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Abstract—One of the main issues in the Overlay Cognitive PR, andn the channel from the PT to the PR. In the first time
Radio Paradigm (a framework where the secondary transmitter  s|ot, when the ST joins the network, it does not transmit the

partially cooperates W|_th the primary user) is the acquisition of primary message, so the received waveform at the PR is
channel state information at the secondary transmitter. In [1]a

simple interaction framework that could allow the estimation of i =0T+ 2% (1)
the channel values at the secondary transmitter was presented ! v

although its performance was not characterized. In this paper, yith z; the primary codeword, and; a sample of Gaussian

we extend the framework in [1] to the MIMO and SISO Time- . . -
Varying channels, present closed form expressions for the mean noise. At that time slot, the PR broadcasts the estimated

square error of these channel estimates, and derive optimum channel'hi ~ 1. In the secopd time slot, the ST aIIocat'eS
training sequences to minimize the estimation variance. |7|I* units of power to the primary message, so the received
waveform is
I. INTRODUCTION

In the last few years the interest of knowing the potential of rivr = (1 +70) Tit1 + Zig1. @

those cognitive radio systems where the Secondary Traiesmifat this time, the PR broadcasts the estimated chahpel ~
(ST) is aware of the message to be conveyed by the Primz;)?ryr ~a, so the channel values andn can be approximately
Transmitter (PT) has been found to be of special interest, dtained asa ~ 2:£.=% p ~ h,. Note that the one-tap
which is known as the Overlay Cognitive Radio paradigm [2hrecoding sequence = [0, 7] can be considered agraining
Although the study of a general cooperation scheme betwegtyencefor the channel estimation problem.

primary and secondary transmitters was introduced in [, t -~ Ajthough this simple interaction framework has been cited
most realistic model for Overlay Cognitive Radio might by other works like [6], and even for a multiple antenna creinn

the one introduced by Joviciand Viswanath [1], the so-n 7], to the best of the authors knowledge this CSI acqjoisit
called Cognitive Radio Channel, that introduces additional tgchnique has not been sufficiently studied in the liteeatur

constr.aints to a general cqoperative channel: t_he ST isemiarm this paper, we derive closed-form expressions for thermea
the primary message, which conforms a partially coopeativyyared error (MSE) of the channel estimates in a Singlet Inpu
interference channel; the Primary Receiver (PR) uses aesmging|9 Output (SISO) channel, in a Multiple Input Multiple

user decoder, i.e., is completely unaware of the preseniteof o,ipyt (MIMO) channel with transmit beamforming and in a
ST, and the rate of the primary system is not compromisedsg|go time-varying channel.

In [1] the problem of obtaining ChgnneI.State Information Tpe remaining of the paper is structured as follows: in
(CSI) at the ST was shown to be critical: if the ST does N@feion 11 the SISO time-invariant channel is studied; Bect
know the PT to PR and ST to PR (complex) channel values, ti¢ extends the framework in [1] to transmit beamforming
primary signal contributions coming from the ST and the Py3;M0 channels; a similar approach is taken to study the SISO
could result in destructive interference, thus causingvarse time-varying channel in Section IV; Section V presents the

degradation in the primary link (see e.g. [4] [5] for SOMEesults: finally, Section VI concludes the paper.
scenarios where CSl is critical). In the same work, the astho

described a simple interaction scheme between the PR and [1. SISO CHANNEL

ST that would allow to obtain CSI. If we assume that the PR We will assumea, 7 € C are the time-invariant ST to
estimates theequivalent channel (the channel resulting from PR and PT to PR channels, respectively, and model-the
the addition of the contributions coming from the ST and th%edback message as

PT) and broadcasts its value, the ST might gain access to CSI

in the following way: leta be the channel from the ST to the yi = (av; +n) + ni, ny ~CN (0,0%) (3)
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Note that if we remove the term;, we have that the A. Estimation problem
parametergy andn are not identifiable. We define the vector For the sake of clarity we will denoE=H, andw,
observationy = [y, ..., yas]” resulting from stackingh/ i '
scalar observations as

iwsfia

as the primary MIMO channel and beamforming vectors are
included in the SIMO channed. At a given time instant,
y=~a+1yn+n (4) our observation will be

with v = [y1, ...va]", 14 @ column vector with itsM y; =g+ Hw,; +n,. 9)

