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In this report, we provide a performance analysis of the Least Squares Disclosure Attack (LSDA) de-
scribed in [1] when the user behavior is not static. In order to account for dynamic behavior, we assume
that the sending frequencies and user profiles in each round, {fri } and {prj,i} respectively, correspond to
realizations of the random processes {F ri } and {P rj,i}. In order to keep the analysis tractable, we will
limit our derivations to the case where {F ri } and {P rj,i} are wide-sense stationary, and the input process
{Xr

i } is ergodic. The basic notation used in this document is described in Sect. III of [1].

1 Unbiased estimator of the average profile

We now prove that LSDA is an unbiased estimator of the average sending profile of the users in the
system when the process modeling the variations in the profiles, {P rj,i}, is wide-sense stationary.

We start by noting that, in this dynamic scenario, the output process can be modeled as the sum of N
multinomials:

{Y r1 , Y r2 , · · · , Y rN |U,P} ∼
N∑
i=1

Multi
(
Xr
i , {P r1,i, P r2,i, · · · , P rN,i}

)
(1)

Let Ur be the ρ×N matrix which contains in its r-th row [Xr
1 , · · · , Xr

N ] and zeros in all other positions,
and note that

∑ρ
r=1 Ur = U. We can then write

E {Yj |U} = E
{∑ρ

r=1 UrPr
j |U

}
=
∑ρ
r=1 UrE {Pj} = U · E {Pj}

. This result allows us to show that

E {p̂j} = E {E {p̂j |U}} = E
{

(UTU)−1UTE {Yj |U}
}

= E
{

(UTU)−1UTU · E {Pj}
}

= E {Pj} (2)

which concludes the proof.

2 Performance analysis with dynamic user behavior

We aim at finding an expression for the Mean Squared Error per user, MSEi
.
=
∑N
j=1 Var {p̂j,i}, when

using the LSDA estimator in a threshold mix scenario with dynamic sending frequencies and user profiles.
We limit this performance analysis to the scenario where the processes modeling this behavior are wide-
sense stationary. Following the derivations in [1], we start by using (2) to get Var {E {p̂j,i|U}} = 0 and
Cov {E {p̂j,i|U} ,E {p̂j,k|U}} = 0, so that we can write the covariance matrix of p̂j as

Σp̂j
= E

{
Σp̂j|U

}
= E

{
(UTU)−1UTΣYj |UU(UTU)−1

}
(3)
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For an ergodic input process, we can write lim
ρ→∞

UTU/ρ → Rx where the m,n-th element of Rx is

E {XmXn}. Therefore, if the number of observed rounds ρ is large, we can approximate (3) as

Σp̂j
≈ 1

ρ2
R−1x E

{
UTΣYj |UU

}
R−1x (4)

The next step would be computing the terms R−1x and E
{
UTΣYj |UU

}
. For tractability issues, we carry

out these derivations by considering the cases of dynamic sending frequencies and user profiles separately,
and then we conclude by giving the intuition of what happens when both vary simultaneously.

2.1 Derivation of MSEi for dynamic profiles

We first assess the performance of the estimator in the scenario where the user profiles prj,i change between
rounds and the sending frequencies are static, i.e., fri = fsi for all r, s. Here, the autocorrelation matrix
of the input process and its inverse can be found on [1], where it is shown that

R−1x =
1

t

[
ΛF
−1 −

(
1− 1

t

)
1N×N

]
. (5)

where ΛF
.
= diag{f}, f

.
= [f1, · · · , fN ]T .

In order to compute the remaining term in (4), E
{
UTΣYj |UU

}
, we use the law of total variance together

with (1), expanding the terms in ΣYj |U as

Var
{
Y rj |U

}
= Var

{
E
{
Y rj |U,Pj

}
|U
}

+ E
{

Var
{
Y rj |U,Pj

}
|U
}

= Var
{∑N

i=1X
r
i P

r
j,i|U

}
+ E

{∑N
i=1X

r
i P

r
j,i(1− P rj,i)|U

}
=

∑N
i=1(Xr

i )2Var {Pj,i}+
∑N
i=1X

r
i E {Pj,i(1− Pj,i)}

(6)

Cov
{
Y rj , Y

s
j |U

}
= Cov

{
E
{
Y rj |U,Pj

}
,E
{
Y sj |U,Pj

}
|U
}

+ E
{

Cov
{
Y rj , Y

s
j |U,Pj

}
|U
}

= Cov
{∑N

i=1X
r
i P

r
j,i,
∑N
k=1X

s
kP

s
j,k|U

}
=

∑N
i=1

∑N
k=1X

r
iX

s
kCov

{
P rj,i, P

s
j,k

}
r 6= s

(7)

