
1

Multiantenna spectrum sensing exploiting

spectral a priori information
Gonzalo Vazquez-Vilar∗, Student Member, IEEE, Roberto López-Valcarce∗, Member, IEEE, Josep Sala†,

Senior Member, IEEE
∗ Dept. of Signal Theory and Communications, Universidad de Vigo

36310 Vigo, Spain. E-mail: {gvazquez,valcarce}@gts.uvigo.es
† Dept. of Signal Theory and Communications, Technical University of Catalonia (UPC)

c/Jordi Girona 1-3, Campus Nord UPC, 08034 Barcelona, Spain. E-mail: josep.sala@upc.edu

Abstract

Dynamic Spectrum Access (DSA) is receiving considerable interest as a means to improve spectral usage in

licensed bands. In order to avoid interference to licensed users, spectrum sensing has emerged as an enabling

technology for DSA. The requirements for spectrum sensors are stringent, as licensed user detection must be performed

reliably at low signal-to-noise ratios (SNR). Sensing performance can be improved by exploiting signal features not

present in the background noise. These approaches result in tradeoffs among performance and robustness to departures

from the signal model. We consider second-order signal features and develop detectors exploiting spatial (by using

multiple antennas) as well as temporal signal correlation, taking advantage of the fact that the power spectrum of the

primary signal at each antenna can be known up to a complex scalar representing the unknown propagation channel.

A low-SNR Generalized Likelihood Ratio approach is adopted in order to overcome this uncertainty, resulting in

different tests intimately related to familiar diversity combining techniques. The performance of the proposed detectors

is analyzed and tested in different scenarios.

I. INTRODUCTION

The wireless community is showing considerable interest in the development of Dynamic Spectrum Access

(DSA) techniques as a means to alleviate the apparent scarcity of spectral resources as perceived nowadays [2], [3].

DSA adoption will require powerful spectrum sensing schemes in order to allow the usage of spectral holes while

maintaining the interference produced to licensed (primary) users at sufficiently low levels. Wireless propagation

phenomena such as shadowing and fading pose significant challenges to the reliable detection of primary users. The

received primary signal may be very weak, resulting in very low Signal-to-Noise Ratio (SNR) operation conditions
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and "hidden node" situations. Cooperative sensing has the potential to overcome the effects of shadowing [4], [5],

though it still relies on standalone detectors whose performance should be optimized.

Depending on the amount of information available about the structure of the primary signal, different detectors

may be designed. Exploiting specific signal features (e.g. training sequences, cyclostationarity [6], [7], presence

of a cyclic prefix [8], constant envelope [9], or spectrum shape [10]–[13]), it is possible to improve detection

performance with respect to simpler approaches which do not attempt to model the primary signal, such as energy

detection [14].

Since feature-based detectors tend to be sensitive to clock synchronization errors [15], our focus is on detectors

based on knowledge about the spectral shape of primary transmissions. The resulting schemes do not require time

synchronization with a potentially present signal (a difficult task in very low SNR conditions) and are quite general

since no particular features of the primary signal are exploited beyond knowledge of its second-order statistics. In

addition, we consider the use of multiple antennas at the spectrum monitoring device. In this way, spatial correlation

in the received primary signal can be used to enhance detection performance. Hence the main contribution of this

work is to consider jointly temporal and spatial signal correlation, under the assumption that noise is temporally

and spatially white.

Previous work on multiantenna spectrum sensing is mainly based on spatial correlation only [16]–[18] and does

not assume (or exploit) any information about the spectral shape of the primary signal. Under the assumption that the

power spectral density (psd) of the signal is completely known, [19] derives the optimal Neyman-Pearson detector

for both scalar and vector-valued signals. However, in spectrum sensing applications the propagation channel is

unknown, and thus only partial knowledge of the second order statistics is available in practice. A possible approach

in that case is to neglect this partial knowledge, and consider test statistics that quantify the departure of the sample

temporal autocorrelation matrix of the observations from a scaled identity [12]. Alternatively, metrics quantifying

the distance of the sample correlation matrix from a “candidate” matrix summarizing a priori knowledge can be

used: in the single antenna setting, for example, [10] assumes the signal psd known up to a scaling and a shift,

respectively modeling uncertainty about the power level and carrier frequency of the signal. Also assuming a single

antenna, [13] adopts a similar approach when the carrier frequency is known, as it often occurs in practice: for

instance, for frequency division multiple access (FDMA) primary networks with public channelization parameters.

In this work we generalize the approach from [13] to the multiple antenna setting. The channel gains from

the primary transmitter to the sensor antennas are assumed unknown. A Generalized Likelihood Ratio (GLR)

approach [20] for low SNR will be used to sidestep this problem, and different multiantenna detectors will be

obtained in this way depending on the assumptions adopted. These detectors bear close relationship with several

well-known diversity combining techniques from the communications field [21]. We present statistical analyses

showing how these detectors offer different tradeoffs between complexity and performance.

The paper is organized as follows. The system model is introduced in Section II and the corresponding Hypothesis

Testing Problem is discussed in Section III. Under different assumptions on the channel gains, in Section IV we

derive the corresponding detectors and present theoretical performance analyses. Simulation results in diverse settings
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are presented in Section V and final conclusions are drawn in Section VI.

