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Abstract—In this paper, we propose a method for maximizing
the signal-to-interference-plus-noise ratio (SINR) in a wideband
full-duplex MIMO regenerative relay that accounts limited dy-
namic range of the receiver and transmitter impairments. Trans-
mit and receive filters are designed at the relay, by means of an
alternating minimization algorithm, to minimize the interference
at the decoder input in the destination node. We impose channel
shortening and subspace constraints to ensure that the received
signal at the destination is not compromised. Simulation results
show that the presented method significantly outperforms other
constrained approaches.

I. INTRODUCTION

Self-interference in full-duplex devices is a direct conse-
quence of simultaneous transmission and reception, wherein
part of the transmitted signal leaks back to the receive side.
When the full-duplex device is a relay, extreme power im-
balance between the near-end and far-end signals may cause
an inadmissible interference level [1]–[4], which demands
efficient mitigation. Self-interference mitigation techniques are
classified according to their domain of application. Analog
domain techniques, such as passive physical isolation between
antenna arrays or analog cancellation, are applied before
digital conversion or baseband demodulation and can provide
up to approximately 60–70 dB of self-interference mitigation
[1], [5]. This mitigation level is usually insufficient for reliable
relay operation. On the other hand, digital domain techniques,
such as digital cancellation and interference suppression, mit-
igate further the residual self-interference by subtracting a
replica of the self-interference and exploiting the available
degrees of freedom in a multi-antenna scenario [6]–[8].

Besides self-interference, factors limiting the performance
are dynamic range and transmission impairments, which intro-
duce noise sources that depend on the statistics of the received
and transmitted signals. Those effects can have a significant
impact on the performance due to the high gain of the self-
interference channel [2].

We present a mitigation method for SINR maximization in
wideband full-duplex regenerative MIMO relays. Similar to
our previous method in [9], we take into account transmission
impairments and limited dynamic range at the relay under the
noise model of [2]. In contrast to [9], new channel shortening
constraints and eigenvector subspace transmission, alongside
joint design of transmission and reception filters, result in
better performance than [9].

II. SYSTEM MODEL

The baseline system setup, illustrated in Fig. 1, is the same
as that of [9] with some minor notation changes. The relay link
consists of a source node (S) with Mt antennas transmitting
signal s[n], a destination node (D) with Mr antennas receiving
signal d[n], and a relay (R) with Nr receive and Nt transmit
antennas receiving signal r[n] while simultaneously transmit-
ting signal rt[n], respectively. The number of independent data
streams is m. The received signals at R and D are

r[n] = Hsr[n] ? s[n] + Hrr[n] ? rt[n] + nr[n] (1)
d[n] = Hsd[n] ? s[n] + Hrd[n] ? rt[n] + nd[n] (2)

where Hij [n], i ∈ {s, r} and j ∈ {r, d}, is the channel impulse
response, of order Lij , between nodes i and j. Operator ? de-
notes convolution whereas vectors nd[n] and nr[n] collect all
the noise components at D and R, respectively. In particular,
nr[n] has the following expression:

nr[n] = n[n] + Hrr[n] ? v[n] + w[n] (3)

with n[n] denoting temporally white thermal noise. Noise
source v[n], see Fig. 1, is statistically independent of rt[n],
temporally white and models imperfections during transmis-
sion [2]. Noise source w[n], see Fig. 1, is statistically indepen-
dent of the signal before digital conversion r̃[n], temporally
white and models limited receiver dynamic range [2]. The
statistical distributions of n[n], v[n] and w[n] are

n[n] ∼ CN (0, σ2I) (4)

v[n] ∼ CN (0, δ diag
(
E{rt[n]rHt [n]}

)
) (5)

w[n] ∼ CN (0, γ diag
(
E{r̃[n]r̃H [n]}

)
) (6)

where 0 < δ, γ � 1. The SINR at the relay input is defined
as

SINRR =
E{‖ř[n]‖2}

E{‖i[n] + nr[n]‖2} (7)

with ř[n] = Hsr[n] ? s[n] denoting the information signal
arriving at R and i[n] = Hrr[n]?rt[n] is the self-interference.