. - 9 .
entries equal to one and N (O’.U IM)' It can be easyly If we stack M observations into a column vector we obtain
seen that (4) follows a Gaussian Linear Model [8], so efflblerﬂqe MN. % 1 vectorv as follows:
estimatorsy ands exist such that they attain the CrarrRao " y '
Bound (CRB) variance, which is given by

g Hw, n;
M 2 y=1| .. |+ + ... . 10
Vara = - yar, = 7 5) (10)
o2detT o2detZ g Hw,, ny
with the determinant of the Fisher Information Matrix (FIM) . . S
T As we are interested in estimating both the vegtaand the
det T = o4 (M H'YHQ _ H,yHlMuz) . ©6) matrix H, we will rewrite (10) as
v=1AyIy)g+(WIn )h+n (11)

For a given total poweflv|* < P, it is clear that the values
of v that maximize the determinant &, and, therefore, with I, the M x M identity matrix,® the Kronecker product
minimize the CRB, are those with”’ 1,; = 0 and||y||> = P. operator, anch = vecH is the result of stacking the columns
Just by taking any vector of this family, we arrive to of H into a vector, sch € CN<Nr, The training sequence
o2 o2 matrix is the result of stacking into a matrix the training
= — = T. T
Varg = B Vary = TR (7) sequencew?”: W = [wy, ..., wy]" € Carxn.. The vector
n ~ CN (0,C), with C = C,, ® Iy, is the result of stacking

At the view of th!s results, we copclude tha}t tmf"”g the M noise vectoram,;. With this, we can rewrite (11) as
sequence v = [0,~] introduced in [1] is not optimum in the

sense of minimum estimation variance for a given total power y=Kg+Rh+n (12)
asvyH1, =~ #0. _ . .
with K= (lju ® INT) € Cn,mxn, and R= (W ® INr) S
Ill. MIMO CHANNEL Cn,.mxn,.N.- It can be easily seen that (12) is a Gaussian Lin-

In this section we extend the results from the previous oR@r Model [8], so if we defines = [K R] andb = |g” h” T
and the framework presented in [1] to the case of ransmife Minimum Variance Unbiased (MVU) Estimator (which is
beamforming MIMO channels. efficient) is given by

Let us denote byH; € Cuy,xn, the (assumed to be
flat fading) MIMO channel from the ST to the PR, and as b= (AHC—1A)*1AHC_1Y (13)
H, € Cy, xn, the MIMO channel from the PT to the PR. We
will assume that the PT is transmitting only one data layer witich is distributed according to
a time by applying a fixed beamforming vecter, € Ci}’, and .
the ST is also conveying the primary information by using a b~ CN (b, (AHC’lA) > . (14)
beamforming vectow, ; € CV+, which can be time-varying.

We will also assume that the PR is estimating the SIMO Note that in the previous equations we have assuiied
channel (combination of the beamforming + MIMO channele + 1 so the provided inverse matrices exist.

such that the SIMO channel estimatec Cy, can be written

as B. Training sequence design

yi = Hyw, + Howy i + 0, n; ~N(0,C,)  (8)  we will design our training sequenc® in order to
wheren. accounts for the estimation error. minimize the total estimation variance, subject to a totalgr

If the PR broadcast these channel estimates the PT would®9&straint?:
able to acguire some CSI. Note that the _assgmption of fixed minimize  tr AHC‘lA)il
beamformingw, makes the separate estimation f, and
w),, impossible, so we will denote bg=H,w, the SIMO subject to  tr WHW) <P
channel consisting on the combination of beamforming and
MIMO channel from the PT to the PR. The objective of thén the following, we will assume thaC = o*Iy,, so the
ST is to estimate botlg and H, from the observationy,, Matrix in the objective function reads as

by treating the sequence of beamforming vecters; as a Hol 1
training sequence. ACTA = §M®INT (16)

(15)



. -1
with 2) Minimization of tr (WHW) . This minimization is

T
M= [ 11‘1{{ ] [1a, W]. (17) going to be affected by the power constrainW?w < P.
w AstrA =N N(A)and rA™ = 2V N (A7) =
. . . . N —1 L .
Therefore, the objective function in (15) reads as >iii A ' (A) for A € Cyxn We can state our optimization
1 problem as
tr (AHC_1A> — 2N tr ML, (18)
As N, ando? do not depend oiW, we can rewrite (15) as minimize Z i
minimize trMm—! . 1)
_ . (19) subject to Z/\j, <P -)\<0
subject to tr (W W) <P. =1
Note that which is convex. If we definex = [\, ..., An,], it can
M 1w be easily proved by using the Karush-Kuhn-Tucker (KKT)
M = " ! (20) o , C
w1, WHwW conditions, for example, that the optimum value is given
by A = ilN , leading to an objective function value of
so the trace of the inverse matrix dfi can be written as a -1 e
function of the Schur complements of the submatrice®in tr (W w =7
astrM ' =trS,;} +tr Sy With Sar and Sy the 3) Putting all together: From the previous results, if we

