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Abstract—This paper proposes a radio simultaneous
location and mapping (radio-SLAM) scheme based on
sparse multipath channel estimation. By leveraging
sparse channel estimation schemes at millimeter wave
bands, namely high resolution estimates of the multi-
path angle of arrival (AoA), time difference of arrival
(TDoA), and angle of departure (AoD), we develop
a radio-SLAM algorithm that operates without any
requirements of clock synchronization, receiver orien-
tation knowledge, multiple anchor points, or two-way
protocols. Thanks to the AoD information obtained via
compressed sensing (CS) of the channel, the proposed
scheme can estimate the receiver clock offset and orien-
tation from a single anchor transmission, achieving sub-
meter accuracy in a realistic typical channel simulation.

Index Terms—Simultaneous location and mapping,
compressed sensing, multipath channel estimation,
joint localization and channel estimation

I. Introduction
To satisfy the growing demand for broadband, machine-

type and low latency applications, wireless standards [1],
[2] incorporate larger bandwidths, large multiple-input
multiple-output (MIMO) arrays, and higher frequency
bands such as mmWave. Increased sampling rate and
directivity allows to resolve the Time Difference of Ar-
rival (TDoA) and Angle of Arrival (AoA) of individual
multipath components, respectively. Classic rich scattering
models are replaced by Saleh-Valenzuela sparse multi-
path channel models [3], specially in mmWave frequencies.
Since mmWave requires both transmit and receive arrays,
sparse recovery algorithms [4]–[9] can estimate not only
the receiver TDoA and AoA, but also the transmitter
Angle of Departure (AoD). A remarkable by-product is
that mmWave sparse channel estimation provides sufficient
geometric data to determine the user position without
additional location-specific signaling [10], [11]. Going one
step further, radio simultaneous location and mapping
(radio SLAM) of the reflector locations is possible [12].

From the standardization point of view, location meth-
ods up to 5G Rel. 16 exploit only the Line-of-Sight (LoS)
paths from multiple anchor points of known position [11].
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As in earlier location literature [13], TDoA multilateration
requires clock synchronization [14], [15], whereas AoA
triangulation has to deal with unknown user orientation
[7], [16]. 5G also introduces two-way clock estimation
[11], which can determine the location combining AoA
and TDoA of a single LoS-only anchor [17], [18]. Sparse
multipath NLoS component estimation has spurred new
approaches, yet many works inherit methodologies of LoS-
only multi-anchor literature, such as treating reflections
as “virtual anchor points” [19] or assuming a two-way
synchronization protocol [20].

The main contribution of our paper is a simple scheme
demonstrating that clock and orientation offset recovery is
perfectly viable in single-anchor one-way NLoS location.
First, we present a linear Least-Squares (LS) location and
clock offset recovery algorithm. Building on top of this
linear scheme, we recover the user orientation by solving
a collection of non-linear single-variable equations. Prior
work in [21] estimated the orientation assuming two-way
clock synchronization. In [20] a clock offset is estimated
without orientation offset. Several works address clock
and/or orientation offset with multiple anchor points [7],
[14]–[16] or two-way protocols [17], [18], [20]. To the best
of our knowledge, our work describes the first scheme
that provides both clock and orientation robustness for
single-anchor one-way multipath radio-SLAM. Moreover,
our LS clock recovery scheme is fast enough to be solved
many times as part of the orientation recovery algo-
rithm, whereas [21] relied on a message-passing estimation
scheme. A recent pre-print draft presented in [22] also
proposes clock and orientation recovery relying on iterative
message passing. Finally, we also derive the theoretical
Cramer Rao Lower Bound (CRLB) of the receiver and
reflector locations. This shows that the CS AoD estimation
is not actually necessary for user location nor clock or
orientation recovery However, the AoDs impact reflector
location errors, thus our analysis shows that CS AoD
estimation is a key component of radio-SLAM in single-
anchor one-way multipath scenarios.

The paper is structured as follows: Section II describes
the multipath channel geometry and estimation model.
Section III describes the clock, orientation and loca-
tion estimator and the corresponding CRLB. Section IV
demonstrates the results in simulation. Finally, Section V



Figure 1: Geometry of each signal path

describes conclusions and future work.