We disregard the dependence between the transition probabilities of different rounds Cov
{
P rj,i, P

s
j,k

}
≈ 0

for r 6= s since this term is small compared to Var
{
P rj,i
}

. Then, the m,n-th element of E
{
UTΣYj |UU

}
is

(
E
{
UTΣYj |UU

})
m,n

= ρ

N∑
i=1

E {XmXnXi}E {Pj,i(1− Pj,i)}+ ρ

N∑
i=1

E
{
XmXnX

2
i

}
Var {Pj,i} (8)

This term can be written in matricial way as

1
ρE
{
UTΣYj |UU

}
= ΛF

(
ηjt

(3)1N×N + Sj1N×N t
(2) + 1N×NSjt

(2)
)
ΛF

+
(
ηjt

(2)IN×N + tSj
)
ΛF

+ ΛF

(
η̃jt

(4)1N×N + 2t(3)
(
ΛFS̃j1N×N + 1N×N S̃jΛF

))
ΛF

+
(
η̃jt

(3)IN×N + 4t(2)S̃jΛF

)
ΛF

(9)

where t(k)
.
= t(t − 1) · · · (t − k + 1), ηj

.
=
∑N
i=1 fisj,i, Sj

.
= diag{sj,1, · · · , sj,N}, η̃j

.
=
∑N
i=1 f

2
i s̃j,i

and S̃j
.
= diag{s̃j,1, · · · , s̃j,N}; with sj,i

.
= E {Pj,i(1− Pj,i)} + Var {Pj,i} = E {Pj,i} (1− E {Pj,i}) and

s̃j,i
.
= Var {Pj,i}.
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(a) N = 10, t = 10
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(b) N = 10, t = 100
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(c) N = 100, t = 10
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(d) N = 100, t = 100

Figure 1: MSEp evolution with the number of rounds ρ, in an scenario where the sending profiles vary
in each round (N = 10, 100, nf = 25, fi = 1/N , t = 10, 100).

Plugging this term into (4) together with (5), we obtain an expression for the variance in the estimation
of a single transition probability, Var {p̂j,i}. Adding those variances along j, we finally get

MSEi ≈
1

ρ

{
(f−1i − 1)

(
1− 1

t

)
µ̄+

f−1i
t
µi

}

+
1

ρ

(
1− 1

t

){[
(t− 2)f−1i − (t− 3)

]
σ̄ + 4σifi(f

−1
i − 1)

} (10)

where µi
.
= 1−

∑
j E {Pj,i}2, µ̄

.
=
∑
i fiµi, σi

.
=
∑
j Var {Pj,i} and σ̄

.
=
∑
i f

2
i σi.

This formula shows that time-varying sending profiles slow the attacker’s attempt at estimating the
average sending profiles, compared to the case where the sending profiles remain static between rounds.
Also, the MSE increase introduced by dynamic sending profiles, represented by the second summand in
(10), grows with t but decreases fast as the sending frequencies decrease (i.e., as N grows), since the
parameter σ̄ depends on f2i . Therefore, the increase in MSE introduced by time-varying sending profiles
is normally small (e.g., if N > 100).

Figure 1 shows the average MSE obtained by repeating an experiment where sending profiles are chosen
in each round as a realization of a random process, for two different values of the number of users in the
system N and batch size t. We see that our theoretical approximation (10) closely models the average
MSE of the attack in this scenario. The figure also shows how large values of t increase the MSE (Figs. 1b
and 1d), but increasing the number of users quickly diminishes the effect of time-varying profiles (Figs. 1c
and 1d).
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2.2 Derivation of MSEi for dynamic sending frequencies

We now compute the MSEi assuming that user profiles are static, i.e., prj,i = psj,i for all r, s, but sending

frequencies vary between rounds. To make the derivations easier, we will assume that E {Fi}−1 � 1. In
this scenario, the autocorrelation matrix of the input process can be written as

Rx = t
[
E {ΛF}+ (t− 1)

(
E {f}E {f}T + Σf

)]
(11)

where (Σf )m,n = Cov {Fm, Fn}. We assume that we can disregard the terms Cov {Fm, Fn} when m 6= n

because they are small compared to the diagonal terms Var {Fm}, and therefore consider Σf ≈ Σ̃f
.
=

diag{Var {F1} , · · · ,Var {FN}}. With this approximation, using Sherman-Morrison formula [2] yields

R−1x = E {ΛF}−1 A−1
(

A− t(2)

1 + t(2)tr{A−1}

)
A−1E {ΛF}−1 (12)

where A
.
= t
[
E {ΛF}−1 + (t− 1)E {ΛF}−1 Σ̃fE {ΛF}−1

]
and tr{·} denotes the trace operation.

