
Secure Direct and Iterative Protocols for Solving

Systems of Linear Equations

Juan Ramón Troncoso-Pastoriza, Pedro Comesaña, and Fernando
Pérez-González

University of Vigo
Signal Theory and Communications Department

Vigo 36310, SPAIN,
{troncoso,pcomesan,fperez}@gts.tsc.uvigo.es

Abstract. In an increasingly connected world, the protection of digital
data when it is processed by other parties has arisen as a major concern
for the general public, and an important topic of research. The field
of Signal Processing in the Encrypted Domain has emerged in order to
provide efficient and secure solutions for preserving privacy of signals
that are processed by untrusted agents.
In this work, we propose novel privacy-preserving protocols for the so-
lution of Linear Systems of Equations, that improve on previous contri-
butions in terms of security; we also propose secure implementations of
iterative algorithms, pointing out the difficulties that arise when deal-
ing with iterative operations on encrypted data, and proposing possible
solutions to these shortcomings.

Keywords Privacy, System of Linear Equations, Iterative Methods, Complex-
ity.

1 Introduction

In modern society, digital data about individuals can be found relatively easily in
the communication networks, especially the Internet. Although people supports
the last decades’ advances in digital networks, the sensitiveness of these data
motivates the raise of an increasing concern about the public availability of
personal data, and the processing performed on them. Focusing on the European
case, this concern has been reflected in a series of Directives, dealing with the
protection of individuals’ personal data ([1, 2]). Directive 95/46/EC deals with
the protection of individuals with regard to the processing of personal data and

on the free movement of such data, where personal data means any information

relating to an identified or identifiable natural person. One of the main mottoes
of this Directive is that data processing systems must respect the fundamental
rights and freedoms, specially in those aspects concerning the right to privacy.

Leaving aside the legal framework, and turning into the technical support
to privacy principles, conventional cryptographic protocols deal with the prob-
lem of protecting some private information from an unauthorized third party

that otherwise could modify or have access to the information. In the scenario
of secure processing, where the privacy must be preserved not only against a
third party, but also against the parties that process the data, secure multiparty
computation constructions can be used. Nevertheless, typical multiparty compu-
tation protocols become too costly in terms of computation and communication
complexity for real-world scenarios.

This is the context in which the emerging field of Signal Processing in the En-

crypted Domain arose. This discipline tries to address the problem of efficiently
processing signals in untrusted environments, where not only the communica-
tion channel between parties is insecure, but also the parties that perform the
computation are not trusted.

In this privacy preserving computation framework, several proposals have
been recently issued to implement primitives like secure access to encrypted
databases [3, 4], transcoding of an encrypted signal without prior decryption [5],
or basic problems such as computing scalar products [6] or linear transforms [7].

Up to now, the efficient protocols presented in the field of signal process-
ing in the encrypted domain have been focused in linear operations, like scalar
products, and non-iterative algorithms. Nevertheless, there are many basic al-
gorithms needed for most signal processing applications that are iterative and
involve not only scalar products with known values, but also products between
two a priori unknown sequences. The lack of these algorithms would suppose
missing a powerful and irreplaceable tool that enables almost any signal pro-
cessing application.

Thus, in this work we cope with this problem, and present efficient and
provably secure two-party protocols for solving linear systems of equations and
inverting matrices, useful for many applications (e.g. least squares minimization),
implementing also iterative algorithms, and calculating the needed cipher size
to accommodate a given number of iterations. We also perform a full complexity
analysis of the presented protocols.

2 Notation

We will use indistinctly lowercase letters to represent classes in a ring (Zn,+, ·)
and a representative of that class in the interval [0, n). ⌈.⌋ will represent the
rounding function of a number to the nearest integer.

The used vectors will have size L and will be represented by lower-case bold-
face letters, whereas matrices will be represented by upper-case boldface letters.
A′ = {ai,j}

t,u
r,s represents the submatrix of A of size (t − r + 1) × (u − s + 1),

defined by a′
i,j = ai+r−1,j+s−1.

The encryption of a number x will be represented by JxK, and the vector (ma-
trix) formed by the encryptions of the vector x (matrix X) will be represented
by JxK (JXK).

The operations performed between encrypted and clear numbers will be in-
dicated as if they were performed in the clear; e.g. JXK · b will represent the

encryption of JX · bK. How these operations will be implemented (homomorphi-
cally or through an interactive protocol) will be clear by the context.

Regarding the complexity calculations, the complexity of basic modular oper-
ations, like additions (A), products (P) and exponentiations (X) will be denoted
by CompA,CompP ,CompX respectively, prefixing an E (i.e. EA,EP,EX) when
they are performed under encryption. The factor ct < 1 will denote the ratio
between the size of a clear-text value and that of an encrypted value. Finally,
the subscript cm will denote communication complexity, measured in number
of sent encryptions, while cp will indicate computational complexity, with an
indication of the party whose complexity is represented.

The rest of the Paper is structured as follows: in Section 3 some previous
concepts are introduced; Section 4 reviews the existing solutions to the problem
of secure solving SLEs; in Section 5 we sketch our protocols and give their
measures of complexity. Section 6 evaluates the given complexity measures for a
specific construction, gives some examples of use and, for the iterative protocols,
plots bounds to representable numbers as a function of the performed iterations,
focusing on the trade-off among the three considered parameters: complexity,
representability and number of iterations. Finally, Section 7 summarizes the
obtained results and sketches the future lines.