Finally, the relay implements a decode-and-forward proto-
col, which introduces enough processing delay to allow us to
make the following assumption:

E{ř[n]rHt [n− k]} = E{ř[n]nHr [n− k]} = 0 , for k ≥ 0

or, in plain words, the samples of the information signal and
the transmitted signals are uncorrelated.
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Fig. 1. System model of a relay incorporating the cancellation-suppression architecture.

III. PROPOSED DESIGN

The internal structure of the relay incorporating the mitiga-
tion scheme is depicted in Fig. 1, which consists of the Lr-th
order filter Gr[n] of size m×Nr, the Lt-th order filter Gt[n]
of size Nt ×m, and the La-th order cancellation filter A[n]
of size Nr × Nt. Function p(·) represents all the operations
related to the decode-and-forward protocol and is responsible
for the processing delay within the relay. In general, the relay
performance depends on the SINR at the input of p(·), which
we aim to maximize by designing Gr[n], Gt[n] and A[n].

Let ř(eq)[n] = Gr[n] ? ř[n] and n
(eq)
r [n] = Gr[n] ? nr[n]

denote the information signal and the noise after mitigation,
respectively. The residual self-interference is given by

i(eq)[n] = Gr[n] ? (Hrr[n] + A[n]) ?Gt[n] ? r̂t[n] (8)

whereas the signal at the input of p(·) is

r̂[n] = ř(eq)[n] + i(eq)[n] + n(eq)
r [n] (9)

Note that, due to the limitation in the dynamic range,
n
(eq)
r [n] depends on i[n] through w[n]. Therefore, even in

the case of perfect cancellation of the self-interference with
filter A[n], i.e. A[n] = −Hrr[n], the noise power of w[n]
is sufficiently high to render low SINR values. The post-
mitigation SINR at the input of p(·) is defined as

SINRReq =
E{‖ř(eq)[n]‖2}

E{‖i(eq)[n] + n
(eq)
r [n]‖2}

(10)

In view of (10), to maximize the relay performance, we
design filters Gr[n], Gt[n] and A[n] as the solution to the
following optimization problem

maximize
A[n],Gt[n],Gr[n]

SINRReq

subject to E{‖rt[n]‖2} ≤ Pmax
(11)

where Pmax > 0 denotes the maximum transmit power.
Note that, from (8), problem (11) has the trivial solution
Gt[n] = 0, which must be avoided by introducing additional
constraints on Gt[n] that cause bounded distortion on theR-D
channel. Such constraints and the steps required to solve the
optimization problem in (11) are explained in the next section.

IV. OPTIMAL DESIGN OF A[n], Gt[n] AND Gr[n]

In order to solve problem (11), note that regardless of
the value of Gr[n] and Gt[n] in (8), the optimal A[n] is
A[n] = −Hrr[n]. Estimation of Hrr[n] using the method in
[6] yields a residual self-interference i(eq)[n] below the noise
level, therefore we can reasonably assume that i(eq)[n] ≈ 0
by fixing A[n] to the estimated value of Hrr[n].

Nonetheless, noise n
(eq)
r [n], which depends on i[n] and

v[n], cannot be mitigated with cancellation filter A[n] and
usually has larger power than ř[n], resulting in unacceptable
SINR values at p(·). Consequently, filters Gr[n] and Gt[n]

should be designed to mitigate the effect of n(eq)
r [n].

Note that both filters are coupled through n
(eq)
r [n], therefore

a closed-form solution of (11) might not be available. A
solution to the problem can be obtained by means of an al-
ternating optimization algorithm, whose steps are summarized
in Algorithm 1. Such an optimization procedure transforms
problem (11) into a sequence of optimization problems. Next,
we detail how to solve Steps 2 and 3 of Algorithm 1.

Algorithm 1 Alternating optimization procedure
1: Initialization point: Gr[0], Gt[0].
2: For fixed Gr[n], solve (11) with respect to Gt[n].
3: For fixed Gt[n], solve (11) with respect to Gr[n].
4: Repeat Steps 2 and 3 until convergence.

A. Optimal design of Gt[n]

Maximizing (10) with respect to Gt[n] amounts to mini-
mizing E{‖n(eq)

r [n]‖2}, because i(eq)[n] ≈ 0 when A[n] is
fixed to the estimated value of Hrr[n]. To avoid the trivial
solution Gt[n] = 0, we constrain Gt[n] to belong to a certain
subspace that causes bounded distortion on the R-D channel.

