
How to Implement Doubly-Stochastic Matrices for

Consensus-Based Distributed Algorithms

Sergio Valcarcel Macua∗, Carlos Moreno Leon∗, Jhoan Samuel Romero∗, Silvana Silva Pereira‡

Javier Zazo∗, Alba Pagès-Zamora‡, Roberto López-Valcarce† and Santiago Zazo∗

∗Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Spain
†GPSC, Universidade de Vigo, Spain

‡SPCOM Group, Universitat Politecnica de Catalunya-Barcelona Tech, Spain

Abstract—Doubly-stochastic matrices are usually required by
consensus-based distributed algorithms. We propose a simple
and efficient protocol and present some guidelines for imple-
menting doubly-stochastic combination matrices even in noisy,
asynchronous and changing topology scenarios. The proposed
ideas are validated with the deployment of a wireless sensor
network, in which nodes run a distributed algorithm for robust
estimation in the presence of nodes with faulty sensors.

Index Terms—Consensus algorithms, distributed algorithms,
Contiki OS, robust estimation, wireless sensor network.

I. INTRODUCTION

The advantages of distributed learning algorithms over

networks with respect to centralized schemes have long been

recognized (see, e.g., the surveys [1], [2]). Consensus strate-

gies are widely used for implementing distributed algorithms

and have recently found many applications (e.g., feature ex-

traction, adaptive filtering, classification, clustering, detection,

estimation, and convex optimization methods, among oth-

ers). Consensus-based distributed algorithms usually require

a doubly-stochastic matrix for performing the combination of

the information flowing across the network. However, although

there are several mathematical methods to design such ma-

trices, in practice, when communications or synchronization

among nodes are not perfect, even theoretically well designed

combination matrices become nondoubly-stochastic, resulting

into biased results.

There are few implementations of distributed algorithms

[3]–[6]. However, they are sensitive to asynchronous and noisy

communications (e.g., in wireless-sensor-networks). This pa-

per proposes a simple protocol for guaranteeing that the

combination matrix is doubly-stochastic at every iteration,

independently of the amount of packet loss and the lack of

synchronization among nodes. The protocol is also robust

against permanent changes in the topology (e.g., because of

node failure or after adding new nodes).

We also provide some implementation guidelines to abstract

the implementation from the mathematical formulation of the

algorithms, so the designer can use consensus-like combi-

nations as a service and focus on the data-processing step.

This work was supported in part by the Spanish Ministry of Science
and Innovation Grants TEC2009-14219-C03-01, TEC2010-21217-C02-02-
CR4HFDVL, and in the program CONSOLIDER-INGENIO 2010 under the
grant CSD2008-00010 COMONSENS.

Fig. 1. Example of networks considered in this work.

The proposed methods are validated experimentally with the

implementation of a sophisticated robust estimation algorithm

introduced in [7].

II. CONSENSUS ALGORITHMS

Consider a network of N cooperative agents with arbitrary

topology. The network is modeled by a graph where the nodes

are the agents, and edges represent the communication links

(see Figure 1). We assume the graph is connected (i.e., there

is at least one path between any pair of nodes). The agents

want to estimate some parameter vector, wo (e.g., the sample

estimate of a sufficient statistic of the data, or the common

minimizer of some objective function). If each individual agent

has only access to a subset of the data, its individual learning

process will be biased. Nevertheless, by cooperating with its

neighbors each node can approach the same performance as

the one of a centralized architecture.

Let Nk denote the neighborhood of node k (i.e., all the

nodes that can share information with node k, including k
itself). Let alk denote the non-negative weight given by node

k to the information shared by node l. Many consensus

algorithms can be expressed by the following two steps [8]:

φk,i−1 =
∑

l∈Nk

alkwl,i−1 (1a)

wk,i = φk,i−1 − µksk,i(wk,i−1) (1b)

where wk,i denotes the estimate of the parameter of interest

at time i by node k, φk,i is an intermediate variable, and

sk,i(·) is some local function that depends on the problem

at hand (e.g., the gradient of a local objective function in a

distributed optimization problem). In (1a), each node combines

the estimates of its neighbors (including itself) with the

corresponding weights. Then, in (1b), each node processes

information locally.