Notation: lower and uppercase boldface symbols denote vectors and matrices, respectively. The vector of all ones

is denoted by 1. The Kronecker product of A and B is denoted by A ⊗B. We use y ∼ CN (µ,P ) to indicate

that y is circularly complex Gaussian with mean µ and covariance P . Neper’s base-e logarithm is denoted by log.

The Q-function (tail probability of the standard normal distribution) is defined as Q(x)
.
= 1√

2π

∫∞
x

e−
t2

2 dt.

II. SYSTEM MODEL

An FDMA-based primary system with fixed channelization is assumed. The spectrum monitor is equipped with

M antennas with their respective Radio Frequency (RF) chains. A given primary channel is selected, downconverted

to baseband, and sampled at a rate fs to obtain K complex-valued samples at each antenna (T = K/fs is the

observation time). The samples at the m-th antenna are collected into the K × 1 vector ym, given by

ym = h̃mx+ σmwm, 1 ≤ m ≤M, (1)

where

• x = [x0 x1 · · · xK−1 ]T comprises the samples of the primary signal.

• h̃m is the (unknown) complex channel gain at antenna m. If the channel is vacant, then h̃m = 0 for all m.

• σ2
m > 0 is the noise variance at antenna m, assumed known.

• The noise is assumed temporally white and statistically independent across antennas: E{wmwH
n } = δmnIK .

Since the noise variances are known, the observation at antenna m can be scaled to obtain

rm =
1

σm
ym = hmx+wm, (2)

where hm
.
= h̃m/σm. By introducing the vectors

r
.
=


r1

...

rM

 , w
.
=


w1

...

wM

 , h
.
=


h1

...

hM

 , (3)

the model (1) can be compactly written as

r = h⊗ x+w. (4)

In order to protect primary users from interference, the operational range of spectrum sensors must include primary

signals well below decodability levels; in such situations, attempting to synchronize with the potentially present

primary signal is unrealistic. Thus, in a first approximation, {xk} can be assumed zero-mean wide-sense stationary

with psd Sxx(eω), and normalized to unit power, i.e. E{|xk|2} = 1
2π

∫ π
−π Sxx(eω)dω = 1. The average SNR per

antenna, denoted by ρ, is therefore

ρ
.
=

1

M

M∑
m=1

|h̃m|2
σ2
m

=
||h||22
M

. (5)

We adopt a Gaussian model for the primary signal, for the following reasons. First, since the noise is assumed

Gaussian as well, the Gaussian pdf for the signal is the least informative one for the detection problem. Second,
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if the primary system uses multicarrier modulation with a reasonable number of subcarriers, the Gaussian model

is quite accurate. Third, low-SNR approximations of the log-likelihood in ML estimation for general distribution

of the signal of interest usually lead to detectors based on second-order statistics. The detectors proposed in the

sequel are functions of sample correlations, and therefore, as the SNR goes to zero, the choice of the (Gaussian)

distribution is not so relevant. And finally, this model is tractable and leads to useful detectors even if the Gaussian

assumption does not hold, as will be shown in the simulation results. Therefore, it is assumed that x ∼ CN (0,C),

where C .
= E{xxH}. Provided that the channelization parameters of the primary system are public (as will be

the case for e.g. broadcast networks, cellular networks, etc.), then Sxx(eω) is known (and so is C). Note that C

is Toeplitz with ones on the diagonal. In general, {xk} will be colored (and C 6= IK) as a result of interchannel

guard bands, pulse shaping, etc.

Let C = UΛUH with Λ = diag(λ0 λ1 · · · λK−1) be an eigendecomposition of C, and let W be the K ×K
orthonormal IDFT matrix. It is well known [20] that as K → ∞ (long observation time), the eigenvectors and

eigenvalues of C can be approximated as

U →W , λk → Sxx(e
2πk
K ), 0 ≤ k ≤ K − 1, (6)

which can be formally justified in terms of the asymptotic equivalence between sequences of matrices and the

asymptotic eigenvalue distribution of circulant and Toeplitz matrices [22]. The following spectral shape parameters

will feature in the statistical analysis of the detectors:

b̄n
.
=

1

K
tr{Cn} =

1

K

K−1∑
k=0

λnk (7)

≈ 1

2π

∫ π

−π
Snxx(eω)dω for K →∞. (8)

Note that b̄1 = 1 since E{|xk|2} = 1. For white {xk}, C = IK so that b̄n = 1 for all n (in general, one has b̄n ≥ 1

by Jensen’s inequality).