II. Multipath Channel Model
We assume a multipath channel consisting of a set

of Np planar waves that leave a transmitter located at
(0, 0), and arrive at a receiver located at an unknown
position do = (dox, doy). We assume that only paths with a
single reflection, at some unknown position di = (dix, diy),
are strong enough to be detected by the receiver. Fig. 1
represents the geometric parameters of each path: length
equal to the delay multiplied by the speed of light ℓi = cτi,
AoD θi and AoA ϕi. Note that, even though this paper
presents the 2D case due to space limitations, the results
can be extended to 3D. While such extension would be
trivial for linear clock offset recovery, the case of 3D
orientation can be a bit more nuanced due to the fact
that the receiver may experience orientation offset in 3
axes [22].

We assume no clock synchronization. The receiver mea-
sures the TDoA of arriving paths ∆τi = τi − τe, from
a time reference τe affected by three factors: the direct
LoS light travel time τo =

√
d2

ox+d2
oy

c ; the synchronization
error itself; and the fact that min τi = τo for LoS channels,
and min τi > τo for NLoS channels. Similarly, the receiver
array is oriented with some unknown rotation ϕo, with
paths impinging on the array with difference AoA (DAoA)
defined as ∆ϕi = ϕi − ϕo.

Finally, each path suffers attenuation and phase shift
characterized by a complex coefficient αi. Though this
does not directly affect location, it plays a key role in the
performance of sparse multipath channel estimation [6].

A. Sparse Channel Estimation
We consider a typical 5G/WiFi7 OFDM waveform for

mmWave communication with Nk subcarriers, bandwidth
B, inter-carrier spacing ∆f = B/Nk, and a cyclic prefix
length satisfying max ∆τi ≤ TCP ≤ 1

∆f . The transmitter
and receiver are equipped with antenna arrays of size Nt

and Nr, respectively, connected to NRF t and NRF r RF
chains to enable hybrid beamforming (HBF) [4], [5]. In

addition, the channel is assumed to be invariant for a frame
of Ns consecutive OFDM symbols. The equivalent channel
at RF port r, subcarrier k and symbol s is

ys,k,r = wH
s,k,r (Hkxs,k + zs,k) , (1)

where wH
s,k,r ∈ CNRF r×Nr represents the hybrid combiner,

while the hybrid precoder is embedded in the pilot xs,k,
zs,k ∼ CN (0, σ2

zINr
) is i.i.d. additive white gaussian noise

(AWGN), and the channel matrix includes the effect of Np

multipath components, i.e.

Hk =
Np∑
i=1

αiaNr
(∆ϕi)aNt

(θi)T e−j2πk∆fτi , (2)

characterized by array response vectors aNt
(θi) and

aNr
(∆ϕi) vs AoD and DAoA.

The construction of the CS estimation algorithm is
beyond the scope of our paper, but we give here a brief
overview. First, we define the vector y with ys,k,r as its
(sNkNRF r + kNRF r + r)-th coefficient.

y = WH(INS
⊙ H)x + z, (3)

where W = (w0,0,0|w0,0,1| . . . |wNs−1,Nk−1,NRF r−1), x =
(xT

0,0| . . . |xT
NS−1,Nk−1)T , ⊙ is a Kroenecker product, H

is a block-diagonal matrix containing H0, . . . , HNk−1 in
its main diagonal, and z is an equivalent Gaussian noise
vector with elements zs,k,r = wH

s,k,rzs,k. The noise co-
variance matrix is also block diagonal Σz ≜ E

[
zzH

]
=

σ2
zbdiag{WH

s,kWs,k}NS−1,Nk−1
s=0,k=0 , with its central elements

defined by Ws,k = (ws,k,0| . . . |ws,k,NRF r−1).
Next, we write y as a linear combination of columns

y =
Np∑
i=1

αiυ(τi, θi, ∆ϕi) + z, (4)

where υ(τ, θ, ϕ) is the normalized received signal from a
single-path with parameters (τ, θ, ν). We define βR

s,k,r(ϕ) =
wH

s,k,ranR
(ϕ) and βT

s,k(θ) = anT
(θ)T xs,k, so that

υs,k,r(τ, θ, ϕ) = βR
s,k,r(ϕ)βT

s,k(θ)e−j2πkτ . (5)

Finally, we define a 3D dictionary consisting of a set of
Kτ potential TDoAs, Kθ AoDs and Kϕ DAoAs.

D = Dτ × Dθ × Dϕ (6)

Dτ ≜ {0, 1, . . . , Kτ − 1}TCP

Kτ
(7)

Dθ ≡ D∆ϕ ≜ asin
(

2
Kϕ

{
−Kϕ

2 , −Kϕ

2 + 1, . . . ,
Kϕ

2 − 1
})

.