3 Secure Computation

In this section, we will introduce some of the previous concepts of secure com-
putation that are needed for the development of our constructions, namely Ho-

momorphic Encryption, Secret Sharing and Secure Multiparty Computation.

3.1 Homomorphic Encryption

Some cryptosystems present homomorphisms [8] between the groups of clear-
text and cipher-text, that allow for the execution of a given operation directly
on encrypted values, without the need of decryption. Examples of homomorphic
cryptosystems are RSA, with a multiplicative homomorphism, or Paillier [9],
with an additive homomorphism.

In this work, we do not restrict the used cryptosystem for the presented
protocols, as far as it presents an additive homomorphism. For the sake of clar-
ification, and for performing the numerical calculations of Section 6, we use the
extension of Paillier encryption given by Damg̊ard and Jurik [10], both in its
threshold and non-threshold form; a k out of M threshold public key encryption
system [11] is a cryptosystem where the private key is distributed among M

parties, and at least k of them are needed for decryption.
Damg̊ard and Jurik’s cryptosystem presents an additive homomorphism that

allows computing the addition of two encrypted numbers and the product of an
encrypted number and a public integer:

EP [x + y] = EP [x] · EP [y] EP [x · k] = EP [x]k.

The message space is Zns , where n is the product of two safe primes p, q, and
the parameter s is fixed.

The encryption of a message x is done by picking a random r ∈ Z
∗
ns+1 and

computing the ciphertext EP [x] as

EP [x] = gxrns

mod ns+1.

For the threshold decryption of c = EP [x], every party calculates a decryption
share with his share of the secret key. These decryption shares are distributed
among all the parties, and combined to obtain the wanted decryption. In case
of malicious parties, they must also generate a zero-knowledge proof [12] for
the correctness of the decryption share. For further details, we refer the reader
to [10].

We must also draw attention to the fact that currently there is no practical
fully homomorphic cryptosystem, that is, there is no secure cryptosystem that
allows for the homomorphic computation of additions and products without re-
strictions. There has been a recent contribution by Gentry [13], that presents
a cryptosystem based on ideal lattices with bootstrappable decryption, and it
is shown that it achieves a full homomorphism. Nevertheless, the authors ar-
gue that making the scheme practical remains an open problem. Thus, we will
adhere to using an additively homomorphic cryptosystem and briefly comment
the advantages that an efficient and practical fully homomorphic cryptosystem
would provide.

3.2 Secret Sharing

Secret sharing is a technique introduced by Adi Shamir [14], by which a given
value (the secret) is divided among several parties, such that the cooperation
among a number of these parties is needed in order to recover the secret. None
of the parties alone can have access to the secret.

Shamir’s scheme is based on polynomials, and the need of k points in order
to completely determine a degree (k − 1) polynomial. Secret sharing is a widely
used primitive in cryptographic protocols. In this work we focus on two-party
protocols; thus, we are only interested in the two-party version of the secret
sharing scheme, that is based on linear functions and, consequently, it naturally
supports the computation of sums and products directly on the shares: let Zn

be the domain of the secrets. Then, a share of a secret x is defined as two values
xA and xB , owned by their respective parties, such that xA + xB ≡ x mod n.
Hereinafter, randomizing an encrypted value x will mean obtaining one share
and providing the encryption of the other (through homomorphic addition).

3.3 Secure Multiparty Computation

Secure Multiparty Computation was born in 1982 with Yao’s Millionaires’ prob-
lem [15]. Yao proposed a solution to the binary comparison of two quantities
in possession of their respective owners, who are not willing to disclose to the

other party the exact quantity they own. The solution that Yao proposed was
based on the so called garbled circuits, in which both parties evaluate a given
circuit, gate by gate, without knowing the output of each gate. Yao’s solution
was not efficient, and later, many protocols based on other principles, like ho-
momorphic computation or secret sharing, were proposed in order to efficiently
perform other operations in a secure manner.

Nevertheless, while homomorphic computation and secret sharing are very
efficient for implementing arithmetic operations, circuit evaluation is still more
efficient when dealing with binary tests [16]. Thus, there exist efficient protocols
for binary comparison [16, 17] or Prefix-OR [16]. Traditionally, the search for
efficient solutions has led to proposals for changing between integer and binary
representation in order to efficiently implement both arithmetic and binary oper-
ations; e.g., there are solutions like BITREP protocol [18], that converts Paillier
encrypted integers to Paillier encryptions of their corresponding bit representa-
tion.

For our constructions, we will use the two-party version of one existing sub-
protocol for securely performing multiplication; it is sketched in Appendix A.

4 Prior Art

To the best of our knowledge, there was a previous approach to the problem of
privately solving linear systems of equations, by Du and Atallah [19]. In that
work, the authors presented the problem of solving a linear system with a matrix
and an independent vector partitioned between two parties. They presented a
solution based on secret sharing, but the privacy that their solution achieves is
not total; as later works have shown (cf. Wright and Yang [20]), their protocol for
secure multiplication leaks information about the multiplied matrices, and it also
relies on a security parameter that largely increases the needed communication
in order to achieve a determined level of concealment on the multiplied values. It
is also worth mentioning that Cramer and Damg̊ard proposed in [21] a solution
to distributed linear algebra problems, coping with finite fields; on the contrary,
the present work gives solutions to problems posed in R

n.

In this work, we improve on previous protocols in terms of achieved privacy,
practically limiting the leak of information to the inherent leak that disclosing
the solution of a SLE produces.

