the covariance matrix can be found from

Cov(z2, z2) =
σ4
0

K

(

(1 + ρM )2

wM

+
γ2

w̄n

)

, (67)

Cov(x̃n, x̃n) =
σ4
0

K

[

1

wM

I

+

(

wM ((1 + ρM )2 − 1)

w̄2
n+1

− 1

w̄n+1

)

1n1
T
n

]

,

(68)

Cov(ỹt−n, ỹt−n) =
σ4
0

K

[

1

wM

I

+

(

wM ((1 + ρM )2 − 1)

w̄2
n+1

+
1

w̄n+1

)

1t−n1
T
t−n

]

,

(69)

Cov(z2, x̃n) =
σ4
0

K

(

γ − (1 + ρM )2

w̄n+1
− γ

w̄n

)

1n, (70)

Cov(x̃n, ỹt−n) =
σ4
0

K

wM ((1 + ρM )2 − 1)

w̄2
n+1

1n1
T
t−n, (71)

Cov(z2, ỹt−n) =
σ4
0

K

γ − (1 + ρM )2

w̄n+1
1t−n. (72)

Therefore, for Tests 1 and 2 PFA and PD can be found for

a given scenario without resorting to Monte Carlo simulation.

VI. NUMERICAL RESULTS

We evaluate now the performance of the proposed detectors

(QGLRT (40), Test 1 (41) and Test 2 (43)), both theoretically

and via Monte Carlo simulations. For the primary system we

consider a terrestrial digital TV broadcast network using 8K-

mode DVB-T modulation5. The channel spacing is 8 MHz

with a 7.61 MHz signal bandwidth, which is one of the

options considered in the DVB-T standard [29] resulting in

w1 = · · · = wM = 0.95125/M , w0 = 0.04875.

A. Influence of channel occupancy

In the first experiment we consider a setting with M = 4
channels and K = 2048 samples. The SNR of the channel

to detect is set to −5 dB. The detectors were analyzed for

activity factors of a = 0.1, 0.5 and 0.9. In the simulations, the

SNRs of the active channels (other than that under scrutiny)

were generated following a log-normal distribution with mean

0 dB and dB-spread equal to 1 dB.

In order to investigate the issue of threshold selection, we

plot in Fig. 2 the missed detection and false alarm probabilities

of the three schemes, as a function of the detection threshold.

For Tests 1 and 2, the analytical method of Sec. V-B was

used, whereas for the QGLRT (40), PD and PFA were obtained

empirically. It is seen that, in the region of interest (small

probability of missed detection), and for fixed thresholds,

the detection performance of the three tests improves as a
decreases. This is reasonable, since lower primary activity

results in more channels perceived as weak and this can be

exploited in order to improve the noise variance estimates.

Hence, in order to satisfy PD ≥ P ∗
D for a given target P ∗

D

5For Monte Carlo simulation, the modulation parameters of the DVB-T
signals were: 64-QAM, guard interval 1/4, inner code rate 2/3.
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Fig. 4. Power spectral densities of the DVB-T signals affected by multipath
propagation.

when the activity factor is unknown, the threshold must be set

assuming the worst case a = 1.

Once the threshold has been fixed in order to satisfy the

detection requirements, the behavior of PFA in terms of a is

different for the three schemes. Whereas the false alarm rate of

the QGLRT worsens as a decreases, for Test 1 PFA is almost

insensitive to variations in a. Interestingly, for Test 2 a region

exists for which both PD and PFA improve with decreasing

a. Thus, by setting the threshold for a given target PD ≥
P ∗

D assuming a = 1, performance guarantees in terms of PFA

(missed opportunities for transmission) can be given for Tests

1 and 2.

Next we consider a setting with M = 8 channels, with the

remaining parameters kept at the same values as in the pre-

vious experiment. Fig. 3 shows the complementary Receiver

Operating Characteristics (ROC) curves for the three detectors

and different activity factors. As expected, the QGLRT-based

detector outperforms the other two suboptimal schemes. Tests

1 and 2 perform similarly for high activity factors, although

Test 2 presents an advantage as a decreases. Note that in the

extreme case of a = 1 there are no idle channels, and thus

S = ∅ in the context of Sec. IV-B, which in turn implies that

the three tests become approximately equivalent for a → 1.