(8)

The observation matrix is defined with one column per
dictionary item ΥD = (υ0|υ1| . . . |υKτ KθKϕ

). And the
received OFDM signal is finally approximated as

y ≃ ΥDs + z, (9)



where s is a sparse vector with non-zero values αi in the
indices that correspond to the parameters (τi, θi, ∆ϕi) for
each path of the multipath channel.

Many algorithms can estimate the sparse vector s,
implicitly extracting the multipath data. For example, the
canonical CS problem subject to a MSE constraint ξ is

min ∥s∥0s.t.∥y − ΥDs∥2
2 < ξ,

a combinatorial problem typically solved using greedy
heuristics or 1-norm relaxation [4]–[6]. Moreover, many
ML proposals have appeared in recent years [8]. For
the rest of the paper we will assume that the location
estimator receives an approximation of the real multipath
data denoted by P̂ = {(τ̂i, θ̂i, ∆ϕ̂i)}

N̂p

i=1, distorted by both
dictionary quantization and noise.

III. Location and Mapping
A. Clock-Robust Linear Location

We first design a linear scheme to recover dox,
doy and the clock offset τe from the multipath data
{∆τi, θi, ∆ϕi}

Np

i=1 assuming the AoA offset ϕo is known.
Therefore, in this subsection we assume that the angles
ϕi = ∆ϕi + ϕo are known. This is reasonable for example
in mobile devices with an accelerometer that can measure
orientation.

Observing triangles in Fig.1, we combine diy = dix tan θi

and diy − doy = (dix − dox) tan ϕi, to write

dix (tan θi − tan ϕi) = doy − dox tan ϕi. (10)

Next we compute the length ℓi = ℓe + ∆ℓi as

ℓe + ∆ℓi = dix

cos θi
+ dix − dox

cos ϕi

= Ci

Ti
(doy − dox tan ϕi) − dox

cos ϕi

(11)

where the last steps substitutes dix from (10), and defines
Ti ≜ (tan θi − tan ϕi), and Ci ≜

(
1

cos θi
+ 1

cos ϕi

)
.

Next, we define Qi ≜ Ci

Ti
= cos ϕi+cos θi

sin θi cos ϕi−cos θi sin ϕi
and

Pi ≜
(

−Qi tan ϕi − 1
cos ϕi

)
= sin θi+sin ϕi

cos θi sin ϕi−sin θi cos ϕi
, so that

doxPi + doyQi − ℓe = ∆ℓi. (12)

Since dox, doy and ℓe are the same for all paths, we can
solve a system of Np ≥ 3 linear equations with the Moore-
Penrose pseudo-inverse B† = (BHB)−1BH LS solution

 d̂xo

d̂yo

ℓ̂e

 = B†∆ℓ with B ≜


P1 Q1 −1
P2 Q2 −1
...

...
...

PNp
QNp

−1

 .

(13)
As is well known, in typical LS estimation problems

the error can be reduced by increasing the number of
samples. Analogously, it is our intuition that our scheme
would perform better when the number of mult-paths Np

increases. On the other hand, the size of the dictionaries
and sparsity of the channel has a sophisticated impact on
CS channel estimation performance [6]. We leave for future
work a more systematic analytical characterization of the
influence of the parameters Np, Kτ , Kθ, Kϕ, and {αi}

Np

i=1.
Finally, the LoS distance and delay follow from ℓ̂o =

cτ̂o =
√

d̂2
xo + d̂2

yo. The reflector locations from (10) and
d̂yi = d̂xi tan θi. The clock offset is min ℓ̂i

c − min ∆τi, and
the LoS condition follows by comparing ℓ̂o vs min ℓ̂i.

B. Orientation Recovery
Next, we assume ϕo is unknown. Therefore, substituting

ϕi = ∆ϕi + ϕo into (13) we define the following functions

Pi(ϕo) ≜ sin θi + sin(∆ϕi + ϕo)
cos θi sin(∆ϕi + ϕo) − sin θi cos(∆ϕi + ϕo) ,

Qi(ϕo) ≜ cos(∆ϕi + ϕo) + cos θi

sin θi cos(∆ϕi + ϕo) − cos θi sin(∆ϕi + ϕo) .