Regarding prior work in the recent field of Signal Processing in the En-
crypted Domain, we are not aware of any current solution for securely executing
iterative algorithms, nor any study performed on the impact that an iterative
implementation has on the range of representable numbers. Thus, we believe
that our solution is the first one to be presented for privacy preserving iterative
algorithms.

5 Our constructions

For all our protocols, we will consider two parties, A and B, both using an
additively homomorphic cryptosystem in an asymmetric scenario, where A can
only encrypt, but B possesses also the decryption key, and can perform both
encryption and decryption. For the problem of solving an SLE A ·x = b [22], we
will consider that A owns an encrypted version of the system matrix JAK, and of
the independent vector JbK. This scenario can be straightforwardly reached from
many initial situations, covering all the possible ways of sharing A and b between
both parties. For the sake of brevity, we will focus on this initial situation, and
obviate the way of reaching it.

The assumption we make about the system consists in A being either a
positive definite matrix or a strictly diagonally dominant matrix, in order to
guarantee both a solution to the system and the convergence of the studied
methods, as will be detailed later. This assumption is not a severe limitation, as
many matrices found in statistics calculations fulfill it [22].

Regarding the privacy requirements, we will assume that both parties are
semi-honest, in the sense that they will adhere to the established protocol, but
they can be curious about the information they can get from the interaction.
In this scenario, our protocols can be proven private; informally, both parties A
and B can only get the information leaked from the solution to the system, and
no information is leaked from the intermediate steps of the protocols.

As sparsity of the matrices cannot be used as an advantage under encryption,
we will focus only on direct methods for solving linear systems of equations
(Section 5.1), and we will not cope with methods based in decompositions of the
system matrix (like LU or Cholesky decomposition). Furthermore, we will also
provide protocols for iterative methods of SLE solving (Section 5.2) and matrix
inversion (Section 5.3).

5.1 Direct method: Gaussian elimination

Firstly, we will implement the method of Gaussian elimination, using the secure
multiplication protocol (cf. Appendix A) for implementing the needed multipli-
cations. Due to the lack of a division operation under encryption, the obtained
result vector is scaled, but the scale factors are stored in a second vector s, so
that the solution can be recovered after decryption through a component-wise
division. The protocol ends with two vectors x′ and s, being the solution to the

system xi =
x′

i

si
, i = 1, . . . , L.

Let A ∈ ML×L(Z) be a quantized symmetric positive-definite matrix, or a
diagonally dominant matrix, and b ∈ Z

L be a quantized column vector. The
quantization step ∆ is such that the absolute value of every quantized element
is upper bounded by a constant T .

In our scenario, we will assume that B knows the decryption key of an additive
homomorphic cryptosystem, and both A and B can produce encryptions using
this cryptosystem; A possesses the encrypted matrix JAK and the encrypted vec-
tor of independent terms JbK. Both parties will engage in an interactive protocol

in order to obtain the solution x to the linear system A ·x = b. The protocol is
sketched next.

Following the Gaussian elimination algorithm, we will call G(0) = G to the
concatenation of G = [A|b]. The algorithm is executed in L − 1 steps. At each
step k, the matrix G is modified for obtaining an equivalent system G(k) in
which the k-th unknown is not present in the last L − k equations.

For the k-th step of the algorithm, the first k − 1 elements of the L − k + 1
last rows of G(k−1) are zero; A owns an encrypted version of the non-zeroed
elements of G(k−1). The secure protocol proceeds as follows

1. A provides randomized encrypted versions of the submatrix C(k) formed by
the last (L − k + 2) columns of the last (L − k + 1) rows of G(k−1);

2. B, through decryption and reencryption, calculates the (randomized) prod-
ucts of the (L − k) × (L − k + 1) matrices D(k) and E(k), defined asr
d
(k)
j,m

z
=

r
c
(k)
1,m+1 · c

(k)
j+1,1

z
, and

r
e
(k)
i,j

z
=

r
c
(k)
1,1 · c

(k)
i+1,j+1

z
, and sends the

randomized encryptions to A.
3. A derandomizes the received encryptions and, using homomorphic opera-

tions, obtain the next iteration of G:

r
G(k)

z
=

(

{
r
g
(k−1)
i,m

z
}
(k,L+1)
(1,1)

0L−k,k

q
F (k)

y
)

,

where
q
F (k)

y
is an (L − k) × (L − k + 1) matrix with elements

r
f

(k)
i,m

z
=

r
e
(k)
i,m

z
−

r
d
(k)
i,m

z
.

After L−1 iterations, A has an encrypted upper triangular matrix appended
to an encrypted vector,

q
G(L−1)

y
, that constitute a system with the same solu-

tion as the original one.
In order to solve the system, both parties initiate the process of back substi-

tution under encryption, consisting in L iterations: in each iteration, an element
of the vector x′ and the corresponding element of the scale vector s are ob-
tained. As they will be revealed as the output, and they are needed in order to
calculate the subsequent elements of x′, they can be decrypted before the next
iteration in order to lower the complexity by reducing the number of the needed
multiplication protocols. For the first step:

1. A sends {
r
g
(L−1)
i,i

z
}L

i=1 and
r
g
(L−1)
L,L+1

z
.

2. B obtains, through decryption, the scaling vector s, with si =
∏L

l=i g
(L−1)
l,l ,

and the value x′
L = g

(L−1)
L,L+1, and sends them back to A.