III. MULTIANTENNA DETECTION

Based on the MK × 1 vector r from (4), and under the Gaussian model, the corresponding hypothesis test is

H0 : r ∼ CN (0,R0) (primary is absent)

H1 : r ∼ CN (0,R1) (primary is present)
(9)

where R0
.
= IMK and R1

.
= IMK + G, with

G .
= R1 −R0 = hhH ⊗C. (10)

The Neyman-Pearson (NP) test for this Gaussian detection problem is an estimator-correlator [20] declaring H1

true if rH ẑ exceeds a threshold, where ẑ is the minimum mean squared error (MMSE) estimator of z .
= h ⊗ x

given r and h, and it is given by ẑ = GR−1
1 r. Note that this test requires knowledge of hhH .
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At this point it is instructive to review the single-antenna case [13]. If M = 1, then G = |h|2C = ρC, and the

NP test statistic can be written as

rH ẑ =
∑
k∈B

ρλk
1 + ρλk

|vk|2, (11)

where v = [v0 v1 · · · vK−1]T
.
= UHr, so that B ⊂ {0, 1, . . . ,K − 1} is the set of indices of nonzero eigenvalues

of C. In view of (6), for large K one has v ≈ WHr (the DFT of the observations), and B is the support

of λk ≈ Sxx(e
2πk
K ). Thus (11) is just the correlation between the periodogram {|vk|2} and the SNR-dependent

spectral mask {ρλk/(1 + ρλk)}. In the following asymptotic cases, the NP test becomes independent of ρ:

• High SNR case: if ρλk � 1 for all k ∈ B, then rH ẑ ≈∑k∈B |vk|2. Thus the NP test reduces to an Energy

Detector (ED) over the spectral support of the primary signal. If C is full rank, then rH ẑ ≈ vHv = rHr,

i.e. the standard energy detector.

• Low SNR case: if ρλk � 1 for all k ∈ B, then the NP test declares H1 true if
∑
k∈B λk|vk|2 = rHCr

exceeds a threshold. This is also the Locally Most Powerful (LMP) test for this problem, derived from weak

signal detection theory [20], and which does make use of the available information about the primary signal

spectrum, in contrast with the ED test.

However, with M > 1 antennas, neither in the high nor low SNR regimes does the dependence of the NP test

with hhH disappear. In the sequel, we will focus on the case of asymptotically small SNR, which is of more

relevance in spectrum sensing applications. Then, using R−1
1 ≈ IMK , one has

rH ẑ ≈ rH(hhH ⊗C)r (12)

=

M∑
i=1

M∑
j=1

rHi (hih
∗
jC)rj (13)

= sHCs
.
= T0, (14)

where we have introduced

s = sMRC
.
=

M∑
l=1

h∗l rl. (15)

As in the single-antenna case, T0 can be interpreted as a frequency-domain correlation, but now between the

spectral mask {λk} and the squared magnitude of the DFT of a linear combination s of the signals at the antennas.

We use the subscript MRC since this processing is akin to the Maximal Ratio Combining technique for diversity

recepcion [21], by which the signals collected at each of the antennas are phased-aligned and combined with optimal

weighting to maximize the SNR at the combiner output and prior to the demodulation stage (incidentally, when the

signal of interest is white, i.e. C = IK , then the decision rule T0 = sHs ≷ γ is optimal for all SNR values [16]).

Note that the computation of the NP test statistic for low SNR only requires knowledge of the spherical component

h̄
.
= h/‖h‖2. The threshold can be set to achieve a given false alarm rate under H0, i.e. under ‖h‖2 = 0.
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Note now that if we neglect the magnitude gains of the coefficients h∗l in (15), then s can be approximated as

s ≈ sEGC
.
=

M∑
l=1

e−θlrl (16)

where θl
.
= arg{hl}. This is analogous to the Equal Gain Combining (EGC) [21]. One can also approximate s by

the signal at the branch with highest SNR as is done in Selection Combining (SC) [21]:

s ≈ sSC
.
= rm with m = arg max

1≤i≤M
|hi|2. (17)

Note that if all branches have similar SNRs, then sMRC ≈ sEGC. On the other hand, when the SNR at one of the

antennas is much larger than the rest, then sMRC ≈ sSC.

However, none of these schemes (MRC, EGC and SC) is directly implementable, since they depend on unknown

channel parameters. In the next section different paths around this problem are presented. Inspired by the Generalized

Likelihood Ratio (GLR) approach, the Maximum Likelihood (ML) estimates of the unknown parameters can be

obtained under different assumptions; substituting these ML estimates in the corresponding statistics will in turn

yield a variety of practical detectors.

IV. PARAMETER ESTIMATION AND DETECTION

In order to derive ML estimates of the unknown parameters under different models, note that the negative of the

log–likelihood function under H1 is given by − log f(r |h) = log det(I + G) + rH(I + G)−1r, where G depends

on h as per (10). In the low SNR regime, we can approximate [I + G]
−1 ≈ I − G and log det(I + G) ≈ trG

(using the fact that log(1+x) ≈ x for small |x|). Thus, noting that trG = (trhhH)(trC) = ‖h‖22K, the following

low–SNR approximation is obtained:

− log f(r |h) ≈ K‖h‖22 + ‖r‖22 − rHGr. (18)

A. Generalized energy detector

The simplest multiantenna detector disregards antenna crosscorrelation and assumes equal weighting for the

energy estimates at the different antennas. The statistic (14) of the low-SNR NP test can be writen as

T0 =

M∑
i=1

M∑
j=1

hih
∗
jr
H
i Crj . (19)

If we ignore the terms depending on hih∗j for i 6= j, phase alignment is no longer required. If we further assume

|hi| ≈ |hj | for i 6= j, and with γGED a threshold, the corresponding decision rule reduces to

TGED =

M∑
i=1

rHi Cri
H1

≷
H0

γGED, (20)

We refer to the test (20) as “Generalized Energy Detector” (GED), as it merely collects the (spectrally weighted)

energy from all branches. This detector can be used in distributed settings with M collaborating single-antenna

sensors: each node reports its local statistic rHi Cri to a Fusion Center, where all such statistics are added together.
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The asymptotic performance of this detector is analyzed in Appendix A, showing that for sufficiently large K,

the threshold γGED can be selected in order to achieve a prespecified false alarm rate PFA as

γGED = KM

[
1 +

√
b̄2
KM

Q−1(PFA)

]
, (21)

and the resulting probability of detection is given by

P GED
D = Q

Q−1(PFA)−
√
KMb̄2ρ√

M b̄4
b̄2
ρ2 + 2 b̄3

b̄2
ρ+ 1

 . (22)

Note that GED performance depends only on the average SNR ρ, but not on the spherical component h̄ = h/‖h‖2.