We collect the weights alk into a combination matrix A of

size N ×N . In consensus algorithms, A is designed to satisfy

the following three conditions:

ρ

(

A⊤ −
1

N
11

T

)

< 1, A⊤
1 = 1, A1 = 1 (2)

where ρ(·) denotes the spectral radius. The first condition en-

sures asymptotic convergence, while the other two determine

the convergence point and amount to saying that A is doubly

stochastic.

As an illustrative example of the algorithm (1a)–(1b),

consider a network of agents, in which each agent k wants

to estimate the sample mean of the observations of all the

agents across the network, but it only has access to its own

observation xk . This problem is solved by the standard average

consensus rule (see, e.g., [2]), given by

φk,i−1 =
∑

l∈Nk

alkwl,i−1, wk,i = φk,i−1 (3)

where the initial estimate is set equal to the local observation

(i.e., wk,0 = xk). For simplicity, assume observations are

scalar valued, and introduce the vector wi = [w1,i, . . . , wN,i]
⊤

with entries the individual estimates of all the nodes. Then,

we can express (3) as a network recursion: wi = A⊤wi−1. It

is well known that when A satisfies (2), then limi→∞ Ai =
1

N
11

T . Hence, every node will approach the network average

lim
i→∞

wi= lim
i→∞

Aiw0 =
1

N

N
∑

k=1

xk , wo (4)

There are several methods to build a doubly stochastic

matrix for any given topology. Some of these methods require

information of global variables (e.g., the size of the largest

neighborhood), while others require only within-neighborhood

information and, thus, the combination matrix can be built in a

distributed manner. An example of the latter is the Metropolis

rule [1], in which weights are given by

alk = 0 if l 6∈ Nk, akk = 1−
∑

l∈Nk

alk

alk = 1/max(|Nk|, |Nl|) ∀ l ∈ Nk, k 6= l (5)

III. THE WAIT-FOR-THE-SLOWEST (WFS) PROTOCOL

When aiming to implement (1a)–(1b), the conditions in (2)

become relevant. In particular, left-stochasticity (i.e., A⊤
1 =

1) means that the weights given by each agent to all its

neighbors add up to one. This condition is easy to enforce

even when some packets are lost, because the node could

recalculate the weights at every iteration giving positive weight

only to the packets that were successfully received (including

its own). On the other hand, ensuring right stochasticity (i.e.,

A1 = 1) is more challenging because each row depends on

the whole neighborhood. It means that the weights given by

the neighbors of some node to the information coming from

that node must add up to one. In a real scenario (e.g., under

wireless communications), this condition may be difficult to

satisfy. Consider that some node broadcasts a packet, which

is only received by a subset of its neighbors. Those neighbors

that received the packet can give positive weight and compute

(1a). However, those that did not receive the packet must set

the corresponding weight to zero and, thus, the right stochastic

condition will not hold. Therefore, the algorithm will converge

to a weighted sample average, so that the result of (3) will be

biased.

Besides dealing with lossy links, another issue is how to

keep synchronization among neighbors, so they update its

estimate at the same rate. Consider a simple network of just

two nodes, k and l, which are performing periodic iterations

of the form (1a)–(1b). Assume the clock of k has a drift so,

eventually, it will be out of synch and, although it may receive

data coming from node l, it will not transmit any packet. In

this case, node k has all the required information to perform

(1a) and, then, to update its estimate using (1b). On the other

hand, node l is still waiting for the data coming from node

k, so it can not update its estimate at that iteration. It means

that, during the update of k, the combination matrix A is only

left stochastic, as opposed to doubly stochastic, and, again, the

asymptotic result will be biased.