In each subsequent k-th step, A calculates, using homomorphic operations:

q
x′

L−k+1

y
=

r
g
(L−1)
L−k+1,L+1

z
· sL−k+2 −

L
∑

l=L−k+2

r
g
(L−1)
L−k+1,l

z
· x′

l

sl

sL−k+2
,

and sends
q
x′

L−k+1

y
to B to obtain its decryption.

With the proposed protocol, we are not disclosing any element of the original
matrix A nor of the independent terms vector b. Furthermore, every step of the
protocol can be proven secure with semihonest parties, due to the semantical
security of the underlying homomorphic cryptosystem, the security of the used
multiplication protocols, and the fact that all the unencrypted values (besides
the result and the scaling vector) that each party can access are random and
uncorrelated. Nevertheless, the scaling vector reveals the diagonal of the upper
triangular matrix of an equivalent system, which gives information about the
eigenvalues of the original matrix. Nevertheless, this information affects L scaled

elements out of L(L+1)
2 .

It must be noted that having the values of the principal diagonal of the upper-
triangular matrix of the equivalent system yields the possibility of calculating
its condition number, or at least, its bound

κ(U) ≥
maxi(|uii|)

mini(|uii|)
.

Thus, this disclosure constitutes a clear advantage in terms of conditioning
and efficiency: before executing the back substitution protocol, the rows of G(L)

can be multiplied by appropriate factors in order to lower the condition number
and minimize error propagation due to working with a fixed point precision.
Also, the vector of multiplicative factors si can be adequately quantized in the
clear to achieve this same goal.

As a last remark, this protocol does not limit the number N of SLEs sharing
the same system matrix A and with different independent term vectors bi that
can be solved in parallel; all the vectors bi can be appended to the system matrix,
forming a L×(L+N) matrix Gext and in each step of the previous protocol, the
operations that must be performed on the last column of G(k) will be replicated

for the last N columns of G
(k)
ext.

Complexity When solving one system A · x = b, the Gaussian Elimination
(GE) protocol is performed in (L − 1) rounds of communication, with total
complexity

CompcmGE = (L3 + L2 − 2)

CompcpGE,A =
1

3

(

L3 + 3L2 + 2L − 6
)

CompEncrypt+

1

3

(

2L3 + 3L2 + L − 6
)

CompEA

CompcpGE,B =
1

3

(

L3 + 3L2 + 2L − 6
)

CompDecrypt+

2

3

(

L3 − L
)

(CompEncrypt + CompP).

The protocol of Back Substitution (BS) is performed in L rounds of com-
munication, with total complexity

CompcmBS = 2L · (1 + ct)

CompcpBS,A =
1

2
(L2 + L − 2)CompEP +

1

2
(L2 − L)CompEA

CompcpBS,B = 2LCompDecrypt.

Representable numbers We have assumed that the coefficients of the system
matrix A are quantized versions of the real-valued coefficients, with a quanti-
zation step ∆. Furthermore, the absolute value of the quantized coefficients is
bounded by an integer T > 0. Then, it is possible to estimate the value of T

needed to fit all the performed operations inside a cipher that can represent
integers in the range [0, n) without rounding problems.

For the first part of the protocol (the Gaussian elimination), each iteration
multiplies two numbers that were obtained in the previous iteration and adds
them up, so the previous bound gets squared and doubled:

|t1|, |t2|, |t3|, |t4| < T ⇒ |t1 · t2 − t3 · t4| < 2T 2.

Then it is straightforward to conclude that all the elements of the k-th row

of the resulting G(L−1) will be bounded by (22k−1−1)T 2k

, and will constitute

the representation of their real-valued equivalents, quantized by ∆2k−1

. Thus,

the cipher must be such that n > (22k−1−1)T 2k

in order to fit all the numbers
involved in this protocol. This means that the bit size of the modulus of the
cipher must grow exponentially with the dimensionality of the system, what
gives a poor scalability.

For the second part of the protocol, after the diagonal elements are disclosed,
they can be requantized in order to make them relative to the lowest scale and
lower the bit-size requirements of the cipher; but in the worst case, without
requantizing the scale factors, the largest number present after running the whole

protocol will be 22L−L−1T 21+L−4. That will also constrain the size of the cipher.

5.2 Iterative methods: Jacobi’s Method

The general form of stationary iterative methods for solving SLEs is

x(k+1) = M · x(k) + c.

Jacobi’s method is a particular case of stationary iterative methods, where
the system matrix is decomposed into A = D(L+I +U), a diagonal matrix D,
a lower triangular matrix L and an upper triangular matrix U , having both L

and U zeros in their principal diagonals. Then, M = −(L + U) and c = D−1b.
As divisions are not supported homomorphically, the previous iteration cannot
be implemented directly. Thus, the division is simulated by multiplying each row

of A by the diagonal elements of the remaining rows, what results in multiplying

the matrix M of Jacobi’s method by a scalar factor γ =
(

∏L

i=1 aii

)

.

A′ = −γD−1 · (A − D) = γM .

The factor γ will be propagated at every iteration of the algorithm:

γkx(k) = −γD−1 (A − D) · γk−1x(k−1) + γkD−1b.