B. Selection Combining detector

The SC detector is based on the approximation (17), and thus requires the estimation of the index m of the

antenna with largest SNR. In the general case, ML estimation of this index is not tractable, and thus we resort to

the low SNR approximation (18); in addition, we will assume that h = hem, where em is the m-th unit vector. The

reason for this is that, as mentioned above, the SC approach is expected to provide close-to-optimal performance

in scenarios in which the SNR at one of the antennas is dominant.

Under this assumption, one has ‖h‖22 = |h|2 and rHGr = |h|2rHmCrm in (18). Therefore, the ML estimate of

m is just m̂ = arg maxm r
H
mCrm. The resulting decision rule is given by

TSC
.
= max

1≤m≤M
rHmCrm

H1

≷
H0

γSC. (23)

Thus, the SC detector picks the antenna with largest spectrally weighted SNR and uses that SNR as statistic. Note

that this amounts to an OR fusion rule, and can be applied in distributed settings: the channel is declared busy if

the spectrally weighted SNR at any of the M nodes exceeds a threshold. In that case, only one bit of information

has to be sent to the Fusion Center by each node, in contrast with the GED scheme.

The asymptotic performance of the SC detector is discussed in Appendix B. For large K, the local threshold γSC

that yields global false alarm rate PFA is

γSC = K

[
1 +

√
b̄2
K
Q−1

(
1− M

√
1− PFA

)]
. (24)

On the other hand, the probability of detection cannot be expressed in closed form, although it can be straightfor-

wardly computed by means of a Gaussian integration routine; see Appendix B. It must be noted that, in contrast

with GED, the performance of the SC detector does depend on the spherical component h̄.

C. Equal Gain Combining detector

For EGC detection, an estimate of the phases {θi}Mi=1 introduced at the different branches is needed in order to

combine the respective signals as per (16). Considering again the low SNR approximation (18), it is seen that in

order to obtain the ML estimates we must maximize the following quantity w.r.t. θ1, . . . , θM :

rHGr =

M∑
n=1

M∑
m=1

|hn||hm|rHn Crme−(θm−θn). (25)
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Let anm
.
= |hn||hm|rHn Crm. Since anm = a∗mn, it is clear that

rHGr =

M∑
m=1

amm + 2

M∑
n=1

M∑
m=n+1

Re{anme−(θm−θn)}

≤
M∑
m=1

amm + 2

M∑
n=1

M∑
m=n+1

|anm|, (26)

with equality iff θm − θn = arg{anm} for all (n,m) such that m > n. These constitute a set of M(M − 1)/2

(linear) conditions on our M free parameters, which in general cannot be satisfied if M > 3. Nevertheless, careful

inspection of the resulting detection statistic sHCs with s =
∑M
l=1 e−θ̂lrl reveals that it is a function of the phase

differences θ̂mn
.
= θ̂m − θ̂n only. Thus, if we take these phase differences as our free optimization variables and

neglect the dependence among them, the corresponding ML estimates become θ̂mn = arg{rHn Crm}. This yields

the following EGC detection rule:

TEGC
.
=

M∑
n=1

M∑
m=1

|rHmCrn|
H1

≷
H0

γEGC, (27)

i.e., the lack of knowledge about the phase differences is sidestepped by considering the modulus of the crosscor-

relation terms.

Unfortunately, finding the distribution of TEGC (under either hypothesis) is intractable. An asymptotic Gaussian

approximation is used in Appendix C, showing that for large K, the threshold γEGC for a given false alarm rate PFA

can be obtained as

γEGC = KM

[
1 +

M − 1

2

√
πb̄2
K

+

√
b̄2

2KM
[(π − 2) +M(4− π)Q−1(PFA)

]
. (28)

For large K, the probability of detection is given by

P EGC
D ≈ Q


√

π−2
2M + 2− π

2Q
−1(PFA) + M−1

2

√
π −

√
Kb̄2κρ√

b̄4
b̄2
κ2ρ2 + 2 b̄3

b̄2
κρ+ 1

 , (29)

where κ .
= ‖h‖21/‖h‖22 = ‖h̄‖21. Note that (29) is a function of the scaled average SNR per antenna κρ, and that

the scaling term κ ∈ [1,M ] achieves its maximum value when all elements of h have the same magnitude. This is

intuitively satisfying, since it is precisely in such scenarios that one expects the EGC detector to perform best.