On the other hand, E
{
UTΣYj |UU

}
can be written as

1

ρ
E
{
UTΣYj |UU

}
= t(3)

N∑
k=1

sj,kE
{
Fkf · fT

}
+ t(2)

(
SjE

{
f · fT

}
+ SjE

{
f · fT

})

+ t(2)
N∑
k=1

sj,kE {FkΛF}+ tSjE {ΛF}

(13)

where sj,i = pj,i(1− pj,i) and Sj
.
= diag{sj,1, · · · , sj,N}.

As before, we consider that Cov {Fm, Fn} ≈ 0 when m 6= n and, additionally, Cov {Fk, FmFn} ≈
2E {Fk}Var {Fk} when k = m = n and zero otherwise. With these approximations, (13) can be rewritten
as

1

ρ
E
{
UTΣYj |UU

}
≈ t(3)ηj

(
E {f}E {f}T + Σ̃f

)
+ 2t(3)E {ΛF} Σ̃f

+ t(2)
[
Sj

(
E {f}E {f}T + Σ̃f

)
+ Sj

(
E {f}E {f}T + Σ̃f

)]
+ t(2)

(
ηjE {ΛF}+ SjΣ̃f

)
+ tSjE {ΛF}

(14)

where ηj
.
=
∑N
i=1 E {Fi} sj,i.

Plugging (14) and (12) into (4) we obtain an approximation for Var {p̂j,i}. Adding along j, we finally
get

MSEi ≈
1

ρ
· 1

E {Fi}
·

2t(3)µiVar {Fi}+ t(2)µ̄+ tµi + Var{Fi}
E{Fi}

(
t(3)µ̄+ 3t(2)µi

)(
t+ t(2) Var{Fi}

E{Fi}

)2 (15)

Using (15), it can be shown that increasing the variance of the sending frequencies in turn decreases the
MSE. Intuitively, the larger the variance in the input process, the larger the probability that one user is
going to dominate in a given round. Observations where a user dominates give the attacker very valuable
information about users’ behavior, which results in a better estimation of the profiles. This decrease in
MSE its even more pronounced when the batch size t is large. This is shown in Fig. 2, where we plot the
average MSE obtained through simulations and compare it with the MSE approximations for the static
(in [1]) and time-varying scenario (15).

2.3 Performance in the full dynamic scenario

So far, we have proved that introducing variance in the output process slows the attacker, increasing
the MSE of the estimator, while variance in the input process leaves the users more vulnerable to the

4



1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

7

8

9
x 10

−5

Number of rounds (ρ)

M
S

E
p

 

 

LSDA

Theory − Varying

Theory − Static

(a) t = 10
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(b) t = 100

Figure 2: MSEp evolution with the number of rounds ρ, in an scenario where the sending frequencies
vary in each round (N = 100, nf = 25, fi = 1/N , t = 10, 100).

least-squares disclosure attack. Intuitively, in the case where both effects coexist, we can expect the MSE
curve to lay between the lower bound provided by the MSE with only time-varying frequencies (15) and
the upper bound given by the MSE when only the profiles change between rounds (10). Therefore, as
the number of observed rounds increases, the error would asymptotically reach zero.

We can prove this easily by showing that the variance of the estimator given the input observations
decreases with ρ. First of all, we set

Σp̂j |U = (UTU)−1UTΣYj |UU(UTU)−1

=

(
1

ρ
UTU

)−1(
1

ρ2
UTΣYj |UU

)(
1

ρ
UTU

)−1 (16)

We can make the following statements:

• As long as the input process is ergodic, lim
ρ→∞

UTU/ρ→ Rx. Therefore, matrices (UTU/ρ)−1 will

be approximately independent of ρ.

• On the other hand, the m,n-th element of UTΣYj |UU/ρ2 is

(UTΣYj |UU/ρ2)m,n =
1

ρ2

ρ∑
r=1

ρ∑
s=1

Xr
mX

s
nCov

{
Y rj , Y

s
j |U

}
(17)

This term will decrease with ρ if the correlation time of the output process is finite, i.e.,
lim
s→∞

Cov
{
Y rj , Y

r+s
j

}
→ 0, or if this correlation decreases as 1/ρ or faster.

This means that, as long as the correlation time of the output process is finite or decreases fast, the
variance of our estimator will decrease with ρ. The speed with which the MSE decreases will depend
on how correlated the outputs are. This result is intuitive: when the outputs in different rounds are
correlated, new observations provide less information to the attacker and therefore the estimation of the
profiles becomes slower. An example of this would be the pool mix scenario.
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