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ABSTRACT

A novel blind initialization procedure for iterative decision feed-
back equalizers in block-based transmission systems is proposed
and investigated. It relies on an initial stage using Regalia’s block-
based Constant Modulus iterative algorithm for the blind computa-
tion of a linear equalizer; then a switch to decision feedback mode
is performed. It is shown how the building blocks of the decision
feedback equalizer (feedforward and feedback filters, automatic
gain control and phase rotation) can be blindly estimated. Due
to the unknown lag introduced by the blind linear equalizer, de-
lay synchronization of the feedforward and feedback filters is also
required. These filters are then refined over successive decision
feedback iterations. This approach can also be used as a blind
channel identifier for other block receiver designs, such as soft ISI
cancelers and decoder-aided (i.e. turbo) equalizers.

1. INTRODUCTION

As data rates increase in modern digital communications systems,
intersymbol interference (ISI) becomes an inevitable consequence
of the dispersive nature of bandlimited propagation channels. The
receiver must include an equalizer to mitigate the effects of ISI.
In applications in which the channel impulse response is unknown
and no training sequence is available, the equalizer must be com-
puted/updated blindly from the received signal and knowledge of
the statistics of the data source alone. A common approach in con-
tinuous transmission systems is to blindly update a linear equal-
izer (LE) using the Constant Modulus Algorithm (CMA), and then
switch to a decision directed (DD) mode once the symbol error rate
(SER) is low enough [10]. Switching to a DD-based decision feed-
back equalizer (DFE) is also possible and desirable, since DFEs
generally outperform LEs for the same complexity. A generic
strategy for blind DFE initialization in such setting was proposed
in [4]; see also [1].

We develope a similar strategy for blind iterative DFE com-
putation in block transmission systems with quadrature amplitude
modulation (QAM). An iterative CMA-based LE for packet-based
systems was recently proposed by Regalia in [8]. Its computational
simplicity makes it an obvious candidate for the first iterations,
during which hard decisions would not be reliable. Once the eye
has been opened the DFE mode is switched on, which should re-
duce the SER considerably. Several issues must be addressed if the
switch is to be successful. First, gain and phase correction must be
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applied since the CM approach does not completely compensate
for these impairments. Second, the equalization lag to which the
CM-based LE has converged must be identified, in order to prop-
erly synchronize the DFE. Third, the feedforward and feedback
filters of the DFE must be computed. We show how all these tasks
can be carried out blindly.

The paper is organized as follows. Section 2 presents the
channel model. Regalia’s block-oriented CM scheme is briefly re-
viewed in section 3. Gain and phase correction are discussed in
section 4, while blind computation of the DFE building blocks and
their mutual synchronization in terms of time delay are considered
in sections 5 and 6 respectively. Section 7 presents the operation of
the iterative DFE. We close with some examples and conclusions.

2. PROBLEM STATEMENT

We consider a (complex-valued) baseband-equivalent single-input
single-output channel model

L
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where wu,, is the received signal, {hx}~_, is the channel impulse
response, {ax } is the transmitted symbol sequence, and %,, is addi-
tive noise. H(z) = E;f:o hiz~* is the z-transform of the chan-
nel response. It is assumed that {a, }, {7, } are independent, zero-
mean white sequences with variances o, and o, respectively. The
symbols {a~ } are drawn from a complex QAM constellation. We
consider block-based transmissions, in which N— L symbols (with
L an estimate of the channel order L) are sent through the channel
so that V samples of the received signal (w1, us,---,un)” are
available. During the transmission of a data block, it is assumed
that the channel taps remain constant. The goal is to recover the
transmitted symbols {a,} relying solely on knowledge of their
probability distribution and the received samples.

3. LINEAR EQUALIZATION STAGE

Error propagation would preclude blind adaptation of a DFE from
a cold start (unless the channel is sufficiently mild), and therefore
we initially resort to an LE. In particular, P iterations of Regalia’s
CM block-oriented algorithm [8] are run initially. We briefly de-
scribe the process here.