D. Maximal Ratio Combining detector

For MRC detection, an estimate of the spherical component h̄ = h/‖h‖2 is needed. Let us introduce the data

matrix R .
= [ r1 · · · rM ]. Focusing again on the low SNR approximation (18), the ML estimate of h̄ must maximize

rHGr = rH(hhH ⊗C)r

= hH(RHCR)∗h

= ‖h‖22h̄H(RHCR)∗h̄. (30)
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This is achieved when h̄ is the unit-norm eigenvector of (RHCR)∗ associated to its largest eigenvalue (up to a

phase term ejφ which does not affect the test). This results in the following MRC detection rule:

TMRC
.
= λmax(RHCR)

H1

≷
H0

γMRC. (31)

Note that neither TEGC nor TMRC lend themselves to distributed implementation, since they require the computation

of (spectrally weighted) crosscorrelations across the different antennas.

In order to obtain the performance of the MRC detector, the distribution of the largest eigenvalue of the random

matrix RHCR under each hypothesis has to be found. For a general positive semidefinite Toeplitz C, this remains

an open problem. In Appendix D we consider a particular case, namely a covariance matrix corresponding to a

strictly bandlimited signal with flat psd within its passband, and with normalized spectral support B ∈ (0, 1]. In

that case, under H0 the statistic TMRC asymptotically becomes a (linear transformation of) a Tracy-Widom random

variable, whereas under H1 it follows a Gaussian distribution that is independent of the spherical component h̄.

These results are asymptotic in both K and M and need not be accurate for moderate values of these parameters.

However, they do capture the correct trends with system parameters, as shown in the next section.

V. NUMERICAL RESULTS

We proceed to examine the performance of the proposed detectors, using the analytical results derived in the

Appendix together with Monte Carlo simulations.

A. Statistical distributions

In order to validate the approximations used in the derivation of the analytical results, in Fig. 1 the theoretical

and empirical distributions (histograms) of the test statistics in two different scenarios are shown.

• Scenario 1: K = 1024 samples per antenna, M = 2 antennas with the same SNR (−11 dB). In this experiment

we used I/Q samples from a multicarrier baseband signal adhering to the digital TV DVB-T standard [23].

The psd of this signal is approximately flat within the baseband bandwidth (7.61/2 MHz). Sampling was

asynchronous, and at a rate fs = 8 Msps (which is the RF channel separation). Hence, the multicarrier signal

occupies a fraction B ≈ 97% of the Nyquist bandwidth. Note that this class of signal fits well the assumptions

in the derivations of Appendix D. As seen in Fig. 1(a)-(d), the analytical distributions of the four detectors

considered fit quite well the empirical histograms.

• Scenario 2: K = 512 samples per antenna, M = 4 antennas with different SNR (−7, −12, −14 and −18 dB).

In this case, the primary signal is a 16-QAM baseband signal with square-root raised cosine (SRRC) pulse

shaping and roll-off factor 0.5. I/Q samples were taken asynchronously at the Nyquist rate fs = 1.5Rs, where

Rs is the baud rate. Note that the psd of this SRRC-shaped signal does not strictly conform to the “flat within

the passband” assumption used in Appendix D to derive the analytical distribution of the MRC statistic; hence,

we have regarded this psd as constant within |f | ≤ Rs/2 and zero elsewhere in order to obtain an approximate

MRC distribution.
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Fig. 1. Theoretical and empirical distributions of the detectors: M = 2, K = 1024, multicarrier signal (a)-(d); M = 4, K = 512, SRRC

with 50% excess bandwidth (e)-(h).

In Fig. 1(e)-(h) it is seen that the analytical distributions obtained under H0 closely match the empirical

histograms for the four detectors. On the other hand, under H1 we observe some deviation between analytical

and theoretical results for the EGC and MRC detectors. In the case of the MRC test, this deviation is not

too pronounced and is likely to be due to the approximations discussed above. Regarding the EGC detector,

we must recall that the analytical distribution proposed (Gaussian approximation) is asymptotic in K. A close

look at the analysis in Appendix C shows that in order to achieve a certain degree of accuracy the value of

K must increase if the SNR at any of the antennas is very low, as is the case in this example.

B. Effect of the number of antennas

In order to show the effect of the number of antennas on the proposed detectors, the complementary Receiver

Operation Characteristic (ROC) curves of a system with M = 2 antennas are compared to those of another with

M = 4, for a constant total number of samples MK = 211. The same multicarrier signal and sampling rate of

Scenario 1 from the previous section are considered.

Fig. 2 shows the analytical and empirical ROC curves for the four schemes in both settings with the SNR at each

of the antennas fixed to −10 dB. The GED curves are almost identical in both settings, due to the fact that, from (22),

GED performance depends only on the total number of samples MK in the low SNR regime. The performance

of the SC detector in this setting actually deteriorates if the number of antennas is increased. On the other hand,

both EGC and MRC detection schemes improve with increasing M . The fact that EGC may perform even better

than MRC in Fig. 2 is due to the uniform instantaneous SNR per antenna distribution used in this setting, which

better fits the simplifying assumptions in the derivation of the EGC test. Again, for M = 4 a noticeable mismatch
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Fig. 2. ROC curves with M = 2 and 4 antennas for ρ = −10 dB and uniform distribution of instantaneous SNR across antennas (κ =M ).

between the analytical and empirical EGC curves appears, due to the limitations of the asymptotic approximations

employed.