Let us assume that B can decrypt and both A and B can encrypt with an
additive homomorphic scheme, and that A owns encryptions of JAK and JbK
with this homomorphic system. In order to allow for efficient computation, the
following protocol is executed:

1. A can blind the principal diagonal of JAK and send it to B.
2. B decrypts it, both parties ending up with additive shares of the diagonal

elements {aii}.
3. With this shares, both parties can securely compute shares of the diagonal

matrix
(

γD−1
)

jj
=
∏L

i = 1
i 6= j

aii, through ⌈log2(L − 1)⌉ rounds of parallel

secure multiplication protocols. They can also calculate the value of γ, and
disclose it for use in the following steps of the protocol.

4. A can then calculate the encryption of JγMK =
q
−γD−1

y
· JA − DK and

JγcK =
q
γD−1

y
· JbK, invoking the secure multiplication protocol.

5. Then, A sends B a blinded and encrypted version of JγMK, that B decrypts
for use in the following iterations.

After these initial steps, for the first iteration of the secure protocol both
parties agree in an initial vector x(0) and A calculates, through homomorphic
additions and multiplications, the encryption of

q
γx(1)

y
= JγMK · x(0) + JγcK.

For each subsequent iteration, A calculates the encryption of γ ·
q
γk−1c

y
,

and then both parties use the secure multiplication protocol of Appendix A and
homomorphic additions in order to obtain the vector for the following step

r
γkx(k)

z
= JγMK ·

r
γk−1x(k−1)

z
+ γ ·

q
γk−1c

y
.

It must be noted that the matrix JγMK does not have to be communicated
at each iteration, as its blinded version was stored by B at the initial step. Thus,
only two vectors per iteration are sent between A and B.

After each iteration, the factor γ multiplies the result; thus, after a number
of steps, the cipher will not be able to accommodate the scaled number, and the
protocol will have to stop. This is studied in more depth in Section 6. It must
be noted that the accumulated factor is not only γ, but also the quantization
step ∆ used for the initial quantization of the coefficients of both the system
matrix A and the vector b in order to make them integers so that they can be
encrypted. This factor must also be taken into account every time γ multiplies

vector c, so that the homomorphically added vectors be quantized with the same
scaling factor.

Lastly, each step of the protocol can be proven secure with semihonest parties,
due to the semantic security of the underlying cryptosystem, the security of the
multiplication protocol, and the fact that the unencrypted values that each party
sees are random and uncorrelated.

Complexity The complexity of the initial part (Jacobi Initial, JI) of the pro-
tocol is

CompcmJI = 3L2 + 2L⌈log2(L − 1)⌉ − 3L + 5 + ct

CompcpJI,A = (5L2 + 4L⌈log2(L − 1)⌉ − 5L + 8)CompEA+

(L2 + L⌈log2(L − 1)⌉ − L + 2)2CompEP

CompcpJI,B = (L2 + L⌈log2(L − 1)⌉ − L + 2)
(

CompDecrypt + CompP +

CompEncrypt

)

+ (L2 − L + 1)CompDecrypt.

The first iteration (J1) does not involve any interaction, and A incurs in a
computational complexity of CompcpJ1,A = L2(CompEP + CompEA).

The complexity of each of the subsequent iterations of this protocol (J) is
the following

CompcmJ = 2L

CompcpJ,A = (3L2 − 2L)CompEA + (2L2 − L)CompEP + LCompEA

CompcpJ,B = L
(

CompDecrypt + CompEncrypt

)

+ (L2 − L)CompP +

(L2 − 2L)CompA.

After a number of iterations, either the solution can be disclosed, or an error
metric can be obtained to determine whether convergence has been achieved.
While the choice of this error metric is arbitrary, one possibility is to homomor-
phically subtract

q
x(k)

y
−

q
x(k−1)

y
, and either decrypt the result or perform L

parallel encrypted comparisons with a predetermined threshold.

Representable numbers As for the direct method, we have assumed that
the coefficients of the system matrix A are quantized versions of the real-valued
coefficients, with a quantization step ∆, such that their quantized absolute value
is bounded by an integer T > 0.

For the first part of the protocol, where the factor γ and the matrix γD−1 are
calculated, γ is the highest number that the system will have to represent, and
it is bounded by TL; the bound for the elements of γD−1 is TL−1. Furthermore,
as γ is disclosed in the following step, it can constitute a more accurate bound
to the encrypted coefficients of γD−1. A bound for the absolute value of the
coefficients of γM and of γc is min(TL, γT).

Lastly, the bound to which the elements of the first vector x(1) are subject
is L · TL+1.

In each iteration, the previous bound is multiplied by L·TL, meaning that the
bound for the elements of the k-th iteration is Lk ·T k·L+1, i.e., the needed bit-size
of the cipher is linear both in the dimension of the system and in the maximum
number of iterations that can be performed without errors. Furthermore, the
quantization step of the elements of x(k) will be ∆kL.

Convergence of the algorithm When dealing with iterative algorithms like
Jacobi’s, it is necessary to determine whether the algorithm can converge or not
before applying the algorithm. In the general case of stationary iterative methods,
the necessary and sufficient condition for their convergence with an arbitrary
initial vector x(0) is that maxi |λi(M)| < 1, where λi(M) are the eigenvalues
of M . For Jacobi’s method, M = −D−1 · (A − D). Let us assume that A is
a strictly diagonally dominant matrix with bounded coefficients |aij | ≤ T . By
Ostrowski’s theorem [23], the eigenvalues of M are located in the union of L

discs

L1 ,

L
⋃

i=1

{z ∈ C : |z − mii| ≤ min{Ri, Ci}} ,

where mii = 0, mij =
aij

aii
, i 6= j, and

Ri =

L
∑

j=1,j 6=i

|mij |,

Ci =

L
∑

j=1,j 6=i

|mji|.

