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Abstract

Signal processing has become ubiquitous in our daily lives, being present in everyday digital
appliances and applications. Actually, although apparently it is hard to be aware of its presence,
it does have a great influence on our everyday life and the list of applications and science fields
which make use of signal processing tools is accordingly huge: it encompasses communication
and entertainment technologies, from speech and audio processing to image and video analysis
(e.g., biometric processing of faces, fingerprints, iris, etc.), with a strong impact on emerging ap-
plications such as smart grids, autonomous driving, tele-diagnosis and analysis of medical signals
(like Electrocardiograms or DNA), among others.

This is especially relevant because, although in our everyday life we are not really conscious
of the possible risks, many of the previous scenarios involve the use of very privacy-sensitive data
(e.g., a service which depends on the use of personal information). This becomes even worse
in many of the most prominent signal processing applications, where the involved signals have
to be processed by untrusted parties (i.e., the service provider requires the use of the personal
information for the correct operation of the service), and the user must trust the service provider.

The field of Secure Signal Processing (SSP) was born to address these challenges, by devising
efficient solutions stemming from the collaborative efforts of cryptography and signal processing.
Due to its inherent multidisciplinary grounds, it can effectively combine and take advantage of
the advances and technologies from the two disciplines. Additionally, numerous applications have
been already proposed based on the use of different cryptographic techniques.

This thesis proposes novel methods for privacy protection when dealing with highly privacy-
sensitive signals in untrustworthy environments. With this goal in mind, the thesis was originally
motivated by the following two research lines: (1) privacy protection when dealing with multidi-
mensional signals, and (2) design of new primitives and protocols for encrypted signal processing.

In particular, the work presented in this thesis introduces a secure framework for outsourced
and unattended (multidimensional) signal processing; that is, the proposed solutions do not need
the intervention of the secret key owner in the middle of the process.

The contributions are numerous and their outcomes range from low-level cryptographic prim-
itives to more concrete high-level practical applications. Next, we briefly enumerate the main
contributions:

(1) We formalize a lattice hard problem denoted as multivariate RLWE (Ring Learning with
Errors). Due to its particular structure, it is especially useful to work with multidimensional
signals. It also brings about efficiency improvements on current RLWE-based cryptographic
primitives.

(2) Building on modern lattice-based primitives, we present a toolbox for unattended secure
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signal processing (e.g., filtering, generalized convolutions, error correcting codes or matrix-
based processing, among others).

(3) We exemplify the use of the proposed tools on several concrete signal processing scenarios
(going from genomics to multimedia applications), where we face the additional difficulties
which arise in each specific application due to the nature of the used signals.
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Notation

We represent vectors and matrices by boldface lowercase and uppercase letters, respectively.

1/p
We define the [, norm of a vector € C" as |[z||, = (Ziew \xi|p) , where 1 < p < oo with

p € R, and ||z|| , = max;c[,|x;|. If p is omitted, we consider the Euclidean norm.

The set [n] is defined as {1,2,...,n}. We also work with some additional operators as the
tensor product (X) and the direct sum 5. When dealing with number fields (or the correspond-
ing ring of integers), as the tensor product is always defined over the rational numbers (integer
numbers) we ignore the subscript if there is no ambiguity. ¢(m) and ®,,,(z) denote, respectively,
Euler’s totient function and the m-th cyclotomic polynomial.

Polynomials are denoted with regular lowercase letters, ignoring the polynomial variable (e.g.,
a instead of a(z)) whenever there is no ambiguity. We follow a recursive definition of multivariate
modular rings: Ry[z1] = Z4[x1]/ fi(x1) denotes the polynomial ring in the variable 21 modulo
f1(z1) with coefficients belonging to Z,. Analogously, Rq[z1, z2] = (Rq[z1])[z2]/(f2(x2)) is the
bivariate polynomial ring with coefficients belonging to Z, reduced modulo univariate f;(x;) and
fa(z2). In general, Ry[x1,..., x| (resp. Rz1,...,x;]) represents the multivariate polynomial
ring with coefficients in Z, (resp. Z) and the [ modular functions f;(z;) with 1 <1 <.

For aring R, a < R is a uniformly random a € R. If x is a distribution defined over R,
a < x means that a is drawn from Y.

The polynomial a can also be denoted by a column vector @ whose components are the corre-
sponding polynomial coefficients. When needed, we also represent polynomials as column vectors
of their coefficients a; a - s represents the scalar product between the vectors a and s, whose com-
ponents may belong to the integers or to a polynomial ring, a o b is the Hadamard product between
vectors, and a ® b (resp. a * b) is the circular (resp. linear) convolution. Finally, A ® B is the
Kronecker product between the matrices A and B.