A pre-equalization stage at the relay can significantly reduce
the complexity of the final equalizer at D. We propose the
use of channel shortening which is a filter design technique
tailored for OFDM-based systems that reduces the overall
channel length to simplify the subsequent channel equaliza-
tion. Channel shortening is commonly performed in time
domain before channel compensation takes place in frequency
domain [10]–[12].



Let H
(eq)
rd [n] represent the Leq = (Lrd + Lt)-th order

equivalent channel between R and D, i.e.,

H
(eq)
rd [n] = Hrd[n] ?Gt[n] (12)

We impose channel shortening constraints on Gt[n] that
reduce the effective order of H(eq)

rd [n] to be 0 ≤ τ ≤ Leq , i.e.,
only the taps of H(eq)

rd [n] exceeding delay τ ≥ 0 are forced to
zero, where constant τ is a design parameter. Consequently,
Gt[n] operates as a channel shortening filter. The channel
shortening constraints can be expressed as

H̃rdgt = 0 (13)

where the mMr(Leq − τ) × mNt(Lt + 1) matrix H̃rd

depends on the convolution matrix of Hrd[n] and gt =
vec{[Gt[0] . . .Gt[Lt]]} stacks the columns of Gt[n] into a
vector of size mNt(Lt + 1).

We require that gt has enough degrees of freedom to allow
the minimization of E{‖n(eq)

r [n]‖2} while satisfying (13), i.e.,
mNt(Lt+1) > rank{H̃rd}, or, if H̃rd has full rank, Nt(Lt+
1) > Mr(Leq − τ). Denoting the nullspace of H̃rd by Ñrd,
any possible gt satisfying (13) can be expressed as

gt = Ñrdt (14)

where t is an arbitrary vector of size mNt(Lt + 1) −
rank{H̃rd}, and matrix Ñrd is of size mNt(Lt + 1) ×
mNt(Lt + 1)− rank{H̃rd}. Additionally, the received power
at D from R can be expressed as

E{‖Hrd[n] ? rt[n]‖2} = tHPrdt (15)

where matrix Prd depends on Ñrd and the second-order
statistics of rt[n]. From (15), the relay delivers maximal
power to D when t is aligned with the eigenvector associated
with the largest eigenvalue of Prd, up to a normalization
constant yielding E{‖rt[n]‖2} = Pmax. At the same time,
the delivered power to D by R is minimal when t is aligned
with the eigenvector associated with the smallest eigenvalue
of Prd. Therefore, if t belongs to the subspace spanned by
the eigenvectors of Prd associated with the largest κ nonzero
eigenvalues, the delivered power at D will be a significant
fraction of the maximum delivered power.

Let Vrd represent a matrix whose columns contains the κ ≥
1 eigenvectors of Prd associated with the κ non-zero largest
eigenvalues of Prd, which are denoted by λ1 ≥ . . . ≥ λκ > 0.
Let t = Vrdq, where q is an arbitrary vector with constant
nonzero norm. With that, gt satisfies the following constraints:

Pgt = 0 (16)

‖gt‖2 = gmax (17)

where P is a projection matrix onto the subspace orthogonal to
that spanned by ÑrdVrd and gmax is a constant that renders
E{‖rt[n]‖2} = Pmax. Note that, with constraints (16) and
(17), gt = 0 is not a valid solution and we guarantee that the
minimum delivered power at D from R is, at least, λκ/λ1
times of the maximum achievable one.

A practical way of selecting parameter κ is by introducing
the constant α that sets κ based on the ratio between eigen-
values with respect to the largest one, λ1, i.e., κ is the number
of eigenvalues satisfying

λj
λ1
≥ α (18)

where j = 1, . . . , κ. For example, in the following simulations,
we illustrate the cases where α = {75, 50, 25}% of the largest
eigenvalue of Prd.

