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Abstract—One of the main issues in the Overlay Cognitive
Radio Paradigm (a framework where the secondary transmitter
partially cooperates with the primary user) is the acquisition of
channel state information at the secondary transmitter. In [1] a
simple interaction framework that could allow the estimation of
the channel values at the secondary transmitter was presented,
although its performance was not characterized. In this paper,
we extend the framework in [1] to the MIMO and SISO Time-
Varying channels, present closed form expressions for the mean
square error of these channel estimates, and derive optimum
training sequences to minimize the estimation variance.

I. I NTRODUCTION

In the last few years the interest of knowing the potential of
those cognitive radio systems where the Secondary Transmitter
(ST) is aware of the message to be conveyed by the Primary
Transmitter (PT) has been found to be of special interest, in
which is known as the Overlay Cognitive Radio paradigm [2].
Although the study of a general cooperation scheme between
primary and secondary transmitters was introduced in [3], the
most realistic model for Overlay Cognitive Radio might be
the one introduced by Jovicić and Viswanath [1], the so-
called Cognitive Radio Channel, that introduces additional
constraints to a general cooperative channel: the ST is aware of
the primary message, which conforms a partially cooperative
interference channel; the Primary Receiver (PR) uses a single
user decoder, i.e., is completely unaware of the presence ofthe
ST; and the rate of the primary system is not compromised.

In [1] the problem of obtaining Channel State Information
(CSI) at the ST was shown to be critical: if the ST does not
know the PT to PR and ST to PR (complex) channel values, the
primary signal contributions coming from the ST and the PT
could result in destructive interference, thus causing a severe
degradation in the primary link (see e.g. [4] [5] for some
scenarios where CSI is critical). In the same work, the authors
described a simple interaction scheme between the PR and
ST that would allow to obtain CSI. If we assume that the PR
estimates theequivalent channel (the channel resulting from
the addition of the contributions coming from the ST and the
PT) and broadcasts its value, the ST might gain access to CSI
in the following way: letα be the channel from the ST to the
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PR, andη the channel from the PT to the PR. In the first time
slot, when the ST joins the network, it does not transmit the
primary message, so the received waveform at the PR is

ri = ηxi + zi, (1)

with xi the primary codeword, andzi a sample of Gaussian
noise. At that time slot, the PR broadcasts the estimated
channelhi ≈ η. In the second time slot, the ST allocates
‖γ‖2 units of power to the primary message, so the received
waveform is

ri+1 = (η + γα)xi+1 + zi+1. (2)

At this time, the PR broadcasts the estimated channelhi+1 ≈
η + γα, so the channel valuesα andη can be approximately
obtained asα ≈ hi+1−hi

γ
, η ≈ hi. Note that the one-tap

precoding sequenceγ = [0, γ] can be considered as atraining
sequencefor the channel estimation problem.

Although this simple interaction framework has been cited
in other works like [6], and even for a multiple antenna channel
in [7], to the best of the authors knowledge this CSI acquisition
technique has not been sufficiently studied in the literature.
In this paper, we derive closed-form expressions for the mean
squared error (MSE) of the channel estimates in a Single Input
Single Output (SISO) channel, in a Multiple Input Multiple
Output (MIMO) channel with transmit beamforming and in a
SISO time-varying channel.

The remaining of the paper is structured as follows: in
Section II the SISO time-invariant channel is studied; Section
III extends the framework in [1] to transmit beamforming
MIMO channels; a similar approach is taken to study the SISO
time-varying channel in Section IV; Section V presents the
results; finally, Section VI concludes the paper.

II. SISO CHANNEL

We will assumeα, η ∈ C are the time-invariant ST to
PR and PT to PR channels, respectively, and model thei-th
feedback message as

yi = (αγi + η) + ni, ni ∼ CN
(

0, σ2
)

(3)

whereni is a zero-mean Gaussian RV that accounts for the
estimation error andγi is the one-tap pre-equalizer previously
introduced. We are assuming through the paper that feedback
is error-free.