C. Effect of SNR distribution across antennas

We now assess the effect of a non-uniform distribution of the instantaneous SNR across the antennas, quantified

by the parameter κ = ‖h̄‖21. We considered M = 4 antennas, K = 512 samples per antenna, average SNR per

antenna ρ = −5 dB, and a multicarrier signal in the same scenario as in the previous examples. Fig. 3 shows

the probability of missed detection as a function of κ (using h̄ = [h h h
√

1− 3h2 ]T with h ∈ [0, 1
2 ]) for a

fixed false alarm rate PFA = 0.05. As expected from the analysis, the performances of GED and MRC detectors

are independent of the spherical component h̄. Whereas EGC performs better with an uniform SNR distribution

(κ = M ), the reverse is true for the SC detector, which benefits from concentration of the SNR at a single antenna

(κ→ 1). This is in agreement with the respective models under which these detectors constitute approximate GLR

tests. In this sense, it is interesting to compare the performance of EGC and SC to that of MRC, which is the GLR

test when no structure on h is assumed. SC clearly outperforms MRC when κ becomes small, and this is intuitively

satisfying since the data model is more efficiently exploited. On the other hand, the performance of EGC turns

out to be no better than that of MRC, even as κ → M . Finally, note that the asymptotic analytical results, while

inaccurate at some points due to the small number of samples, show the right global behavior.

D. Detection in fading environments

Up to this point the instantaneous SNR at each antenna has been fixed during the execution of a given experiment.

Now we investigate the performance of the proposed detectors with Ricean fading, accounting for a deterministic
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Fig. 3. Probability of miss vs. κ for M = 4, K = 512, ρ = −5 dB and PFA = 0.05.

line-of-sight (LOS) component that illuminates the array uniformly, as well as non-line-of-sight (NLOS) spatially

uncorrelated random scattering:

h =
√
ρ̄

(√
KR

1 +KR
hLOS +

√
1

1 +KR
hNLOS

)
, (32)

where KR is the Rice factor (ratio of deterministic-to-scattered power), hNLOS is zero-mean circular complex Gaussian

with E{hNLOSh
H
NLOS} = IM , and hLOS = [ 1 eφ · · · e(M−1)φ ]T the response of a uniform linear array. The relative

phase φ between adjacent antennas is modeled as a random variable uniformly distributed in [0, π] and independent

of hNLOS. The mean SNR per antenna is ρ̄ = E{‖h‖2}/M .

Fig. 4 shows the results in terms of missed detection probability vs. ρ̄, for a setting with M = 4, K = 256, with

multicarrier signals occupying B ≈ 97% of the Nyquist bandwidth, and fixing PFA = 0.05. Two cases are shown:

KR = 0 (Rayleigh fading, i.e. no LOS component), and KR = 10 (LOS power 10 dB above scattered power).

It is seen that the asymptotic slope of the curves is the same for all detectors and depends only on KR, and that

the MRC detector consistently outperforms the other three schemes. However, the performance loss of the EGC

detector is quite small: less than 0.5 dB with Rayleigh fading, and almost negligible for KR = 10. This makes the

EGC detector appealing in order to avoid the eigenvalue computations that MRC requires.

E. Exploiting a priori information about spectral shape

To close this section we illustrate the benefits of exploiting the knowledge about the spectral shape of the primary

signal. To this end we consider the detection of a Gaussian Minimum Shift Keying (GMSK) waveform synthesized

according to the GSM cellular standard, downconverted to baseband and I/Q-sampled at fs = 600 Ksps. Rayleigh

fading is assumed, and the number of antennas is M = 4. We picked K = 256 samples per antenna and fixed

PFA = 0.05.
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Fig. 5. Probability of miss vs. mean SNR with Rayleigh fading for M = 4, K = 256, and PFA = 0.05 (GMSK signal, with psd shown in

inset).

In Fig. 5 the performance of the proposed detectors is compared to that of the analogous schemes but using

C = IK , i.e. neglecting a priori knowledge. This has the advantage of disposing of the FFT operations at each

antenna, reducing the computational cost of the detectors. However, the performance loss incurred is significant

(larger than 2 dB in this example). This is explained by the fact that only spatial correlation and total power are

exploited by these simplified detectors, but not the temporal correlation properties of the signal.
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VI. CONCLUSIONS

We have considered the problem of multiantenna detection exploiting a priori knowledge of the power spectral

density of the signal. In this way, signal correlation is jointly exploited in both temporal and spatial domains.