Let g be the M x 1 vector comprising the LE taps, so that the
equalizer output is
T
Yn=[ Un Un— Un—M+1 |g = U,g.
LtU=[ u1 u uy |7, and let U = QR be its QR
decomposition (i.e. Q is unitary and R is upper triangular). By
stacking all y,, in a vector y, one can write

Y1
Y2
y=| . [ =Ug=QRg=Qw,

YN

where w = Rg. The k-th iteration of the algorithm can be sum-
marized as follows:

1. Lety, = Qwg.

2. Let zz = y, © y};, where © denotes componentwise
(Hadamard) product.

3. LetFy, = ||zk||2, and pr, = ,H/Fk with % <p< %

4. viy1r = wi — ue[QY (zx ©y,) — Fiow].
5 wWiy1 = Vg1 /|[Vieall.

It is common to use a ‘center-spike’ initialization for the equal-
izer, i.e. w is set initially to the middle column of R. Basi-
cally, this iterative process seeks a minimum of the cost function
F(w) = (3, lyal*)/ (2, lyal*)? subject to ||w|| = 1. If
successful, after a few iterations the LE has ‘opened the eye’ so
that hard decisions on the LE output are reliable enough for DFE
adaptation purposes.

Instead of running the LE stage for a prespecified number P
of iterations, the value of F} could also be used as an indicator
of eye opening: we can approximate F' = k,/N, where k, =
E[|yn|*1/E?[|yn|?] is the normalized kurtosis of {,, }. Therefore,
the switch could be made whenever Fy, < (kq/N is detected,
where &, is the kurtosis of the source and ¢ is a number slightly
greater than one. Alternatively, the switch criterion | Fy, — Fr_1| <
€, With € a small positive number, could also be used.

4. GAIN AND PHASE CORRECTION

Note that the CM scheme outlined in section 3 does not provide
phase correction (since the cost F' is insensitive to complex phase
rotations) or gain control (since the norm of w is constrained to 1).
Let w, y be the equalizer tap and output vectors, respectively, after
the P prespecified CM iterations with the LE. If the eye has been
opened, the distribution of the elements of y will resemble the con-
stellation of the original symbols, possibly rotated and scaled. To
compensate for these effects, both w, y are multiplied by a com-
plex scalar re=7%. The scaling r is easily computed in order to
match the variances of the equalizer output and the original con-

stellation:
2
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since the vector y has unit norm.

Several block-based methods are available for blind phase es-
timation. For example, the fourth power estimator is well suited
for QAM constellations, and it is known to yield almost maxi-
mum likelihood performance in the limit of small SNR (see [11]

for a performance analysis of several blind phase estimation tech-
niques). It is given by

N
6= ; angle [E[a::‘]% > y;t] . @

n=1

As with any blind procedure, a residual phase ambiguity of kr /2
remains as a consequence of the quadrant symmetry of the QAM
constellation. This is usually sidestepped by using differential en-
coding of the data.

We should note that for M-PSK constellations with M > 4,
one has Ela;;"] = 0 and therefore the fourth power estimator is
not adequate. PSK-specific phase compensation techniques could
be used in such cases [2].

5. COMPUTATION OF THE MM SE DFE

Once amplitude and phase offsets have been corrected in the re-
ceived signal, the minimum mean square error (MMSE) DFE is to
be computed. Since the approach is block-based and iterative, the
feedforward and feedback filters (FFF and FBF) of the DFE (which
we denote by P(z) and Q(z) respectively) need not be causal, i.e.
“future’ decisions can be fed back since they are available from the
previous iteration. Thus we let

P)= > mz " Q=) @z’ @
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The DFE output at iteration & is therefore