Note that if we remove the termγi, we have that the
parametersα andη are not identifiable. We define the vector
observationy = [y1, ..., yM ]

T resulting from stackingM
scalar observations as

y = γα+ 1Mη + n (4)

with γ = [γ1, ... γM ]
T , 1M a column vector with itsM

entries equal to one andn ∼ N
(

0, σ2IM
)

. It can be easily
seen that (4) follows a Gaussian Linear Model [8], so efficient
estimatorŝα and η̂ exist such that they attain the Cramér-Rao
Bound (CRB) variance, which is given by

V arα̂ =
M

σ2 detI
, V arη̂ =

‖γ‖2
σ2 detI

(5)

with the determinant of the Fisher Information Matrix (FIM)
I

detI = σ−4
(

M ‖γ‖2 − ‖γH1M‖2
)

. (6)

For a given total power‖γ‖2 ≤ P , it is clear that the values
of γ that maximize the determinant ofI, and, therefore,
minimize the CRB, are those withγH1M = 0 and‖γ‖2 = P .
Just by taking any vector of this family, we arrive to

V arα̂ =
σ2

P
, V arη̂ =

σ2

M
. (7)

At the view of this results, we conclude that thetraining
sequence γ = [0, γ] introduced in [1] is not optimum in the
sense of minimum estimation variance for a given total power,
asγH12 = γ 6= 0.

III. MIMO CHANNEL

In this section we extend the results from the previous one
and the framework presented in [1] to the case of transmit
beamforming MIMO channels.

Let us denote byHs ∈ CNr×Ns
the (assumed to be

flat fading) MIMO channel from the ST to the PR, and as
Hp ∈ CNr×Np

the MIMO channel from the PT to the PR. We
will assume that the PT is transmitting only one data layer at
a time by applying a fixed beamforming vectorwp ∈ C

N
p , and

the ST is also conveying the primary information by using a
beamforming vectorws,i ∈ C

Ns , which can be time-varying.
We will also assume that the PR is estimating the SIMO
channel (combination of the beamforming + MIMO channel)
such that the SIMO channel estimateyi ∈ CNr

can be written
as

yi = Hpwp +Hsws,i + ni, ni ∼ N (0,Cn) (8)

whereni accounts for the estimation error.
If the PR broadcast these channel estimates the PT would be

able to acquire some CSI. Note that the assumption of fixed
beamformingwp makes the separate estimation ofHp and
wp impossible, so we will denote byg=̇Hpwp the SIMO
channel consisting on the combination of beamforming and
MIMO channel from the PT to the PR. The objective of the
ST is to estimate bothg and Hs from the observationsyi,
by treating the sequence of beamforming vectorsws.i as a
training sequence.

A. Estimation problem

For the sake of clarity we will denoteH=̇Hs andwi=̇ws,i,
as the primary MIMO channel and beamforming vectors are
included in the SIMO channelg. At a given time instanti,
our observation will be

yi = g +Hwi + ni. (9)

If we stackM observations into a column vector we obtain
theMNr × 1 vectory as follows:

y =









g

...

g









+









Hw1

...

HwM









+









n1

...

nM









. (10)

As we are interested in estimating both the vectorg and the
matrix H, we will rewrite (10) as

y = (1M ⊗ INr
)g + (W ⊗ INr

)h+ n (11)

with IM theM×M identity matrix,⊗ the Kronecker product
operator, andh = vecH is the result of stacking the columns
of H into a vector, soh ∈ C