A. Basic design for tackling temporary link failures

In order to tolerate packet loss, lack of synchronization and

other impairments, and avoid biased results of the distributed

algorithm, some sort of coordination among neighbors be-

comes necessary, so they can give total unit weight to node

k at every iteration (thus, making the combination matrix row

stochastic). We propose an efficient and easy to implement

mechanism, named Wait-For-the-Slowest (WFS) protocol. The

idea underlying WFS is simple: every node has a table where

it stores an iteration counter for each of its neighbors, so it

waits until this table is filled with the correct information be-

fore performing the combination step. This mechanism works

efficiently under the assumptions that every node knows its

neighbors before performing the consensus iterations. Indeed,

WFS is composed of two main stages: an initial setup stage

and the consensus stage.

The setup stage is executed only once, at the beginning of

the algorithm, with the purpose of building the combination

matrix. During this initial stage, every node broadcasts ‘dis-

covery’ messages with some useful local information (e.g.,

|Nk| for the Metropolis method in (5)). Let us say that node

l receives a discovery message from node k, then, it checks

whether node k was already in its neighbor list; if it was not,

another row is added to the table; otherwise, just the degree

|N·| and the weight a·k are updated (see Table I for an example

of neighbor table). At the end of the setup stage, every node

has stored its neighbor table, where the weight column can be

thought of as a column of the combination matrix.

Once the nodes know their neighborhoods and have set the

corresponding combination weights, they start the consensus

stage. When some event (which could be asynchronous, such

as the arrival of a new packet or the availability of a new

TABLE I
NEIGHBOR TABLE FOR NODE k OF FIGURE 1.

N
·

|N
·
| a

·k

j 2 ajk = 1/3
l 5 alk = 1/5
k 3 akk = 1− (1/3 + 1/5) = 7/15

0 0 0 0

0

0

0

0 1 1

0 1 2

0 1 2

Fig. 2. Example 1. A chain of nodes running WFS, where the link between
the two nodes in the left end of the chain is faulty. The iteration number (i) of
the estimate (e.g., wk,i) is written inside each circle. At time t = 1, node j
cannot update because info from node k is missing. Similarly, although node
k has info from node l, it misses the estimate from node j, so it cannot update
its estimate. On the other hand, nodes l and m have all the information from
their neighborhoods. Nevertheless, at time t = 2, node l misses wk,1 so it
has to stop. Node m have both wl,1 and wm,1 so it can compute wm,2. At
time t = 3, node m is missing wl,2 so it is forced to stop too and, hence,
the whole network has to either wait until the link between j and k works
again (some retransmission finally reaches the node) or until a retransmission
timeout, which they understand as a permanent topology change so they safely
remove each other from their neighbor tables.

sample, or periodic, in synch with an internal iteration timer)

triggers the combination step (1a), the node has to be sure

that it has the right estimates. Let us say that node k wants

to update wk,i, then it should combine wl,i−1 for all l ∈ Nk,

instead of any other wl,j with j 6= i − 1. If such information

is not available, the node patiently waits for a retransmission

of the missing information. Note that when one node stops

updating its estimate (because it misses information from

any of its neighbors), then the rest of its neighbors will

also wait for it. Therefore, the difference in the iteration

number between two neighbors is at most 1 (e.g., wk,i and

wl,i−1). Thus, at every iteration, every node has to transmit

two parameters, namely, the two most recent estimates (i.e.,

wk,i and wk,i−1). This is illustrated in Figure 2.

B. Extension for dealing with permanent topology changes

Although the mechanism explained above is robust against

temporary link failures (e.g., due to fading, collisions...) and

asynchronous communications (e.g., because of clock drifts,

different transmission rates...), two extensions are required in

order to tackle permanent changes in the topology: a link-timer

that measures how long a link has been inactive, and a dynamic

neighbor table that can be updated during the consensus stage.

When one node receives a packet from one of its neighbors,

it resets the link-timer. If one link fails permanently (e.g., due

to node failure), the timer of each of the affected nodes will

reach a tunable timeout period, hence, they will assume that

the link will not recover anymore (at least in the short term)

and remove it from their tables. The iteration number is a

0 100 200 300 400 500 600 700 800
2

3

4

5

6

7

8

9

10

11

WFS
No coordination

Number of iterations

s
a
m

p
le

 v
a
lu

e

6.5

2 3 4 5 11...