The low SNR approximation allows the derivation of GLR tests closely related to well-known diversity combining

schemes. Using the asymptotic diagonalization of Toeplitz matrices, the test statistics can be efficiently computed

using FFT techniques. Among the proposed schemes, the MRC detector is optimal and does not depend on the

spatial distributions of the unknown channel gains. Nevertheless, in fading scenarios the loss incurred by the EGC

test is small, and thus this detector provides a good tradeoff between complexity and performance.
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APPENDIX

STATISTICAL ANALYSIS FOR LARGE DATA RECORDS

Let tij
.
= rHi Crje

θij denote the phase-aligned spectrally weighted crosscorrelation between antennas i and j,

where θij
.
= arg{hi} − arg{hj}. For large K, we can invoke the central limit theorem and assume that tij is

Gaussian distributed. Under this approximation, and using the fact that for zero-mean complex circular Gaussian

vectors x, y, u, v, and constant A, B, it holds that

E{(xHAy)(uHBv)} = tr
[
AE{yxH}

]
tr
[
BE{vuH}

]
+ tr

[
AE{yuH}BE{vxH}

]
, (33)

(see e.g. [24]), then one finds that

E{tij} = K(|hi||hj |b̄2 + δij), (34)

var{tij} = K
[
|hi|2|hj |2b̄4 + (|hi|2 + |hj |2)b̄3 + b̄2

]
, (35)

E{t2ij} − E2{tij} = K
[
|hi|2|hj |2b̄4 + (2|hi||hj |b̄3 + b̄2)δij

]
, (36)

E{tijt∗kl} − E{tij}E{t∗kl} = K
[
|hi||hj ||hk||hl|b̄4 + (|hj ||hl|δik + |hi||hk|δjl)b̄3 + b̄2δikδjl

]
. (37)

From (34)-(36), it follows that for i 6= j the real and imaginary parts of tij are uncorrelated (E{<{tij}={tij}} −
E{<{tij}}E{={tij}} = 0), with variances given by

var{<{tij}} = K

[
|hi|2|hj |2b̄4 +

1

2

(
(|hi|2 + |hj |2)b̄3 + b̄2

)]
, (38)

var{={tij}} =
K

2

[
(|hi|2 + |hj |2)b̄3 + b̄2

]
. (39)
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A. Generalized Energy Detector

The GED statistic can be written as TGED = 1T t, where t .
= [ t11 · · · tMM ]T . For large K, t is normally

distributed; from (34)-(35), its mean and covariance are

E{t} = K
(
b̄2g + 1

)
, (40)

cov{t, t} = K
(
b̄4gg

H + b̄2I + 2b̄3 diag{g}
)
, (41)

where g .
= [ |h1|2 |h2|2 · · · |hM |2 ]T . Thus, TGED is asymptotically Gaussian; Using (40)-(41), its mean and variance

are found to be

µGED(‖h‖2)
.
= E{TGED} = K

(
‖h‖22b̄2 +M

)
, (42)

α2
GED(‖h‖2)

.
= var{TGED} = K

(
‖h‖42b̄4 + 2‖h‖22b̄3 +Mb̄2

)
. (43)

Therefore, for a given threshold γGED the probabilities of false alarm and detection are respectively given by

P GED
FA = Q

(
γGED − µGED(0)

αGED(0)

)
, (44)

P GED
D = Q

(
γGED − µGED(‖h‖2)

αGED(‖h‖2)

)
, (45)

from which (21)-(22) follow.

B. Selection Combining Detector

The statistic of the SC detector is T1 = max1≤i≤M tii. For a given threshold γSC, and M antennas, the false

alarm probability is

P SC
FA (M) = 1− Pr {tii ≤ γSC, 1 ≤ i ≤M | H0} (46)

= 1−
M∏
i=1

Pr {tii ≤ γSC | H0} (47)

= 1− [1− PFA(1)]M , (48)

where we have used the fact that under H0 the tii are independent, and PFA(1) denotes the False Alarm probability

of a single-antenna detector with the same threshold γSC, which is found from (44):

PFA(1) = Q

(
γSC −K√
b̄2K

)
, (49)

from which (24) follows. On the other hand, the probability of detection is

P SC
D (M) = 1− Pr {tii ≤ γSC, 1 ≤ i ≤M | H1} . (50)

Since the random variables tii are not independent under H1, (50) does not factor out as in (47) in general (except

if all but one of the channel coefficients are zero, in which case the covariance matrix (41) becomes diagonal).

Thus, the computation of (50) involves the integration of a multivariate Gaussian with mean and covariance given

by (40)-(41). This can be done numerically using e.g. Matlab’s mvncdf Gaussian integration package.
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C. Equal Gain Combining detector

The statistic of the EGC detector can be rewritten as

TEGC =

M∑
i=1

M∑
j=1

|tij |. (51)

Note that |tii| = tii, 1 ≤ i ≤ M , which is Gaussian distributed for large K under both hypotheses. On the other

hand, for i 6= j, tij is complex-valued Gaussian with independent real and imaginary parts.

1) Distribution of TEGC under H0: If hi = hj = 0, then the real and imaginary parts of tij , i 6= j, have both

zero mean and the same variance. Therefore |tij | is Rayleigh distributed with

E{|tij | |H0} =
1

2

√
Kπb̄2, (52)

var{|tij | |H0} = K
(

1− π

4

)
b̄2, (53)

for i 6= j. Note from (37) that if (i, j) 6= (k, l) then tij and tkl are uncorrelated (and hence independent for large

K) under H′, and therefore the different terms |tij | in (51) become independent as well. Thus TEGC is the sum of

M Gaussian- and M(M − 1)/2 (since |tij | = |tji|) Rayleigh-distributed, independent random variables. There is

no simple closed-form expression for the resulting distribution; we propose a Gaussian approximation, based on

the asymptotic mean and variance given by

E{TEGC} =

M∑
i=1

K +

M∑
i=1

M∑
j=1,j 6=i

1

2

√
πKb̄2 (54)

= KM

(
1 +

M − 1

2

√
πb̄2
K

)
, (55)

var{TEGC} =

M∑
m=1

var{|tmm|}+

M∑
m=1

M∑
i=1,i>m

var{2|tmi|} (56)

=

M∑
m=1

Kb̄2 +

M∑
m=1

M∑
i=1,i>m

4K(1− π

4
)b̄2 (57)

= KM
((π

2
− 1
)

+M
(

2− π

2

))
b̄2, (58)

from which (28) follows.