In Fig. 3 a good agreement is observed between analytical

and empirical results for Tests 1 and 2, with just a slight

mismatch for high activity settings (a = 0.9) which can

be explained as follows. Recall that in the derivation of the

analytical expressions it was assumed that busy channels do

not affect the distribution of the statistics for these detectors.

This assumption is more likely to be violated as the percentage

of busy channels (i.e. the activity factor a) increases.

B. Impact of frequency selectivity

Simulations were carried out in order to gauge the effect of

unknown multipath propagation conditions in the performance

of the proposed detectors. The multipath channels were gen-

erated according to the WINNER Phase II Model [30] with

Profile C1 (Suburban). The central frequency is 800 MHz, and

it is assumed that each of the signals at the M = 8 different



10

1 1.2 1.4 1.6
10

−3

10
−2

10
−1

10
0

threshold value

Test 1

 

 

a = 0.1

a = 0.5

a = 0.9

1−P
D

(SNR = −5 dB)
P

FA

(a)

1 1.2 1.4 1.6
10

−3

10
−2

10
−1

10
0

threshold value

Test 2

 

 

a = 0.1

a = 0.5

a = 0.9

1−P
D

 (SNR = −5 dB)

P
FA

(b)

1 1.002 1.004 1.006
10

−3

10
−2

10
−1

10
0

threshold value

QGLRT

 

 

a = 0.1

a = 0.5

a = 0.9

1−P
D

(SNR = −5 dB)

 P
FA

(c)

Fig. 2. False alarm and missed detection performance in a setting with M = 4 channels. (a) Test 1 (analytical). (b) Test 2 (analytical). (c) QGLRT (empirical).

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FA

1
−

P
D

M=8, K=2048, SNR=−5 dB, a=0.1

 

 

Test 1 (analytical)

Test 1 (empirical)

Test 2 (analytical)

Test 2 (empirical)

QGLRT (empirical)

(a)

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FA

1
−

P
D

M=8, K=2048, SNR =−5 dB, a=0.5

 

 

Test 1 (analytical)

Test 1 (empirical)

Test 2 (analytical)

Test 2 (empirical)

QGLRT (empirical)

(b)

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

M=8, K=2048, SNR=−5 dB, a=0.9

P
FA

1
−

P
D

 

 

Test 1 (analytical)

Test 1 (empirical)

Test 2 (analytical)

Test 2 (empirical)

QGLRT (empirical)

(c)

Fig. 3. Complementary ROC curves in a setting with M = 8 channels, for different values of the activity factor a.

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FA

1
−

P
D

M = 8, K = 2048, SNR = −5 dB, a = 0.5

QGLRT

Test 2

Test 1

Solid:     flat fading
Dashed: frequency selective

Fig. 5. Detector performance with frequency selective channels.

channels arrives from a different transmitter. The locations of

the transmitters and of the spectrum monitor were randomly

selected on a square of dimension 15 × 15 km. Fig. 4 shows

the psds of the normalized signals used in this experiment.

Fig. 5 shows the ROC curves of the three detectors under

frequency-flat and frequency-selective channels, for a setting

with K = 2048, SNR = −5 dB and a = 0.5. As can be seen,

performance remains essentially unaltered under multipath

conditions. This can be explained by the structure of the pro-

posed detectors: the linear combinations of different frequency

bins effectively averages out the effects of frequency-selective

channels. Although in this scenario it is seen that the change

in the statistics’ distributions due to frequency selectivity even

achieves some performance improvement, this effect is so

slight that it can be safely neglected.

C. Influence of the number of channels

Consider a setting in which the operating band consists of N
channels of B Hz each, which the spectrum monitor must scan

in a total time of T s. To this end, the band is subdivided into

subbands of M < N channels each, which are sequentially

analyzed. The observation time for each of the MB Hz-wide

subbands is thus MT/N s. Hence, sampling at the Nyquist

rate fs = MB Hz, the number of samples available for

processing each subband of M channels is K = M2(BT/N).
Thus, at the expense of a linear increase of fs in terms of M , a

quadratic increase of K is obtained, so that a favorable trade-

off between detection performance and ADC cost/resolution

can be achieved.