To determine ϕo, we propose the following method:
1) Divide the set {1 . . . Np} into NG groups of paths

G1, G2 . . . GNG

2) Construct NG separate systems of linear equations
(13) for each group G1, G2 . . . GNG

and obtain the
solutions of each as a function of ϕo

Fm(ϕo) =

 x̂
(m)
o

ŷ
(m)
o

˜̂
ℓ

(m)
o

 = BGm
(ϕo)†∆ℓGm

(14)

3) For the correct value of ϕo, all groups should calculate
the same location. Therefore, we can simply solve the
system of non-linear equations of ϕo

F1(ϕo) = F2(ϕo) = · · · = FNG
(ϕo).

However, in order to support error in the parameters
{(τ̂i, θ̂i, ϕ̂i)}

N̂p

i=1, the system of equations is solved
approximately in the sense of minimizing the mean
squared distance between the computed locations

min
ϕ′

o

NG∑
m=1

∥∥Fm(ϕ′
o) − F (ϕ′

o)
∥∥2 s.t. F (ϕ′

o) =
∑NG

m=1 Fm(ϕ′
o)

NG

(15)
Our scheme admits arbitrary grouping strategies. For

example, a sliding window of “three path” (3P) groups
G1 = 1, 2, 3, G2 = 2, 3, 4, . . . Gm = m, m + 1, m + 2 (the
minimum necessary for the linear system). Or the “drop
one” (D1) collection of complementary groups containing
“all paths except the m-th”, Gm = {1 . . . m − 1, m +
1 . . . Np}. We compare these two strategies in Fig. 2. Dif-
ferent grouping strategies present different solution shapes
and intersections, thus the design of optimal grouping
strategies is left for future work. We note that NG ≥ 3
should be used to discard points where only two lines cross.
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Figure 2: Estimated d̂ox and d̂oy with Np = 10. Each
represented trajectory depicts one group’s location guess
vs different values of ϕ′

o ∈ [0, 2π). At the point where all
trajectories meet, the groups are in agreement, and the
correct value of ϕo is found.

C. Location Error Bounds
Denoting the multipath data vector m =

(mT
1 , mT

2 , . . . , mT
Np

)T , with mi = (θi, ϕi, τi)T . In any
unbiased classic (not Bayesian) estimator m̂ of m, the
error covariance Cramer Rao Lower Bound [7] is

Σm ≜ E
[
(m − m̂)(m − m̂)T

]
⪰ J−1

m

where the Fisher Information Matrix (FIM) is defined as

Jm = Ey|m

[
−∂2 log Ly(m)

∂m∂mT

]
(16)

The Gaussian vector y|m in (3) has mean µy =
WH(InS

⊙H)x and covariance Σz. We define R such that
Σ−1

z = RH R
σ2

z
and generalize the proof in [7] to obtain

J−1
m = σ2

z

2 ℜ

{
∂µH

y

∂m RHR
∂µy

∂mT

}−1

where, recalling (4)-(5), each term satisfies
∂µys,k,r

∂θi
= αie

−j2πkτiβR
s,k,r(∆ϕi)

∂βT
s,k(θi)
∂θi

∂µys,k,r

∂∆ϕi
= αiβ

T
s,k(θi)e−j2πkτi

∂βR
s,k,r(∆ϕi)
∂∆ϕi

∂µys,k,r

∂τi
= −j2πkαiβ

R
s,k,r(∆ϕi)βT

s,k(θi)e−j2πkτi

To transform the above into a covariance of location
error, we define d = (do, τe, ϕo, d1, . . . , dNp

), and write

Σd ≜ E
[
(d − d̂)(d − d̂)T

]
⪰ J−1

d = (TT JmT)−1 (17)

where the transformation matrix is TT = ∂mT

∂d , that is,
the derivatives vs do, τe, ϕo, and di of the expression:

∆τi = ∥di − do∥ + ∥di∥
c

− τe

θi = arctan
(

diy

dix

)
+ πIdix<0

∆ϕi = arctan
(

diy − doy

dix − dox

)
+ πIdix<dox

− ϕo.

The derivatives are given in Table I. By inspection, the
structure of TT features two fully non-zero top rows,
TT

o =
(

∂mT
1

∂do
,

∂mT
2

∂do
, . . . ,

∂mT
Np

∂do

)
; the next two rows are

of the form (−1, 0, 0, −1 . . . ), representing the mutual
dependence of all paths on the clock and orientation, and
finally the last 2Np rows of TT constitute a block-diagonal
submatrix with elements TT

i = ∂mT
i

∂di
.