Schur complements af/ and W7 W in M. The inverse of can find a matrix that meets the following properties
the latter can be expanded by using the Sherman-Morrisorll) The N, eigenvalues oW” W are all equal tw and

formula: 2) WH1,, =0,
sl _ (WHW)_l + (21) then the optimum training sequence will be givenWy. We
wiw . can write the Singular Value Decomposition (SVD) of the
) (WHW) WH1,1T,W (WHW) matrix W as
M - Y
Moy T w (WHW> W1y, W=U v (28)
Op—N,xN,

so the objective function can be seen to be . . )
with U € Cpwpr @and'V € Cn, xn, Unitary matrices, and

trM-! = ¢ <1+ trQ> Ttr (WHW)_1 (22) ¥ = diag(oy...on,) is a diagonal matrix containing the
M nonzero singular values V.

where Now, we have that\, ( WIW ) = o2, so property 1 does
1
- H H only depend on the values of the matdx

Q= (W W) Wy 1y W (W W) (23) In order to characterize the second property, we can rewrite

and (28) as thethin SVD
_1 -1 5
— T H H
=Sty = <M —15w (Wiw) - w 1M> 4w, [ . 1 Vi —UsvT (20)
M—NgxXNg

In the following, we will minimize separately the two terms
in the sum (22). with U; € Cys« n. the matrix containing the firs¥, columns

H H
1) Minimization of c(1+ trMQ): If we definej — of U. Condition 2 can be rewritten a¥"%U;' 1y = 0.
1 Note thatV andX are invertible, so the previous condition is
(WHw) W1, then we have that t = tr jj” = [|j||2 equivalent toU{’1,, = 0, that only depends on the submatrix

SO we can write U;. Therefore, it is possible to find a matr®v that meets
132 the two conditions at the same time by means of the following
trQ 1+ 57113l
1+ = T (25) procedure:
M M-1 WJ M
. ) 1) Let U be an orthonormal base &f* with Jarlm as
The denominator is always positive since a vector.
1TWj=1TPwly <M (26) 2) ChooseV; of the vectors inlU except—lM Put them

. into the matrixU;.
with Py = W WHW2 W* the projection matrix into  3) SetX = /P/N,Iy,.
the subspace spanned by the column®\afso (25) is clearly ~ 4) Let'V be an orthonormal base &f"-.
inimi s i H — 5) Obtain the matrix training sequence & = U; XV,
minimized whenj = 0 or, equivalentyW=1,, = 0. g seq 1
Note that this minimization is not affected by the power With this family of training sequences, the matiM in
constraint. (20) is block-diagonal, and the optimization problem in)(15



is solved with a value of and

—1 1 N2
tr (AHC’lA) = o2N, ( + ) . (30)
M P Now, we proceed to separately minimize the traces of the
IV. TIME VARYING CHANNEL inverses of the Schur complements

—1
Sil=1Ix, +B (A‘l n BHB) BY.  (39)

In this section we will study a scenario with Time VaryingA. Minimization of tr Sgl
(TV) channels. We will assume that for a given observation Note that
period of M samples, the TV channels = [ ..., ap]”, _1
n=[n, ..., nu]” can be written following a Basis Expansion tr Spx! =Ko +trB (Pf1 + BHB) B” > K, (39)

Model (BEM) as since the second term in the sum is a positive semidefinite

a="F,b,, n="F,b,, (31) matrix. Recall thaB = F,I;[I‘Fa, s0 (39) will be minimized
whenB = 0. If we set
with b, € CX= andb,, € CX» the BEM coefficients, and, 2miKy,

andF,, the matrices containing th&, and K, first columns v = e =1, M (40)
of the M x M Discrete Fourier Transform (DFT) matri:  with » a positive number, we have that

F:VLM[fU f e fa | (32) I‘Fa\/; [, i o Expxe | (D)