Fig. 3. Robustness of WFS. We begin with a chain of 4 nodes, with values
{2, 3, 4, 5}, respectively. Then, we add up to 6 more nodes, one at a time,
with values {6, 7, 8, 9, 10, 11}, respectively. Note that WFS is able to achieve
the sample average of all the nodes (which in this case is 6.5).

form of acknowledgement that the information is diffusing

properly. Therefore, every node keeps transmitting its relevant

parameters as described in Sec. III-A.

When a new node is added to the network after the network

has entered the consensus stage, the other nodes will not

take it into account (they will continue giving zero weight).

Nevertheless, if the nodes are able to update their neighbor

tables every time they receive a packet from an unknown

neighbor, even during the consensus stage, then the network

will be able to integrate new nodes on the fly. When the new

node boots, it enters the setup-stage, in which it broadcasts

discovery messages and listens to discover its neighbors.

During this stage, apart of storing its neighbors’ identity, it

also keeps their iteration number. At the end of this stage, the

node sets its iteration number equal to the highest iteration

number among its neighbors. This way, the new node will be

included in new iterations of the consensus algorithm without

biasing earlier uncompleted iterations in its neighborhood.

Fig. 3 shows the robustness of WFS against noisy links,

asynchronous updates and permanent changes in the topology.

IV. IMPLEMENTATION GUIDELINES

The nodes will operate in an asynchronous environment,

hence, we find convenient to use an event-oriented operating

system with multi-threading capabilities.

We define a 3-thread template to split the tasks performed

by each node: processing incoming packets (RX), transmitting

its own data (TX) and sensing/actuating in the environment.

The state-logic of the WFS protocol is embedded in the RX

thread, which triggers the adaptation step and checks whether

the updated estimates of all the neighbors are available before

triggering the combination step. Therefore, the RX thread

controls the update of the two most recent estimates, which

will be broadcast by the TX thread. This implementation

scheme provides reliable data-diffusion at every consensus

iteration (i.e., it ensures a doubly stochastic matrix during

the combination step (1a)), Therefore, the developer can

abstract from the within-neighborhood communications and

focus on testing the local adaptation step (1b), speeding up the

development process. Still, a complete and flexible simulator,

able to emulate communication impairments, changes in the

topology and asynchronous events is a desirable feature. A

further constraint when developing distributed algorithms for

large scale networks is that the hardware of the nodes often has

little available memory. For these reasons, we choose Contiki

OS, which brings a powerful simulator, named Cooja, and

offers multithreading functionality plus a complete communi-

cation stack—we use UDP over IPv6—at a minimum memory

footprint (in the order of tens of kilobytes), and it is designed

to be programmed with standard C language (which makes

debugging simpler as opposed to other options, like TinyOS).

V. CASE OF STUDY: DISTRIBUTED ROBUST ESTIMATION

In this section, we illustrate the effectiveness of WFS as a

solution for implementing sophisticated distributed algorithms.

Consider a network of N sensors collecting one observation

each under the following model

yk = bkw
o + nk, k = 1, . . . , N, (6)

where wo is the parameter of interest, {bk, ∀k}= {0, 1} are

i.i.d. Bernoulli random variables with probability p,Pr{bk =
1}, and {nk, ∀k} are i.i.d. zero-mean Gaussian with variance

σ2 and independent of {bk, ∀k}. The nodes run a distributed

robust algorithm named DB-DEM [7], which provides an

unbiased estimation even under the presence of nodes with

faulty sensors that report only noise (i.e., those for which

bk = 0). Let wk,i and σ2

k(i) denote the estimates of the

parameters at node k at time i, and pk(i) the a posteriori

probability of bk given {yk, wk,i, σ
2

k(i)}.

The DB-DEM algorithm diffuses pk(i) across the network

by means of local combination steps of four intermediate

variables (one combination step each), which are then used

to update the local estimates. In this way, an initial period for

information diffusion is gradually switched off at the same

time as an averaging process is gradually switched on.