NsNr . The training sequence
matrix is the result of stacking into a matrix the training
sequencewT

i : W = [w1, ..., wM ]
T ∈ CM×Ns

. The vector
n ∼ CN (0,C), with C = Cn ⊗ IM , is the result of stacking
theM noise vectorsni. With this, we can rewrite (11) as

y = Kg +Rh+ n (12)

with K=̇ (1M ⊗ INr
) ∈ CNrM×Nr

and R=̇ (W ⊗ INr
) ∈

CNrM×NrNs
. It can be easily seen that (12) is a Gaussian Lin-

ear Model [8], so if we defineA = [KR] andb =
[

gT hT
]T

the Minimum Variance Unbiased (MVU) Estimator (which is
efficient) is given by

b̂ =
(

AHC−1A
)−1

AHC−1y (13)

which is distributed according to

b̂ ∼ CN
(

b,
(

AHC−1A
)−1

)

. (14)

Note that in the previous equations we have assumedM ≥
Ns + 1 so the provided inverse matrices exist.

B. Training sequence design

We will design our training sequenceW in order to
minimize the total estimation variance, subject to a total power
constraintP :

minimize tr
(

AHC−1A
)−1

subject to tr
(

WHW
)

≤ P.
(15)

In the following, we will assume thatC = σ2IMNr
, so the

matrix in the objective function reads as

AHC−1A =
1

σ2
M⊗ INr

(16)



with

M=̇

[

1T
M

WH

]

[1M , W] . (17)

Therefore, the objective function in (15) reads as

tr
(

AHC−1A
)−1

= σ2Nrtr M−1. (18)

As Nr andσ2 do not depend onW, we can rewrite (15) as

minimize trM−1

subject to tr
(

WHW
)

≤ P.
(19)

Note that

M =

[

M 1T
MW

WH1M WHW

]

, (20)

so the trace of the inverse matrix ofM can be written as a
function of the Schur complements of the submatrices inM

as trM−1 = tr S−1
M + tr S−1

WMW
, with SM andSWHW the

Schur complements ofM andWHW in M. The inverse of
the latter can be expanded by using the Sherman-Morrison
formula:

S−1
WHW

=
(

WHW
)−1

+ (21)

1

M

(

WHW
)−1

WH1M1T
MW

(

WHW
)−1

M − 1T
MW

(

WHW
)−1

WH1M

so the objective function can be seen to be

tr M−1 = c

(

1 +
tr Q
M

)

+ tr
(

WHW
)−1

(22)

where

Q=̇
(

WHW
)−1

WH1M1T
MW

(

WHW
)−1

(23)

and

c=̇S−1
WHW

=

(

M − 1T
MW

(

WHW
)−1

WH1M

)−1

(24)

In the following, we will minimize separately the two terms
in the sum (22).

1) Minimization of c
(

1 + tr Q

M

)

: If we define j =
(

WHW
)−1

WH1M then we have that trQ = tr jjH = ‖j‖2
so we can write

c

(

1 +
tr Q
M

)

=
1 + 1

M
‖j‖2

M − 1T
MWj

. (25)

The denominator is always positive since

1T
MWj = 1T

MPW1M ≤ M (26)

with PW = W
(

WHW
)−1

WH the projection matrix into
the subspace spanned by the columns ofW, so (25) is clearly
minimized whenj = 0 or, equivalentlyWH1M = 0.

Note that this minimization is not affected by the power
constraint.

2) Minimization of tr
(

WHW
)−1

: This minimization is

going to be affected by the power constraint trWHW ≤ P .
As tr A =

∑N

i=1 λi (A) and trA−1 =
∑N

i=1 λi

(

A−1
)

=
∑N

i=1 λ
−1
i (A) for A ∈ CN×N we can state our optimization

problem as

minimize
Ns
∑

i=1

1

λi

subject to
Ns
∑

i=1

λi ≤ P, −λi ≤ 0

(27)

which is convex. If we defineλ = [λ1, ..., λNs
], it can

be easily proved by using the Karush-Kuhn-Tucker (KKT)
conditions, for example, that the optimum value is given
by λ = P

Ns
1Ns

, leading to an objective function value of

tr
(

WHW
)−1

=
N2

s

P
.