We may distinguish the error of user location, Jdo =
TT

o JmTo, as the first 2 × 2 submatrix of Jd, where the
derivative ∂θi

∂do
= 0 suggests that the AoDs estimation are

not necessary in to estimate the user location error, τe and
ϕo. Indeed, location algorithms employing AoA and TDoA
only do exist. On the other hand, the error of reflector
mapping Jd1,...,dNp

, does indeed depend on the AoDs. In
other words, our theoretical error analysis shows that AoD
information as a by-product of CS channel estimation is a
key enabler for single-anchor one-way radio-SLAM.

IV. Simulation Results
We simulate1 Nsim = 1000 user locations (dox, doy),

and Np × Nsim = 20 × 1000 reflector locations (dix, diy).
Both receiver and reflector locations are generated with a
uniform random distribution in a square of size 100x100m.
The terminal orientation ϕo is also random U(0, 2π) and
the clock offset τe − τo is distributed as U(0, 40ns).

1The simulation files are openly available at
https://github.com/gomezcuba/CASTRO-5G

Table I: Derivatives forming the matrix TT

∂τi ∂θi ∂ϕi

1
∂do

do
c∥di−do∥ 0 (diy−doy,dox−dix)

∥di−do∥2
1

∂τo
−1 0 0

1
∂ϕo

0 0 −1
1

∂di

di
c∥di−do∥ + di

c∥di∥
(−diy,dix)

∥di∥2
(doy−diy,dix−dox)

∥di−do∥2



A. Perfect multipath information

The fist simulation confirms the robust location method
with unknown τe and ϕo with perfectly known multipath
information. Fig. 3(a) presents location error C.D.F. in
meters (

√
(pox − p̂ox)2 + (poy − p̂oy)2). We depict the so-

lutions to the system of linear equations (13) in dotted red
lines of two types: with round markers, we represent the
solution of (13) when ϕo is perfectly known. On the other
hand, with star markers we present a more realistic mobile
phone equiped with accelerometers, in which a quantized
orientation QNQ

(ϕo) = arg minn∈{0,NQ−1} |ϕo − n 2π
NQ

| is
known (we use NQ = 64). This shows that with known ϕo

the clock error is almost perfectly corrected (10−12m error
is nearly the floating point precision). A coarse orientation
knowledge QNQ

(ϕo) leads to 10 orders of magnitude degra-
dation of the location error (10cm-1m). For a better intu-
ition, we depict in dotted black a “random guess” worst-
case estimator that generates (d̂ox, d̂oy) as an independent
uniform distribution. This shows that even in the case of
poor orientation knowledge from a gyroscope, a significant
improvement on the information on the user location can
be extracted from the multipath data (compared to the
initial maximum uncertainty).

We explore different estimations of ϕ̂o by solving the
system of non-linear equations approximately in a MMSE
sense (15), employing different algorithms and adopting
different “grouping schemes” as discussed in Subsection
III-B. The 3P scheme (dashed line) performs (Np − 2)
inversions of 3 × 3 matrices, and is much faster than
the D1 scheme (solid line), which needs to invert Np

(Np − 1) × (Np − 1) matrices. In the faster 3P method, a
brute-force grid search of the minimum (15) in the interval
linspace(0,2π,100) is factible. This brute force search
is nearly as coarse as the quantizer, and achieves similar
location error.

Otherwise, we employ the built-in Python library
scipy.optimize.root() with method=’ML’ to solve (15).
This tool requires an initialization point, where we com-
pare initialization using the 3P brute force result, versus
initialization based on the assumption that the mobile has
an orientation sensor that coarsely estimates a quantized
orientation QNQ

(ϕo), as discussed in the previous para-
graph. For all algorithms, the location error is 1 − 10
µm in most realizations, suggesting that ϕo is recovered
with much more precision than the quantizer/brute-force
search. The 3P scheme using QNQ

(ϕo) as initialization
seems to be stuck at the initialization point the most
among all algorithms, for 30% of realizations; this can be
explained by the extreme asymptotic lines observed in Fig.
2(a), which suggest that the 3P grouping scheme leads to
a poor conditioning of the non convex optimization (15).

Overall, simulations show that clock and orientation
offsets can be compensated achieving near-perfect location
when the multipath information is perfect. Of course,
location precisions of the order of µm are not truly achiev-
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Figure 3: Location error CDF

able in practical systems where the multipath parameters
{∆τi, θi, ∆ϕi}

Np

i=1 are estimated with some error. This re-
sult must be interpreted to mean that there are no intrinsic
physical limitations to how well clock and orientation error
can be corrected if {∆τi, θi, ∆ϕi}

Np

i=1 are known perfectly.
The linear clock compensation is straightforward, whereas
in the non-linear orientation compensation (15) the root
algorithm is less important than the “group selection”
method, which plays a pivotal role in the trade-off between
complexity and accuracy.