As A is strictly diagonally dominant,
∑L

j=1,j 6=i |aij | < |aii| ⇒ Ri < 1. Thus,
it is possible to bound the moduli of the eigenvalues of M as

|λi(M)| < 1.

Then, Jacobi method always converges for strictly diagonally dominant ma-
trices, and the test of convergence is not needed.

5.3 Matrix inversion through iterative methods

There are cases in which, instead of or additionally to solving a SLE, the in-
verse of the system matrix is also needed, like the case of regression analysis in
statistics. For these applications, the system matrix A must be inverted. As the
direct method (through Cramer’s rule) is computationally too expensive, we will
provide a secure protocol for performing the execution of an iterative method,
namely Newton’s method. One iteration of this method has the following ex-
pression

X(k) = X(k−1) ·
(

2I − AX(k−1)
)

,

where X(k) will converge to A−1.
The secure protocol for Newton’s method will execute an initial iteration with

an agreed initial value X(0), performed uniquely with homomorphic operations.
Then, the following iterations make use of the secure multiplication protocol
(cf. Appendix A) and homomorphic sums. Each iteration needs two rounds of
communication:

1. The first one to calculate
q
Q(k)

y
= JAK ·

q
X(k−1)

y
,

2. the second one to calculate
q
X(k)

y
=

q
X(k−1)

y
·
(

2I −
q
Q(k)

y)
.

As with any iterative method, the result gets multiplied after each iteration
by the quantization step of the used integers, so after a sufficiently high number of
iterations, as with Jacobi’s method, the cipher will not be able to accommodate
the scaled numbers, and the protocol will stop (cf. Section 6).

Lastly, the protocol is provably secure with semihonest parties due to the
semantic security of the cryptosystem, and the security of the sequentially com-
posed multiplication protocols.

Complexity The first step involves only one round of interaction, and its com-
plexity is given by

CompcmNEWI = L2

CompcpNEWI,A = 2L3CompEP + (2L3 − 2L2 + L)CompEA

CompcpNEWI,B = 0.

The complexity of each of the subsequent iterations of this protocol is the
following

CompcmNEW = 2CompcmMULT (L,L,L)

CompcpNEW,A = 2CompcpMULT,A(L,L,L) + LCompEA

CompcpNEW,B = 2CompcpMULT,B(L,L,L).

Representable numbers Let us assume that the elements of the matrix A

are quantized with a quantization step ∆, and their absolute value is bounded
by T > 0. Then, the elements of matrix resulting from the first iteration of
the protocol are bounded by L2T 3 + 2T . For each of the next iterations, the

bound T (k−1) is updated as T (k) =
(

T (k−1)
)2

· T ·L2 + 2 ·K. Thus, the order of

the bound after m iterations is O
(

T 2m+1−1 · L2m+1−2
)

, i.e. the bit-size of the

cipher is exponential in the number of iterations, like for the direct algorithm of
Section 5.1.

Convergence of the algorithm The convergence of Newton’s method is as-
sured whenever the initial matrix X(0) satisfies ||AX(0) − I|| < 1. As the initial
vector is chosen by both parties, it can be such that this condition is fulfilled,

given the bounds to the elements of A and the bounds to the eigenvalues obtained
by the application of Ostrowski’s theorem. This way, as for Jacobi’s method, it
would be unnecessary to check for convergence through an additional interactive
protocol.

6 Practical Implementation

In this section, we study a practical implementation of the protocols that we have
proposed, and comment on the obtained results. For this purpose, we have chosen
Damg̊ard-Jurik [10] extension of Paillier cryptosystem, due to its flexibility for
fitting larger plaintexts with a constant expansion ratio. With the complexity
calculations shown in the previous section, we will exemplify the figures to which
the presented protocols lead, with different parameters.

Firstly, we evaluate the needed size of the cleartext group in order to safely fit
all the involved numbers without errors in their representation. Figure 1 shows
the bit-size of the plaintext group when coefficients are bounded by 232 and for
an SLE with L = 10 equations (10 × 10 system matrix), which are reasonable
sizes for common applications. The direct method needs plaintexts of about 215

bits for getting the solution of the system; this is a reasonable figure, taking
into account that the output will be directly the solution of the system. On the
other hand, the two studied iterative systems have a very different behavior,
as anticipated by the calculations of Section 5. While the needed size of the
plaintext in the protocol implementing Newton’s method grows exponentially
with the number of iterations, needing more than 216 bits to fit the represented
numbers after 10 iterations, Jacobi’s method is far more conservative, needing
less than 213 bits for the same number of iterations, and with a linear growth.

Figure 2 shows also the size of the plaintext, varying the dimensionality of
the problem; for the iterative algorithms, the number of performed iterations is
fixed at 5. This time the direct protocol shows its exponential dependence on the
dimensionality of the problem, while the protocol for Jacobi’s method is linear,
and Newton’s algorithm logarithmic. This is a factor that is worth considering
when inverting matrices with a high dimensionality.

Regarding the complexity of the developed protocols in terms of commu-
nication and computation given a maximum plaintext size, Figure 3 plots the
communication complexity measured in bits for the three protocols when solv-
ing a system with 5 unknowns, and varying the parameter s of Damg̊ard-Jurik
cryptosystem, that gives a plaintext size of s · m, where m has been fixed here
to 1024 bits. For this system, the minimum s accepted by the direct protocol is
s = 2. For the iterative protocols, the complexity is calculated for the maximum
number of iterations that the size of the cipher can correctly fit. This quantity
is indicated in Table 1.