3) Putting all together: From the previous results, if we
can find a matrix that meets the following properties

1) TheNs eigenvalues ofWHW are all equal toP
Ns

, and
2) WH1M = 0,

then the optimum training sequence will be given byW. We
can write the Singular Value Decomposition (SVD) of the
matrix W as

W = U

[

Σ

0M−Ns×Ns

]

VH (28)

with U ∈ CM×M and V ∈ CNs×Ns
unitary matrices, and

Σ = diag(σ1 ... σNs
) is a diagonal matrix containing the

nonzero singular values ofW.
Now, we have thatλi

(

WHW
)

= σ2
i , so property 1 does

only depend on the values of the matrixΣ.
In order to characterize the second property, we can rewrite

(28) as thethin SVD

W = [U1 U2]

[

Σ

0M−Ns×Ns

]

VH = U1ΣVH (29)

with U1 ∈ CM×Ns
the matrix containing the firstNs columns

of U. Condition 2 can be rewritten asVHΣUH
1 1M = 0.

Note thatV andΣ are invertible, so the previous condition is
equivalent toUH

1 1M = 0, that only depends on the submatrix
U1. Therefore, it is possible to find a matrixW that meets
the two conditions at the same time by means of the following
procedure:

1) Let U be an orthonormal base ofCM with 1√
M
1M as

a vector.
2) ChooseNs of the vectors inU except 1√

M
1M . Put them

into the matrixU1.
3) SetΣ =

√

P/NsINs
.

4) Let V be an orthonormal base ofCNs .
5) Obtain the matrix training sequence asW = U1ΣVH .

With this family of training sequences, the matrixM in
(20) is block-diagonal, and the optimization problem in (15)



is solved with a value of

tr
(

AHC−1A
)−1

= σ2Nr

(

1

M
+

N2
s

P

)

. (30)

IV. T IME VARYING CHANNEL

In this section we will study a scenario with Time Varying
(TV) channels. We will assume that for a given observation
period of M samples, the TV channelsα = [α1 ..., αM ]

T ,
η = [η1, ..., ηM ]

T can be written following a Basis Expansion
Model (BEM) as

α = Fαbα, η = Fηbη, (31)

with bα ∈ C
Kα andbη ∈ C

Kη the BEM coefficients, andFα

andFη the matrices containing theKα andKη first columns
of theM ×M Discrete Fourier Transform (DFT) matrixF:

F =
1√
M

[

f0 f1 ... fM−1

]

(32)

with f i =
[

1, e−j 2πi
M , e−j2 2πi

M , ... e−j(M−1) 2πi
M

]T

.

Note thatFH
x Fx = IKx

but FxF
H
x 6= IM in general, for

x ∈ {η, α}.
Let γ = [γ1, ..., γM ]

T be the sequence of pre-equalizers
applied at the ST, andΓ = diag(γ). We can write our
observation vectory = [y1, ..., yM ]

T as

y = ΓFαbα + Fηbη + n (33)

with n ∼ CN
(

0, σ2

M
IM

)

. The factor1/M is introduced in
the noise variance to have a constantsignal to noise ratio per
observation, independently from the value ofM .

The objective of the ST is to estimate the parametersbα

andbη in order to predict the channel. Since (33) is a linear

model, an efficient estimator̂b of b=̇
[

bT
α ,b

T
η

]T

can be found

with a distributionb̂ ∼ CN (b,Cb) with

Cb =
σ2

M

(

HHH
)−1

(34)

andH =
[

ΓFα Fη

]

.