2) Distribution of TEGC under H1: For i 6= j, tij asymptotically follows a complex normal distribution centered

on the real axis; its real and imaginary parts are uncorrelated and have different variances in general. We can write

|tij | = |<{tij}|
√

1 + z2
ij , (59)

where zij
.
= ={tij}/<{tij}. Note that zij is the ratio of two uncorrelated Gaussian random variables, and there is

no closed-form expression for its distribution. However, from [25], if the coefficient of variation of the denominator

(defined as the ratio of its standard deviation to its mean value) is less than 0.39, there exist a transformation g(·)
such that the distribution of g(zij) can be accurately approximated by a standard Gaussian N (0, 1). In our case,
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the coefficient of variation is

βij
.
=

√
var{<{tij}}
E{<{tij}}

=
1

K

√
|hi|2|hj |2b̄4 + 1

2

(
(|hi|2 + |hj |2)b̄3 + b̄2

)
|hi||hj |b̄2

. (60)

Provided that hi 6= 0, hj 6= 0, then (60) goes to zero as K →∞. Thus, for large enough K, the random variable

g(zij)
.
=

E{<{tij}}zij − E{={tij}}√
var{<{tij}}z2

ij + var{={tij}}
(61)

=
√
K

|hi||hj |b̄2zij√
‖hi|2|hj |2b̄4z2

ij + 1
2

(
(|hi|2 + |hj |2)b̄3 + b̄2

)
(1 + z2

ij)
(62)

is approximately zero-mean Gaussian with unit variance [25]. Since the transformation g(z) in (62) is one-to-one,

it follows that

Pr{z2
ij > ε} = 2Q(g(

√
ε)), (63)

which approaches zero exponentially fast as K →∞. Therefore, for K large enough, it is reasonable to approximate

|tij | ≈ |<{tij}| in (59). Moreover, with βij as in (60), one has Pr{<{tij} < 0} = Q(β−1
ij ), which also goes to

zero exponentially with K.

In view of all these, if |hm| > 0 for m = 1, . . . ,M then for sufficiently large K the terms |tij |, i 6= j, behave as

correlated real-valued Gaussian random variables. Thus TEGC becomes approximately Gaussian, with expected value

E{TEGC} ≈
M∑
i=1

M∑
j=1

E{<{tij}} = K
(
‖h‖21b̄2 +M

)
(64)

and variance

var{TEGC} ≈
∑
i,j,k,l

[E{<{tij}<{tkl}} − E{<{tij}}E{<{tkl}}] (65)

=
1

2

∑
i,j,k,l

<{(E{tijt∗kl} − E{tij}E{t∗kl}) + (E{tijt∗lk} − E{tij}E{t∗lk})} , (66)

where we have used the fact that tkl = t∗lk. Using (37), one finds that

var{TEGC} ≈ K
(
‖h‖41b̄4 + 2M‖h‖21b̄3 +M2b̄2

)
. (67)

Using (64) and (67), one readily obtains (29).

D. Maximal Ratio Combining detector

Using the asymptotic diagonalization (6) of C, one has λmax(RHCR) ≈ λmax(R̄HΛR̄), where R̄ .
= WHR.

Let us suppose now that the psd Sxx(eω) is constant over a set with support 2πB and zero elsewhere. Then, for

large K, Λ has BK non-zero diagonal entries, which are all equal to 1/B (since trC = K). Therefore

λmax(RHCR) ≈ 1

B
λmax(R̄H

B R̄B) (68)
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where R̄B is a BK ×M matrix comprising the rows of R̄ corresponding to the non-zero diagonal elements of Λ.

Note that R̄H
B R̄B is a complex Wishart matrix [26], and thus under H0 the random variable

Φ
.
=

1

ν

(
λmax(RHCR)

K
− µ

)
(69)

asymptotically (in K and M ) follows a Tracy-Widom distribution [27], with scale and bias terms given respectively

by

µ = (
√
BK − 1 +

√
M)2, (70)

ν = (
√
BK − 1 +

√
M)

(
1√

BK − 1
+

1√
M

)1/3

. (71)

On the other hand, under H1, the random matrix RHCR ≈ 1
B R̄

H
B R̄B follows a spiked population model [28],

i.e. all but one of the eigenvalues of the true covariance matrix E{R̄H
B R̄B} are equal. If we denote

λ1
.
=

1

K
λmax

(
E{RHCR}

)
= 1 + b̄2Mρ, (72)

then we have that, for λ1 > 1 +
√
M/K, the distribution of 1

Kλmax(RHCR) is given by [16], [28]

1

K
TMRC ∼ N

(
λ1 +

Mλ1

K(λ1 − 1)
, λ2

1/K

)
, (73)

asymptotically in K and M . Note that this distribution depends only on ρ and not on the spherical component h̄.
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