The followed methodology consists in: 1) Developing the

algorithm in a numerical computations environment (e.g.,

MATLAB) and defining a set of test-vectors (input-output)

that guarantee the correct operation of the algorithm; 2)
Developing the same program in C language, splitting the

adaptation step (local computations) and the combination step

(within neighborhood communications), but still assuming that

the combination step is performed exactly; 3) Moving the local

computations to the Contiki OS multi-threading template—

by using WFS as the service that provides the combination

step—and checking the test-vectors in the Cooja simulator. 4)
Customizing the Cooja code for the hardware platform (which

should require minimal effort at this point) and checking the

test-vectors in the real deployment.

Figure 4 shows the results for robust estimation vs. average

consensus. In both cases, we compare perfect communica-

tions (Matlab) vs. the WFS implementation under 30% of

packet loss and different transmission rates across the network

(Cooja). Both families of curves match almost perfectly.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

DB-DEM with perfect Communications (Matlab)

Average Consensus with perfect Communications (Matlab)

Average Consensus + WFS under noisy links (Cooja)

DB-DEM + WFS under noisy links (Cooja)

Sample average

Sample average after removing faulty nodes

Number of iterations

te
m

p
e
ra

tu
re

°
C

Fig. 4. DB-DEM vs sample average, with perfect communications vs. WFS
and noisy and asynchronous links. The simulated network consists of 10 nodes
in chain topology, where 4 of them have a faulty sensor. DB-DEM is able to
detect and compensate the faulty readings. Moreover, WFS (dashed) behaves
similar to the curves that assume perfect communication (solid with marker).

In addition to simulations, we ported the DB-DEM algo-

rithm to real hardware and the results match closely the simu-

lations. Moreover, WFS performed very efficiently, being able

to complete one iteration per second in different topologies,

including a fully connected network of 10 nodes.

VI. CONCLUSIONS

We split the implementation of the consensus algorithm into

two steps: combination and adaptation. We introduced WFS:

an efficient protocol that performs the combination step even

under asynchronous and impaired communications. By using

WFS, the designer only have to focus on implementing the

local adaptation step, which speeds up the development cycle.

REFERENCES

[1] A. H. Sayed, “Diffusion adaptation over networks,” in Academic Press
Library in Signal Processing, R. Chellapa and S. Theodoridis, Eds.
Elsevier, 2014, vol. 3, pp. 323–454. Also available as arXiv:1205.4220v1,
May 2012.

[2] F. Garin and L. Schenato, “A Survey on Distributed Estimation and
Control Applications Using Linear Consensus Algorithms,” in Networked

Control Systems. Springer, 2011, vol. 406, pp. 75–107.
[3] W. Ren, H. Chao, W. Bourgeous, N. Sorensen, and Y.-Q. Chen, “Ex-

perimental implementation and validation of consensus algorithms on a
mobile actuator and sensor network platform,” in IEEE Int. Conf. on

Systems, Man and Cybernetics, Oct 2007, pp. 171–176.
[4] R. Pagliari and A. Scaglione, “Implementation of average consensus

protocols for commercial sensor networks platforms,” in Grid Enabled

Remote Instrumentation. Springer, 2009, pp. 81–95.
[5] J. Kenyeres, M. Kenyeres, and M. Rupp, “Experimental node failure anal-

ysis in WSNs,” in Int. Conf. on Systems, Signals and Image Processing,
June 2011, pp. 1–5.

[6] J. Kenyeres, M. Kenyeres, M. Rupp, and P. Farkas, “Wsn implementation
of the average consensus algorithm,” in European Wireless, April 2011,
pp. 1–8.

[7] S. Pereira, R. Lopez-Valcarce, and A. Pages-Zamora, “A diffusion-based
em algorithm for distributed estimation in unreliable sensor networks,”
Signal Processing Letters, IEEE, vol. 20, no. 6, pp. 595–598, June 2013.

[8] J. Chen and A. H. Sayed, “On the Learning Behavior of Adaptive
Networks - Part I: Transient Analysis,” CoRR, vol. abs/1312.7581, 2013.