In the following we will assume thatM ≥ Kα + Kη so
the inverse in (34) exists. The total estimation variance can be
written as

σ2

M
tr

(

HHH
)−1

=
σ2

M
tr

[

A B

BH IKα

]−1

(35)

with A = FH
α ΓHΓFα and B = FH

α ΓHFη. Note that the
trace can be written as a function of the Schur complements
of the block matrices as

tr

[

A B

BH IKα

]−1

= tr S−1
IKα

+ tr S−1
A (36)

that can be writte, following the Woodbury matrix identity,as

S−1
IKα

= A−1+A−1BH
(

IKα
+BA−1BH

)−1

BA−1 (37)

and
S−1
A = IKα

+B
(

A−1 +BHB
)−1

BH . (38)

Now, we proceed to separately minimize the traces of the
inverses of the Schur complements

A. Minimization of tr S−1
A

Note that

tr S−1
A = Kα + tr B

(

A−1 +BHB
)−1

BH ≥ Kα (39)

since the second term in the sum is a positive semidefinite
matrix. Recall thatB = FH

η ΓFα, so (39) will be minimized
whenB = 0. If we set

γi =
√
re−j

2πiKη

M , i = 1, ..., M (40)

with r a positive number, we have that

ΓFα =

√

r

M

[

fKη
fKη+1 ... fKη+Kα−1

]

(41)

so B = FH
η ΓFα = 0. In this case, the training sequenceγ

is modulating the channel, thus artificially introducing a faster
time variation in the channel from the ST to the PR. In this
case, the estimator is able to distinguish the lowpass variations
of the channel, which correspond toη, from those variations at
higher frequencies, which correspond toα. With this training
sequence we have that trS−1

A = Kα.

B. Minimization of tr S−1
IKα

Since

tr S−1
IKα

= tr A−1+tr A−1BH
(

IKα
+BA−1BH

)−1

BA−1 ≥ tr A−1,

(42)
the second term of the sum is also minimized whenB = 0.

We can find an optimum training sequence for the first term

tr A−1 = tr
(

FHΓHΓF
)−1

as follows. LetΣ=̇ΓHΓ. Since
A is positive definite we have that

tr A−1 ≥
Kα
∑

i=1

1

ai
(43)

with equality if and only ifA is diagonal, and where

ai = fHi−1Σf i−1 =
1

M
tr Σ (44)

is the i-th element of the diagonal ofA. Therefore, the
optimum value ofΣ, subject to trΣ ≤ P is

Σ =
P

M
IM (45)

so thatA is diagonal and trA−1 = KαM
P

.

C. Putting all together

It can be easily seen that the optimality conditions obtained
in (IV-A) and (IV-B) are compatible, since a training sequence

γ =

√

P

M

[

1, e−j
2πKη

M , · · · e−j(M−1)
2πKη

M

]

(46)

meets (45) and (40). Therefore, the total estimation variance
is σ2

(

Kη

M
+ Kα

P

)

.



V. RESULTS

In Figures 1-3 the estimation variance results for the SISO,
MIMO and TV channels are shown. In all cases, dashed
lines represent the analytical expression for the MSE with the
On-Off 1 procedure described in [1], solid lines those of the
optimum training sequence, and squares and circles the results
of the Monte Carlo simulations in theOn-Off and optimum
cases, respectively. As expected, the optimum training clearly
outperforms theOn-Off one, being this difference specially
noticeable in the TV channel.
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VI. CONCLUSIONS

In this paper we have studied the problem of acquiring
CSI at the transmitter in the cognitive radio channel. We

1For the MIMO case, theOn-Off approach uses only one transmit antenna
in each time slot. For the SISO case, when more than two time slotsare used,
the On-Off sequence is of the form0, γ, 0, γ . . ..
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Fig. 3. TV channel withKα = 3 BEM coefficients for the channel from
the ST andKη = 4 BEM coefficients for that from the PT.

have analyzed from an estimation theory point of view the
framework presented in [1] (extended to the MIMO and Time-
Varying scenario), derived closed form expressions for the
variance of the channel estimators and obtained optimum
training sequences that minimize such a variance. The obtained
results are consistent with classical pilot design schemes, based
on orthogonalization and equal power distribution [9]. Fu-
ture work includes studying more realistic feedback schemes
(quantized SNR, for example), and taking into account the
possibleoutage caused by this training procedure, as pointed
out in [1].
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