Y = P(2)un — Q(2)al ),

where d,(f_l) are the hard decisions from the previous iteration,

and d is some equalization lag. In this way, y,(f) is an estimate of
the symbol a,,—q. Now P(z), Q(z) are chosen to minimize the
MSE E[|lapn—d — yﬁf“)|2], assuming that *future’ as well as "past’
decisions from the previous iteration are correct, i.e. fzﬁ,’f‘l) =am
for m # n — d. The constraint go = 0 on the feedback filter seen
in (4) is imposed in order to avoid the trivial solution P(z) = 0,
Q(z) = —1. The solution to this minimization problem can be
given in terms of the channel H(z) [5]:

P(z) = H%ﬁ(z)z—d, 5)
1
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where H(z) denotes the ‘paraconjugate’ of H(z), i.e. H(z) =
H*(1/z"), and A, a denote respectively the noise to transmitted
power ratio and the channel gain:

L
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It is seen from (5)-(6) that the FFF and FBF of the MMSE DFE do
have a finite number of coefficients (since H(z) is FIR), and that
the optimum FFF is a filter matched to the channel. In order to



blindly obtain these filters, it will be useful to introduce the power
spectral density (psd) S.(z) of the received signal:

oo}

Su(z) = Z ez ", with

k=—o0

ry = Elunuy ). (8)

We observe that this psd is given by
Su(2) = oL H(2)H(z2) + 0,27. 9)

From (6) and (9), and noting that o2 (A + a) = 7o (the variance of
the received signal), it follows that

Q) = —Su(z) ~ 1. (10)
ro

Therefore, the FBF taps can be directly (and blindly) computed
from the autocorrelation sequence of the received signal. This
autocorrelation sequence can be very efficiently estimated due to
the fact that the QR decomposition of the data matrix U is al-
ready available from the LE stage. In particular, if we denote
R = [Rij)i<i,j<m, then the estimate of the lag-k coefficient be-
comes

N
| 1 Z X
e = N UnUp—k
n=1
1

= yRuRign, 0<k<L 11)

With these, the estimated FBF is given by

Q(z) = %(ﬁ*ﬁz’: 4ozt 427 E). (12)
In order to estimate the FFF taps, let G(z) be the z-transform of
the linear equalizer impulse response g at the end of the LE stage
(recall that Rg = w), and after gain and phase correction have
been applied as discussed in section 4. Then the cascade of channel
and linear equalizer approximates a pure delay:

G(2)H(z) =~ 27%,

and therefore

T—ZG(z)H(z)I:I(z) ~ T—:I;T(z)z_d

= P(2), (13)

which is the desired matched filter. Now, by making the approx-
imation 02 H (z)H(z) ~ S,(z) (which ignores the contribution
of the additive noise to the received signal psd) in (13), we finally
obtain our FFF estimate as
P(2) = LG (2)S.(2). (14)
0

To
6. DELAY SYNCHRONIZATION

As shown in section 5, the estimate FFF (14) satisfies

A 0'2 ~ _d
P(z)= 2H(z)z “.
To
It is important to note that the delay d is unknown (it corresponds
to the delay associated to the CM-based linear equalizer). In a se-
rial (i.e. noniterative) implementation of the DFE this would not be

a problem. However, for the iterative approach to work, the value
of d must be determined in order to synchronize the operations of
the FFF and FBF (since the latter operates on decisions from the
previous iteration). To do so, we note that since the LE G(z) had
M taps, the convolution G(z)S.(z) has a total of 2L + M coef-
ficients. (Usually, in order to achieve acceptable performance, it is
necessary to take M considerably larger than L.) Thusonly L + 1
of the 2L + M coefficients of G(z)S.(z) will be significant, and
their position in this convolution will be given by the unknown de-
lay. Therefore d can be estimated by computing the energies of
the coefficients of G(z)S. (z) over all windows of size L+ 1. The
taps of the feedforward filter are determined by picking the L+1
coefficients of the window with maximum energy. In this way, if
the resulting FFF ﬁ(z) isseen as a degree-f,, causal FIR filter, we
would have

2 .