B. Multipath Information with Dictionary Quantization
We now consider the recovery of the multipath com-

ponents with error due to using a discrete dictionary.
Since the design of practical CS algorithms is beyond
the scope of our paper, we consider that the multipath
recovery error is modelled as a perfect quantization of the
true multipath information, rather than noise. We shall
explore the impact of different multipath parameters θi,
ϕi and τi separately. We focus on the case of imperfect
DAoAs, where the location algoritm receives QKϕ

(∆ϕi)
where Kϕ ≥ Nr is the dictionary size. We remark that
even though typical mmWave uniform linear arrays (ULA)
and uniform planar arrays (UPA) have 10-100 antennas,
the angular dictionary can implement CS superresolution



[4]–[6] and be much larger. In the first experiment we test
the impact of AoA quantization only, assuming the AoDs
θi and TDoA ∆τi are perfectly known.

As an approximation of the CRLB of location error, we
consider that the DAoA errors follow an uniform distri-
bution QKϕ

(∆ϕi) − ∆ϕi ∼ U(− π
2Kϕ

, − π
2Kϕ

). Therefore

Σ∆ϕ = 1
12

(
π

Kϕ

)2
I20. We replace Jm in (17) by this

variance matrix, in combination with table I, to calculate
a semi-numerical CRLB approximation:

approxCRLB =

√
1
12

(
π

Kϕ

)2
tr{(TT

o To)−1}

Fig. 3(b) represents the location error CDF with the
same algorithms in the previous section, but with AoD
quantization Kθ = 256. Despite the fact that the quanti-
zation is less than 0.4% of the circumference, the location
accuracy is severely degraded. Due to imprecise multipath
information, now the location error only stays < 2.5m
for 80% of the realizations even with perfectly known ϕo

and < 4.5m with a quantized orientation sensor QNQ
(ϕo).

These results are reasonably close to the CRLB, which
is < 1m for the 80%-ile. The best case of estimated ϕ̂o

is the D1 grouping scheme with QNQ
(ϕo) as initialization,

which performs very close to the case of known ϕo. The D1
grouping scheme using the 3P brute-force result as initial-
ization also performs reasonably, as it outperforms the 3P
grouping schemes with either brute-force or root() solvers
with any initialization. Again we observe that the choice
of the grouping scheme in Subsection III-B is critical, as
the 3P methods perform even worse than a raw quantized
orientation sensor in 30% of the realizations. We remark
that in this paper we have yet not introduced “multipath
refinement” algorithms [7] nor message-passing interac-
tions between multipath, position and clock offset recovery
[21]. Thus, we show that with very simple algorithms, one-
way single-anchor multipath location can estimate user
locations up to few-meters precision. This is useful as-
is, though the integration of our orientation and clock
recovery schemes with iterative refinement estimation is
a promising improvement for future work.

Having established the behavior of the estimators, we
focus on the 80%-iles of location error vs Kϕ, depicted in
Fig. 4. While the inherent quantization of either gyroscope
orientation (QNQ

(ϕo)) or brute-force search created error
floors, our orientation estimation scheme with D1 grouping
can almost achieve the same performance as the case with
known ϕo. Moreover, the reflector and receiver location
results are very similar. This occurred throughout all
our simulations. Likewise, we performed simulations with
quantized DAoA and TDoA which resulted in very similar
plots, which are omitted due to the page constraints.
Finally, Fig. 4(c) shows the clock offset estimation error
vs Kϕ, showing that clock offset estimation within a
fraction of a nano-second is feasible using only one-way

single-anchor multipath data obtained from a practical
dictionary-based CS channel estimation scheme. Likewise,
in Fig. 4(d) the orientation error achieves 0.1 radian
accuracy.

V. Conclusions

We have derived a simple and robust single-anchor
one-way multipath radio-SLAM scheme with clock and
orientation offset recovery. We have demonstrated that
multiple-anchor and two-way protocols typical in LOS-
only location techniques are not required for clock and ori-
entation robust location. The proposed algorithm employs
a simple LS method for location and clock recovery, and a
single-variable non-linear equation root method for orien-
tation estimation. Moreover, we have developed a CRLB
error analysis that takes into account the HBF precoding
matrices. Even with a low complexity implementation, we
have have seen that location accuracies of about 10cm-1m,
clock accuracies of 0.1ns and orientation accuracies of 0.1o

are achievable.
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