With £, = |1, e 757 e 725 e—i(M-1)% T' soB = Ff?’l“F(x = 0. In this case, the training sequenge
I I - is modulating the channel, thus artificially introducing a faster
Note thatF, F, = I, but F.F; # Ly in general, for e variation in the channel from the ST to the PR. In this
z € {n,a}. - _case, the estimator is able to distinguish the lowpassti@mz
Lety = [, .., ym]" be the sequence of pre-equalizergs the channel, which correspondsio from those variations at
applied at the ST, and® = d'a%('Y)- We can write our pigher frequencies, which corresponddo With this training
observation vectoy = [y, ..., yn|  as sequence we have thatSr,' = K,,.

y =TF,b, +F,b, +n (33) B. Minimization of tr Sy !
Since

with n ~ CN (O, "—A;IM). The factorl/M is introduced in .
the noise variance to have a constsighal to noise ratio per  tr Sl‘Kla =tr A +tr ATIBY (IKQ + BA‘IBH> BA ' >tr AT,
observation, independently from the value Gff. (42)

The objective of the ST is to estimate the parametels the second term of the sum is also minimized wig- 0.
andb,, in order to predict the channel. Since (33) is a linear We can find an optimum training sequence for the first term

~ T _
model, an efficient estimatar of b= [bCwaﬂ canbefound tr A=! =tr (FYTYTF) as follows. LetS=I'*T. Since

with a distributionb ~ CA (b, C}) with A is positive definite we have that
o’ Hyg) ! 1 & 1
= — tr A7 > — 43
C, =2 (H"H) (34) D (43)
andH = l[ rF, F, |. with equality if and only ifA is diagonal, and where
In the following we will assume thadd > K, + K, so oH 1
the inverse in (34) exists. The total estimation variance wa ai = £, 3t = Mtr 2 (44)
written as is the i-th element of the diagonal oA. Therefore, the
—1 1 1 < 1
2 . (HHH)% o . A B ) optimum value ofX%, subject ';) X < Pis
M M B Ig, Y= MIJM (45)

with A = FITATF, and B = FITYF,. Note that the so thatA is diagonal and tA " = £
trace can be written as a function of the Schur complemer&s Putting all together

of the block matrices as . L . :
It can be easily seen that the optimality conditions obtiine

in (IV-A) and (IV-B) are compatible, since a training sequen

v=y % 1 5 ~~e*j(M’”2"§n} (46)

. meets (45) and (40). Therefore, the total estimation vagan
S;! = Al4AiBY <1Ka ¥ BA’lBH) BA~! (37) is o2 (Kﬁ n %)

e

-1

A B
=tr Sy +1trSy' (36)

tr
BY 1g,

that can be writte, following the Woodbury matrix identias



V. RESULTS

In Figures 1-3 the estimation variance results for the SIS
MIMO and TV channels are shown. In all cases, dasht
lines represent the analytical expression for the MSE with t
On-Off! procedure described in [1], solid lines those of th
optimum training sequence, and squares and circles thiges
of the Monte Carlo simulations in then-Off and optimum
cases, respectively. As expected, the optimum traininarigle
outperforms theOn-Off one, being this difference specially
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noticeable in the TV channel.
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Fig. 1. SISO channel
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Fig. 2. MIMO channel withN, = 3 antennas at the PR anl; = 4

antennas at the ST.

VI. CONCLUSIONS

In this paper we have studied the problem of acquir\i;}g

CSI at the transmitter in the cognitive radio channel.

1For the MIMO case, thé©n-Off approach uses only one transmit antenna

in each time slot. For the SISO case, when more than two time aletased,
the On-Off sequence is of the form, ~, 0, .. ..

-40 i i i i i

-15
101og,q (0?)

-10

Fig. 3. TV channel withK, = 3 BEM coefficients for the channel from
the ST andK,, = 4 BEM coefficients for that from the PT.

have analyzed from an estimation theory point of view the
framework presented in [1] (extended to the MIMO and Time-
Varying scenario), derived closed form expressions for the
variance of the channel estimators and obtained optimum
training sequences that minimize such a variance. Thergdatai
results are consistent with classical pilot design schebsssed

on orthogonalization and equal power distribution [9]. Fu-
ture work includes studying more realistic feedback scleme
(quantized SNR, for example), and taking into account the
possibleoutage caused by this training procedure, as pointed
out in [1].
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