While the communication complexity of the three protocols is approximately
linear on s, the protocol for matrix inversion needs much more communication,
with a number of iterations limited by the maximum size of the plaintext. On
the other hand, the protocol that implements Jacobi’s method is much more

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

Iterations

lo
g 2(m

)

Direct

Jacobi

Newton

Fig. 1. Logarithm of the bit-size of the plaintext group as a function of the performed
iterations for T = 232 and L = 10 dimensions.

0 2 4 6 8 10 12 14 16 18 20
6

8

10

12

14

16

18

20

22

24

26

Dimensions

lo
g 2(m

)

Direct

Jacobi

Newton

Fig. 2. Logarithm of the bit-size of the plaintext group as a function of the number of
dimensions, for T = 232 and 5 iterations.

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3
x 10

7

s

B
its

Direct

Jacobi

Newton

Fig. 3. Communication complexity of the presented protocols as a function of s, with
T = 232 and L = 5 dimensions.

2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

5

6

7

8

9

10
x 10

9

s

M

od
ul

ar
 a

dd
iti

on
s

Direct A

Jacobi A

Newton A

Direct B

Jacobi B

Newton B

Fig. 4. Computational complexity of the presented protocols as a function of s, with
T = 232 and L = 5 dimensions.

Table 1. Number of allowed iterations as a function of s, with T = 232 and L = 5
dimensions.

s 2 3 4 5 6

Jacobi[iters] 13 19 26 32 38

Newton[iters] 4 5 5 6 6

efficient, as it can perform a much larger number of iterations within the same
plaintext size, while incurring in a lower complexity.

The same behavior can be observed in terms of computational complexity
(Figure 4), that is approximately quadratic on s for the three protocols, but
the multiplicative constants are much larger for Newton’s protocol than for the
other two. As a function of the number of dimensions, the protocol implement-
ing Jacobi’s method is also much better behaved than the other two methods,
but still needs a large plaintext size when a high number of iterations must be
performed. We have not included more plots illustrating this behavior due to
space limitations.

Summarizing, the needed bit size for the three protocols is relatively high,
and for the case of the protocol for Newton’s method it grows exponentially
with the number of performed iterations. Jacobi’s is far more efficient, as it
can accommodate a much larger number of iterations using the same maximum
plaintext size. The complexity of the protocol for Jacobi’s method is also lower
than the other two methods for a sufficiently high number of dimensions.

Nevertheless, in order to perform an arbitrary number of iterations, and to
lower the complexity of the three protocols, it would be desirable to have a means
for renewing the cipher with a lower scale factor. It must be noted that, even
when having a full homomorphic cryptosystem, this problem cannot be avoided.
The full homomorphism would allow for performing all the operations with-
out interaction, considerably lowering the communication complexity, as well as
the computational complexity (depending on how the homomorphic operations
must be performed). Nevertheless, with a fully homomorphic cryptosystem the
growth of the ciphered numbers would be also unavoidable, and the method for
requantization would also be needed.

7 Conclusions and Further Work

In this work we have proposed new privacy-preserving protocols for solving sys-
tems of linear equations (SLEs), making use of homomorphic computation and
secret sharing. We have implemented a direct method (Gaussian elimination), as
well as iterative methods for solving SLEs (Jacobi’s method) and matrix inver-
sion (Newton’s method). These protocols are secure with semi-honest parties,
and, to the best of our knowledge, they are the first iterative methods under
encryption proposed up to date.

There are some difficulties in the implementation of an iterative method that
have been pointed out in the present work, namely the growth of the ciphered

numbers and their change in quantization scale. As a continuation of this work,
we are working in a protocol for tackling these problems, that will be presented
in a future contribution.

8 ACKNOWLEDGMENTS

This work was partially funded by Xunta de Galicia under Projects 07TIC012322PR
(FACTICA), 2007/149 (REGACOM), 2006/150 (“Consolidation of Research Units”),
by the Spanish Ministry of Science and Innovation under projects COMONSENS (ref.
CSD2008-00010) of the CONSOLIDER-INGENIO 2010 Program, and SPROACTIVE
(ref. TEC2007-68094-C02-01/TCM) and the FPU grant Ref. AP2006-02580.

References

1. : Directive 95/46/EC of the European Parliament and of the Council. Official
Journal L 281, 23/11/1995 P. 0031 - 0050 (October 1995)

2. : Directive 2002/58/EC of the European Parliament and of the Council. Official
Journal L 201, 31/07/2002 P. 0037 - 0047 (July 2002)

3. Brinkman, R., Doumen, J.M., Jonker, W.: Using secret sharing for searching in
encrypted data. In: Workshop on Secure Data Management in a Connected World
(SDM 2004). Volume 3178 of Lecture Notes in Computer Science., Springer-Verlag
(2004) 18–27

4. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the 2000 IEEE symposium on Security and Privacy. (2000)
44–55

5. Johnson, M., Ishwar, P., Prabhakaran, V., Schonberg, D., Ramchandran, K.: On
compressing encrypted data. IEEE Transactions on Signal Processing 52(10) (Oc-
tober 2004) 2992–3006

6. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product
computation for privacy-preserving data mining. In Park, C., Chee, S., eds.: 7th
Annual International Conference in Information Security and Cryptology (ICISC
2004). Volume 3506 of Lecture Notes in Computer Science., Seoul, Korea, Springer
(December 2004) 104–120

7. Bianchi, T., Piva, A., Barni, M.: On the implementation of the discrete fourier
transform in the encrypted domain. IEEE Transactions on Information Forensics
and Security 4(1) (2009) 86–97

8. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, Academic Press (1978) 169–177

9. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Advances in Cryptology - EUROCRYPT 1999. Volume 1592 of Lecture
Notes in Computer Science., Springer (1999) 223–238

10. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In Kim, K., ed.: Public Key Crytography
2001. Volume 1992 of Lecture Notes in Computer Science., Cheju Island, Korea,
Springer (February 2001) 119–136

11. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Proceedings of Crypto
1989, Santa Barbara, California, USA (1989) 307–315

12. Shoup, V.: Practical threshold signatures. In: Advances in cryptology - EURO-
CRYPT 2000. Volume 1807 of Lecture Notes in Computer Science., Springer (2000)
207–220

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st annual ACM symposium on Theory of computing, STOC’09, Bethesda,
MD, USA, ACM Press (May-June 2009) 169–178

14. Shamir, A.: How to share a secret. Communications of the ACM 22(11) (1979)
612–613

15. Yao, A.C.: Protocols for secure computations. In: Proceedings of the IEEE Sym-
posium on Foundations of Computer Science. (1982) 160–164

16. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Proceedings of the third Theory of Cryptography Conference, TCC
2006. Volume 3876 of Lecture Notes in Computer Science., Springer-Verlag (2006)
285–304

17. Nishide, T., Ohta, K.: Constant-round multiparty computation for interval test,
equality test, and comparison. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E90-A(5) (May 2007) 960–968

18. Schoenmakers, B., Tulys, P.: Efficient binary conversion for paillier encrypted
values. In: Advances in Cryptology - EUROCRYPT 2006. Volume 4004 of Lecture
Notes in Computer Science., Springer (2006) 522–537

19. Du, W., Atallah, M.J.: Privacy-preserving cooperative scientific computations. In:
Proceedings of the 14th IEEE Computer Security Foundations Workshop, Nova
Scotia, Canada (June 2001) 273–282

20. Wright, R., Yang, Z.: Privacy preserving bayesian network structure computation
on distributed heterogeneous data. In: Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, Seattle, WA,
USA, ACM Press (2004) 713–718

21. Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant number
of rounds. In: 21st Annual International Cryptology Conference on Advances in
Cryptology. Volume 2139 of Lecture Notes in Computer Science., Springer (2001)
119–136

22. Dahlquist, G., Björck, Å.: Numerical methods. Dover Publications (2003)
23. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1985)
24. Cramer, R., Damg̊ard, I., Nielsen, J.: Multiparty computation from threshold

homomorphic encryption. In: Advances in Cryptology EUROCRYPT’01. Volume
2045 of LNCS., Springer-Verlag (October 2001) 280–300

A Secure Multiplication Protocol

In order to multiply two encrypted matrices, as there is no multiplication op-
eration in an additively homomorphic cryptosystem, it is necessary to execute
an interactive protocol in order to perform each product. The generic protocol
for secure multiplication gates has been known since [24]. In this work, we use
a variant for non threshold encryption, that is included in this appendix for
clarification and completeness. Let us assume that there exists an additively ho-
momorphic cryptosystem with plaintext in Zn such that B can decrypt and both
A and B can encrypt. A owns two encrypted scalars Jx1K and Jx2K and wants to

multiply them under encryption. In order to do that, A generates two random
values r1, r2 ∈ Zn, and uses them to blind both numbers, using homomorphic
modulo-n sum obtaining Jz1K = Jx1K + r1 mod n, and Jz2K = Jx2K + r2 mod n,
and sends them to B.

Due to his decryption capabilities, B can obtain z1 and z2 in the clear, mul-
tiply them, and reencrypt the result Jz1 · z2K. B sends this encrypted product to
A, who, through homomorphic sums, can obtain the desired result, as

Jx1 · x2K = Jz1 · z2K − r1 Jx2K − r2 Jx1K − r1r2.

In the scenario of a threshold homomorphic cryptosystem, the procedure is
analogous, with the exception that the random values must be generated by
both parties [16].

For the case of the product of an L×M matrix and an scalar, the protocol is
exactly the same as the scalar-scalar case, with L×M scalar products in parallel.

For the case of matrix-matrix product, the extension is also straightforward,
as all the scalar products are performed using the scalar-scalar product protocol
in parallel, with only one randomization per matrix coefficient, and the remaining
operations are sums, that can be performed homomorphically. Obviously, in
order to minimize the computation and communication complexity, A may let
B perform all the partial additions that B can do in the clear and A would need
to do homomorphically.

Neglecting the complexity of the random number generation algorithms, the
complexity of the whole protocol, when multiplying an L × M matrix and an
M × N matrix is

CompcmMULT (L,M,N) = M · (L + N) + L · N

CompcpMULT,A(L,M,N) = L · N · M · (3CompEA + 2CompEP)

CompcpMULT,B(L,M,N) = M · (L + N)CompDecrypt + M · L · NCompP +

L · N · ((M − 1)CompA + CompEncrypt).

When the previous expressions are used in this work without the parameters
L,M,N it will be assumed that the product is performed between two scalars
(L = M = N = 1).