Assuming BT/N = 128, Fig. 6(a) shows the analytical

probability of missed detection of Test 2 versus SNR for dif-

ferent values of M . For each M , the thresholds are computed

in order to achieve PD = 0.9 at a target SNR = −5 dB

assuming full occupancy (worst case). With this design, having

more channels in the subband is seen to improve detection

performance for SNRs at and above the target value, for all

values of a, thus offering additional interference guarantees to

the primary system.

Fig. 6(b) shows the corresponding false alarm rate in terms

of M . It is seen that PFA decreases exponentially with the

number of channels included in the subband. A reduction in
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Fig. 6. Analytical performance of Test 2 as a function of the number of channels M . The sample size is given by K = 128M2.

PFA increases the opportunities of accessing the spectrum and

therefore the global throughput of the secondary system.

VII. CONCLUSIONS

The wideband approach to spectrum sensing provides a

means to trade off detection performance and ADC com-

plexity. In practice, primary networks using FDMA exhibit

guard bands between adjacent channels which can be used to

estimate the noise power. In addition, the frequency bins of

those channels perceived as weak can be used for this task

as well. These ideas are exploited by the proposed detectors,

which were developed under the GLRT approach. In this way,

the noise uncertainty problem that plagues the popular Energy

Detector is largely alleviated. Further research will address the

impact of noise coloring, a phenomenon to take into account

as the processing bandwidth is increased.

APPENDIX

A. Proof of Theorem 1

For finite K , consider the matrix

A(θ)
.
= [LH

∆
−2(θ)L] · [L†

∆
2(θ)(L†)H ]. (73)

We will prove that, under the conditions of the Theorem,

A(θ) = I. Then, taking the limit as K → ∞ on both

sides of (73), the desired result will be obtained, in view

of (23) and (27). To this end, consider the singular-value

decomposition L = UDV H , where U is K × (M +1) with

orthogonal columns, D is (M + 1)× (M + 1) diagonal with

the nonzero singular values, and V is (M + 1) × (M + 1)
unitary. The pseudoinverse is thus L† = V D−1UH . Then

A(θ) = V DUH
∆

−2(θ)UUH
∆

2(θ)UD−1V H . (74)

As seen from (74), a sufficient condition for A(θ) = I is that

UUH and ∆(θ) commute. This we will show now.

Note that the columns of U constitute an orthonormal basis

of R{L}, the subspace spanned by the columns of L. Without

loss of generality (since channel indexing is arbitrary), assume

that the columns of L are sorted such that if the set of indices

of nonzero entries of column j contains that of column i, then

i < j. Additionally, we assume that the rows of L are arranged

such that these sets of indices of nonzero entries contain only

contiguous indices (frequency bins). This is also without loss

of generality, since one can always apply a permutation to the

rows of L to achieve this.

An orthogonal basis for R{L} can also be obtained by

applying the Gram-Schmidt orthogonalization procedure to the

columns of L. It is straightforward to show that this results in a

basis Ũ = [ ũ0 ũ1 · · · ũM ] such that (i) any nonzero

entries of a given vector ũi are constant and in contiguous

positions, and (ii) for any ũi, ũj with i 6= j, the two sets of

indices of their nonzero entries are disjoint. These properties

imply that ŨŨH is a block diagonal matrix, with each block

on the diagonal having all of its elements equal:

ŨŨH =







α01K0
1
T
K0

. . .

αM1KM
1
T
KM






= UUH ,

(75)

where αi are scalars, Ki is the number of nonzero entries in

ũi, and the last equality in (75) stems from the fact that both

UUH and ŨŨH are projection matrices onto R{L}.

On the other hand, since the diagonal of ∆(θ) is a linear

combination of the columns of L, see (12), one has that

∆(θ) =







β0IK0

. . .

βMIKM






, (76)

for some scalars βi. Given the structure of UUH and ∆(θ),
it is readily seen that they do commute.

B. Proof of Theorem 2

We shall prove (38), as the proof for (39) is analogous. The

cost f(θ̂) = ‖Lθ̂ − p‖22 is convex, and its gradient is given
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by

1

K
∇f(θ̂) =















1 1 1 · · · 1

1 w−1
1 0 · · · 0

1 0 w−1
2 · · · 0

...
...

...
. . .

...