P(2)~ 22 H(2)2 ", (15)
ro

A similar energy maximization approach was suggested in [6] in

order to resolve delay ambiguities in a blind channel identification

setting.

7. DECISION FEEDBACK EQUALIZATION STAGE

With the initialization procedure described in sections 5 and 6, the
DFE operates iteratively over the data block. A decision directed
approach could be used in order to refine the FFF and FBF esti-
mates at every iteration. However, in order to reduce the compu-
tational complexity by taking advantage of the QR decomposition
available from the LE stage, and to reduce the effect of error prop-
agation, we propose to keep the FBF fixed at its initial value (12)
while updating the FFF using the same CM approach, although
suitably modified as explained next.

Let R be the (L + 1) x (L + 1) principal submatrix of R,
and Q the matrix formed by the first L + 1 columns of Q. Also
let the vector p comprise the L + 1 coefficients of the initial FFF
P(2) (15). Then we initialize w = Rp. Similarly, let q be the
FBF vector

o ¥

q=|[7

and Ay, the N x (2L + 1) Toeplitz matrix formed by hard decisions
from iteration k:

a® o0 ... 0
as a® 0

Ag

(k) A (R) W
ay’ ON-1 T OGN ,p

The following procedure illustrates the computation of the DFE
output at iteration k, y;, = [ y*  ¢{¥) & 17, and the
update of the FFF:

1. Lety, = QW}C — Ar_1q.
2. Letzy =y, Oy;.

3. Let F = [lzxl*/Ilyill*, and pr = B/l|zx||* with 5 a
constant.

_ _ ~H
4 Wi = Wi — Q" [(zx © yi) — Frllysl?yl-



Channel frequency response [H(e")|

-15 ! I I I I
0 0.1 0.2 0.3 04 05 0.6 0.7 08 0.9 1

w?2m

Channel zeros
2 T

Imaginary Part
o
T
I

-1+ 4

-6 -4 -2 0 2 4
Real Part

Figure 1: Channel characteristics.

5. With D(-) denoting the hard decision device, let

(k) _ .
a® = D(y,};) n=1...,N-L
0, n=N-L+1,...,N.

Again, this iteration represents a gradient descent on the cost func-
tion F(%) = (0, yn|*) /(0 |yal|*)? the main difference
with respect to the LE stage being that w cannot be constrained to
have unit norm due to the effect of the FBF in the output vector y.

It should be noted that the FBF vector q could also be updated,
by noting that the MMSE FBF (6) can be written in terms of the
MMSE FFF (5) as

~ [0}
Qe = (+a)PEPR)~
2
o, ~
= 52 [P(2)P(2) = |IP(2)|I"] . (16)
Thus, given Wy, one could solve for p, in Rp,c = Wy Via

backsubstitution, and then obtain q; by convolving p,, with its
reversed-conjugate version, multiplying the result by #y /a2 and
setting the central tap to zero.

8. SSIMULATION EXAMPLES

Here we consider a rather severe complex channel of order L = 4
given by

ho 0.0 + j0.2
h1 —0.2 4 50.8
he | = | 03-j01 an
hs —0.8+50.3
ha 0.1— 0.2

whose frequency response and zero pattern are shown in Fig. 1.
In the first simulation the symbols were drawn from a QPSK
constellation. The SNR at the channel output was 18 dB, and a
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Figure 2: Evolution of the CM cost Fj. QPSK symbols, packet
size N = 500, SNR = 18 dB.
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Figure 3: Scatter plots after the LE and DFE stages for QPSK.
Packet size NV = 500, SNR = 18 dB.

linear equalizer with M = 9 taps was used. The packet size was
N = 500 symbols. The evolution of the cost F}, in one run is
shown in Fig. 2 using 8 = 2/3 in the stepsize of both stages. The
switch to DFE mode is done after P = 20 iterations of the LE
stage; the assumed channel order was L=L=4