With the previous discussion, the optimization problem for
gt is equivalent as the following problem with respect to q

minimize
q

qHPeqq

subject to ‖q‖2 = pmax
(19)

where matrix Peq results from expressing E{‖n(eq)
r ‖2} as a

function of vector q (details skipped due to lack of space) and
constant pmax ensures that the relay transmits at full power,
i.e., E{‖rt[n]‖2} = Pmax. Vectors q and gt are related as

gt = ÑrdVrdq (20)

The solution to problem (19) is given by

q =
√
pmaxvmin (21)

where vmin is the eigenvector of Peq corresponding to the
smallest eigenvalue. Filter Gt[n] is recovered from q by
reshaping the product ÑrdVrdq.

Note that the original mNt(Lt + 1) degrees of freedom
of Gt[n] are reduced to κ, which will impact the achievable
mitigation. Nevertheless, the solution does not compromise the
reception of rt[n] at D by establishing a lower bound to the
delivered power at D from R.

B. Optimal design of Gr[n]

The final step in solving problem (11), as stated in Algo-
rithm 1, involves the design of Gr[n] when Gt[n] is fixed. The
received signal after cancellation consists of ř[n] and nr[n],
so solving (11) with respect to Gr[n] is equivalent to

maximize
gr

gHr Prgr
gHr Pngr

(22)

where gr = vec{[Gr[0] . . .Gr[Lr]]} stacks the rows of Gr[n]
into a vector of size mNr(Lr + 1) and matrices Pr and Pn
stem from expressing ř(eq)[n] and n

(eq)
r [n] in terms of gr,

respectively.
The solution to the generalized eigenvalue problem in (22)

is given by
gr = ρL−1vmax (23)

where vmax is the eigenvector associated with the maximum
eigenvalue of L−HPrL

−1, L is a square root of Pn, i.e.,
Pn = LHL, and ρ 6= 0 is an arbitrary constant.

After Gt[n] and Gr[n] are computed using expressions (21)
and (23), Steps 2 and 3 in Algorithm 1 are iteratively repeated
until some stopping criterion is met.



V. SIMULATION RESULTS AND DISCUSSION

To evaluate the performance of the SINR optimization
method, we consider a relay link with the following char-
acteristics: The source node S has Mt = 2 and transmits
m = 2 independent data streams of a 64-QAM modulated
OFDM signal with 8192 subcarriers and a normalized cyclic
prefix length of 1/4. The source node transmit power is 0 dB,
i.e., E{‖s[n]‖2} = 1. The destination node is equipped with
Mr = 2 receive antennas. The relay samples the data signal
coming from S using an oversampling factor of 2, such that
the received signal covers approximately half of the Nyquist
bandwidth. Additionally, E{‖r̂t[n]‖2} = 1 and Pmax = 20
dB. Filters Gt[n], Gr[n] and A[n] have orders La = Lrr and
Lt = Lr = 2, respectively. Finally, channels Hsr[n], Hrd[n]
and Hrr[n] are drawn from a complex Gaussian distribution,
with orders Lsr = Lrd = Lrr = 2 and have average gains of
0 dB, 0 dB and 30 dB, respectively. Thermal noise power is
set to σ2 = −20dB.

We compare the method proposed here with the one re-
ported in [9]. For this purpose, the relay is configured with
Nt = 4 transmit antennas and Nr = 2 receive antennas,
δ = −30 dB is fixed while γ is variable. The number of
iterations used in the optimization procedure is 10. Note that
in [9] the equivalent R-D channel is equalized to match the
following target channel

H
(eq)
rd [n] =

{
I, n = 0

0, n 6= 0
(24)

We define the SINR improvement of the method as the ratio
between the SINR resulting from using the proposed method
and the SINR resulting from using a reference system that
consists of Gt[n] = µ1. Concretely, Lt = 0 and 1 is an all-
ones matrix of size Nt×m, i.e., Gt[n] equally distributes the
data streams over the different antennas. Constant µ matches
the power of both systems.

Figure 2 depicts the SINR improvement as a function of
the receiver’s dynamic range γ, for different values of α when
τ = 0. Recall that κ relates to α as the number of eigenvalues
of Prd that are at least α times the maximum eigenvalue of
Prd. The lowest dashed line in Fig. 2 represents the results
obtained in [9] under the same conditions. Firstly, note that
the proposed method outperforms [9] for any value of γ, with
larger gap when γ decreases. This is a direct consequence
of the joint design of Gt[n] and Gr[n], whereas [9] follows
a decoupled approach. We also see how the performance is
affected by the different values of α. A lower value of α results
in larger κ, i.e., more degrees of freedom available to Gt[n]
to further reduce the residual noise. When the receiver noise
is dominant, γ > −30 dB, the variation in performance for
different values of α reduces to less than 1 dB. In that case,
the use of a high value of α seems reasonable, because the
relay performance varies slightly in contrast to the delivered
power at D, which can be up to three times larger.