1 0 0 · · · w−1
M















θ̂

−















w0q0 + · · ·+ wMqM
q1
q2
...

qM















. (77)

In addition, we have the linear inequality constraints gj(θ̂) =
−σ̂2

j ≤ 0, 0 ≤ j ≤ M , whose gradient is ∇gj(θ̂) = −ej ,

where ej is the j-th unit vector. A sufficient condition for

θ̂1 = [σ̂2
01 · · · σ̂2

M1]
T to be the global optimum is that there

exist scalars µj ≥ 0, 0 ≤ j ≤ M , such that

∇f(θ̂1) +
M
∑

j=0

µj∇gj(θ̂1) = 0, (78)

µjgj(θ̂1) = 0, 0 ≤ j ≤ M, (79)

which for this case amounts to saying that [∇f(θ̂1)]i = 0 if

σ̂2
i1 > 0 and [∇f(θ̂1)]i ≥ 0 if σ̂2

i1 = 0. Now we show that the

vector θ̂1 given by (38) satisfies these conditions. Note that

σ̂2
01 > 0, and that U1 = {j : σ̂2

j1 = 0}. In view of (77),

1

K
[∇f(θ̂1)]0 = σ̂2

01 +

M
∑

i=1

σ̂2
i1 − w0q0 −

M
∑

i=1

wiqi (80)

= −w0(q0 − σ̂2
01) +

M
∑

i=1

[σ̂2
i1 − wi(qi − σ̂2

01)] (81)

= −w0(q0 − σ̂2
01)−

∑

i∈U1

wi(qi − σ̂2
01) (82)

= −(w0q0 +

M
∑

i∈U1

wiqi) + (w0 +

M
∑

i∈U1

wi)σ̂
2
01 = 0, (83)

where the second line follows from w0 + · · · + wM = 1;

the third, from the definitions of U1 and σ̂2
j1, and the last step,

from the definition of σ̂2
01. On the other hand, for 1 ≤ j ≤ M ,

using again the definitions of U1 and σ̂2
j1,

1

K
[∇f(θ̂1)]j = σ̂2

01 + w−1
j σ̂2

j1 − qj (84)

=

{

σ̂2
01 − qj ≥ 0, j ∈ U1,

0, j /∈ U1,
(85)

as was to be shown.

C. Proof of Proposition 1

If the constrained LS estimate under Hm
1 results in σ̂2

m1 = 0
(i.e. m ∈ U1), then it is clear that imposing σ̂2

m0 = 0 and

then minimizing the LS cost under the same constraints for

the remaining variables will yield the same result. But this is

exactly the constrained LS estimate under Hm
0 .

D. Proof of Proposition 2

Let U1 = {l(1), l(2), · · · , l(s)} such that ql(1) ≤ ql(2) ≤
· · · ≤ ql(s). The proof is by induction, and is based on the

constructive algorithm given in Table 2. Note that:

• ql ≤ σ̂2
01 for all l ∈ U1 (by definition of U1);

• σ̂2
01 ≤ q0 (since σ̂2

01 is a convex combination of q0 and

{ql, l ∈ U1});

• σ̂2
01 ≤ qm (since m /∈ U1).

The last two facts imply that σ̂2
01 ≤ q0m

.
= (w0q0 +

wmqm)/(w0 + wm).
Now consider ql(1). In the process of constructing U0 given

in Table 2, the first iteration results in σ̂2
00 = q0m. The

unconstrained estimate with respect to the remaining variables

is not feasible, since ql < q0m for l ∈ U1. Therefore, index

l(1) is picked so that l(1) ∈ U0.

Suppose now that l(1),. . . , l(i) ∈ U0 for i < s. This means

that the (i + 1)-th iteration of the procedure from Table 2

results in

σ̂2
00 =

w0q0 + wmqm +
∑i

t=1 wl(t)ql(t)

w0 + wm +
∑i

t=1 wl(t)

. (86)

Note that, since l(i+ 1) ∈ U1, it holds that

ql(i+1) <
w0q0 +

∑i
t=1 wl(t)ql(t)

w0 +
∑i

t=1 wl(t)

≤ w0q0 +
∑s

t=1 wl(t)ql(t)

w0 +
∑s

t=1 wl(t)

< qm. (87)

But (87) implies that ql(i+1) is smaller than the right-hand side

of (86). Hence, index l(i+ 1) is picked so that l(i+ 1) ∈ U0.

By induction, it follows that U1 ⊂ U0.
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