Observe the drop in the cost F}, once the DFE is switched on,
which implies a significant increase in the eye opening as can be
seen in Fig. 3. In the DFE stage, the FBF was kept fixed at its ini-
tial value, although a similar behavior was observed when it was
updated as outlined in section 7. We should note that if L > L,
then the FFF will have some extra leading or trailing taps of small
magnitude which introduce some additional noise enhancement;
however, the DFE initialization procedure is robust to this effect,
and the synchronization scheme of section 6 automatically com-
pensates for the additional delay introduced by small FFF leading
taps. Thus knowledge of the channel order is not critical.

We repeated the experiment using a 16QAM constellation for
the source. In that case, the LE order and packet size had to be
increased to M = 16 and N = 1000 symbols respectively. Simi-
larly, convergence of the LE stage was significantly slowed down
as can be observed in Fig. 4, so that it was run for P = 40 itera-
tions before switching to DFE mode. The resulting eye diagrams
are shown in Fig. 5.

Since the feedforward filter of the MMSE DFE reduces to a
filter matched to the channel, is it clear that the relation (13) can
be alternatively seen as a blind channel estimator. It can be viewed
as a block-based counterpart of the Gooch-Harp method of on-line
blind channel identification [3, 9], which estimates the channel im-
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Figure 5: Scatter plots after the LE and DFE stages for 16QAM.
Packet size N = 1000, SNR = 18 dB.

pulse response by correlating the received signal with the symbol
estimates obtained by a constant-modulus based blind equalizer.

In order to test the quality of this estimator, we run some
simulations to compute the normalized root-mean-square error
(NRMSE), defined as

R
1 1 -
NRMSE= — | = h — h(3)||?,
BT 7 2o B

where h is the vector of channel coefficients, h(3) is the channel
estimate in the sth run, and R is the number of runs. We consid-
ered the same channel (17), using an equalizer of order M = 16.
Fig. 6 shows the NRMSE as a function of the SNR «/X at the
channel output, for several values of the packet size N and QPSK
transmitted symbols (Averaging was made over 500 independent
runs). Fig. 7 is similar but considering a 16QAM constellations.
As it could be expected, the latter scheme requires considerably
more symbols to achieve similar performance.

9. CONCLUSIONS

We have presented a procedure for blind initialization of iterative
DFEs in block based transmission systems. The key idea is to open
the eye with an iterative, blind linear equalizer, and then switch to
decision feedback mode. Several issues must be taken care of in
this switch, such as correcting the gain and phase of the linear

NRMSE

SNR (dB)

Figure 6: Channel NRMSE as a function of SNR, for different
packet sizes (OQPSK modulation).

NRMSE
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Figure 7: Channel NRMSE as a function of SNR, for different
packet sizes (16QAM modulation).

equalizer, computing the building blocks of DFE, and compensat-
ing for the unknown delay introduced by the linear equalizer. It
has been shown how to perform all these tasks blindly and with a
low computational cost.

The iterative DFE based on hard decisions is sensitive to error
propagation from one iteration to the next, due to wrong decisions
being made. Given the iterative nature of the scheme, it appears
to be well suited for more sophisticated approaches. For example,
Pollock and Kennedy [7] have proposed a block-oriented bidirec-
tional DFE, which uses a data-dependent soft nonlinearity instead
of a hard decision device. In systems incorporating channel cod-
ing, turbo equalizers [5, 12]), which exploit information from the
error correction decoder, can also be used. Both approaches are
characterized by a symbol-by-symbol recomputation of the FFF of
the equalizer, which amounts to having a time-varying DFE, and
both require knowledge of the channel impulse response. Thus the
method presented here constitutes a good candidate for an initial
blind channel estimation stage in these schemes. This first blind
channel estimate can be further refined along successive iterations
of the turbo equalizer [13].
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