Figure 3 depicts the SINR improvement as a function of
the receiver’s dynamic range γ, for different values of τ when
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Fig. 2. SINR improvement as a function of the receiver dynamic range and
different values of the power delivered at the destination.
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Fig. 3. SINR improvement as a function of the receiver dynamic range and
different values of the effective relay-destination channel order.

α = 75%. Since τ represents the largest nonzero tap delay
of H(eq)

rd [n], a larger value of τ results in Gt[n] having more
degrees of freedom. Similarly to the previous case, we evaluate
how τ affects the overall performance and we compare it to the
results in [9], which is depicted as the lowest dashed line. First,
we see that for a receiver with a large dynamic range, γ < −35
dB, the difference in performance for different values of τ is
up to 3–4 dB higher than [9]. Such differences become smaller
for a smaller dynamic range, or γ > −30 dB. We also see the
effect of τ is not as pronounced as that of varying parameter
α. This indicates that dedicating more degrees of freedom for
Gt[n] by increasing τ does not result in a significant boost in
the performance, but it can be beneficial to the R-D link and
consequently, the overall source-destination link.

Figure 4 shows the SINR improvement for different antenna
configurations in terms of the receiver’s dynamic range γ
when α = 75%, τ = 0, and δ = −30 dB. Note that in
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Fig. 4. SINR improvement as function of the receiver dynamic range and
different relay antenna configurations.

Fig. 4, solid lines depict the results obtained by the proposed
method, while dashed lines depict the results in [9]. The
proposed method outperforms [9] in all the tested cases,
with some noticeable margin, e.g., when γ = −40 dB,
Nt = 4 and Nr = 6, the gap between the two methods is
approximately 4 dB. The performance behavior in terms of
the antenna configuration follows the same conclusions as in
[9], where we can roughly distinguish two cases: wide range
case when γ ∈ (−45,−30) dB, and narrow range case when
γ ∈ (−30,−15) dB. In a wide range case, i.e., γ is low, the
best performance is achieved with a large number of receive
antennas, see, e.g., the results for case Nr = 6. For this case,
the receiver redundancy, Nr/Nt, can be used as an indicator
of the achievable performance, with larger ratios of Nr/Nt
yielding better results. On the contrary, in a narrow range
case, i.e., γ is large, configurations with a larger number of
transmit antennas perform better, see, e.g., the results for case
Nt = 8. In fact, a large number of transmit antennas results
in lower self-interference power leaking back into the relay
and, consequently, a lower noise power at the receive side of
the relay. For this case, Nt can be used as an indicator of the
performance, with better performance for larger Nt.

In summary, we can conclude that the method presented
here yields, overall, better performance than the one in [9],
with the gap between them reaching several decibels. Both
methods are based on the same cancellation-suppression ar-
chitecture and require the same side information. Since both
methods solve similar convex optimization problems, they
are comparable in terms of computational complexity. Addi-
tionally, the parametrization of the equivalent R-D channel
through constants τ and κ allows for a more efficient allocation
of the degrees of freedom available in Gt[n], in comparison to
[9], where all the coefficients of the equivalent R-D channel
are specified beforehand.

VI. CONCLUSIONS

We have presented a method for the maximization of the
SINR in a wideband full-duplex MIMO relay subject to limited
dynamic range. The method uses a combined cancellation-
suppression architecture and jointly designs the transmit and
receive filters of the relay using an alternating optimization
procedure, where the individual filters are obtained as the
solution to a sequence of two convex optimization problems.
In order to avoid excessive distortion on the relay-destination
channel, we impose linear constraints on the transmit side
that reduce the length of the effective channel, similarly to
a channel shortening approach, and ensure that the received
power at the destination stays above a minimum quality value.
Simulation results show that the presented method outperforms
previous results in [9] and can provide SINR improvements
of several tens of decibels.
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