XvIl






Chapter 1

Introduction

Signal processing has become ubiquitous in our daily lives, being present in everyday digital
appliances and applications. Actually, although apparently it is hard to be aware of its presence,
it does have a great influence on our everyday life and the list of applications and science fields
which make use of signal processing tools is accordingly huge: it encompasses communication
and entertainment technologies, from speech and audio processing to image and video analysis
(e.g., biometric processing of faces, fingerprints, iris, etc.), with a strong impact on emerging ap-
plications such as smart grids, autonomous driving, tele-diagnosis and analysis of medical signals
(like Electrocardiograms or DNA), among others.

This is especially relevant because, although in our everyday life we are not really conscious
of the possible risks, many of the previous scenarios involve the use of very privacy-sensitive data
(e.g., a service which depends on the use of personal information). It seems that this is not a prob-
lem as, in order to mitigate these privacy concerns, conventional cryptographic techniques can be
applied on top of transmission and storage modules. This gives us mechanisms for the protection
of data both at rest and in transit, and hence provides both secure storage and communication.

However, many of the most prominent signal processing applications deal with very privacy-
sensitive signals which have to be processed by untrusted parties (i.e., the service provider requires
the use of the personal information to provide the corresponding service), and the user must trust
the service provider to make use of it.

Thus, it is clear that with the advent and widespread use of outsourced computation paradigms
(e.g., Cloud computing services), the challenge of protecting the signals while they are processed
becomes much harder.

1.1. Secure Signal Processing

The field of Secure Signal Processing (SSP), also known as Signal Processing in the Encrypted
Domain (SPED), was born to address these challenges, by devising efficient solutions stemming
from the collaborative efforts of cryptography and signal processing [6]]. Since then, numerous
applications have been proposed based on the use of different cryptographic techniques. Next, we
briefly revise some of the most representative methods and ideas.



2 1.1. Secure Signal Processing

Adversary model: One of the differences of Secure Multiparty Computation (MPC) schemes
with respect to more conventional cryptographic techniques is that the parties involved in the
protocol can also behave as an adversary. Although there are many types of possible behaviours to
model the adversary, the two most representative which are typically considered in the literature
are:

= Passive security: A semi-honest adversary which tries to gather as much information of the
honest parties’ inputs as possible, but does not deviate from the protocol.

= Active security: A malicious adversary which can arbitrarily deviate from the protocol when
trying to cheat.

Secure Multiparty Computation: Secure Multiparty Computation (MPC) searches for meth-
ods which allow a set of parties to securely evaluate a function over their inputs, while at the same
time protecting their input privacy. It was originally introduced as a solution to the millionaires’
problem by Yao [7]], which can be seen as a particular instance of secure two-party computation,
and it was later generalized to secure multiparty computation [8].

Consequently, MPC is a generic solution to the problem of privacy-preserving processing. In
general, there are two basic primitives which are used as building blocks on more general MPC
protocols: (1) those based on Oblivious Transfer (OT) [9]], in fact it is known that OT is complete
for secure multiparty computation, and (2) those based on splitting the data in several shares (secret
sharing) [10].

A common feature of most of the MPC protocols is the need of an interactive protocol between
the different parties. This step usually causes a high communication overhead.

On the one hand, OT-based methods such as Garbled Circuits (GC) are a specific solution for
two-party computation which works with a very small number of interactive rounds (two rounds).
However, GC needs to move the bulk of the computation to the client as it requires the client to
generate (typically offline) the circuit to be securely evaluated.

On the other hand, many current MPC solutions (e.g., SPDZ-based protocols) can be applied in
practice [[L1]], but the efficiency of the involved operations in SPDZ-based schemes [12] contrasts
with the typically high required number of communication rounds. These solutions are based on
secret-sharing the input data and make use of both the additive homomorphism of the shares, and
Beaver’s multiplication protocol [[13]] to perform multiplications.

The previous MPC protocols force us to choose between either a secure interactive protocol
with many rounds or a high computational cost for the client. As we will remark later, in this thesis
our main objective is to provide unanttended solutions where most of the computation overhead
is moved to the untrusted third party. This objective severely limits the use of the aforementioned
cryptographic tools.

The most promising alternative relies on homomorphic encryption (HE). Next, we review the
state of the art of HE in Secure Signal Processing, also motivating our results and contributions
inside the field.

(Partially) Homomorphic Encryption: In addition to general MPC protocols, Secure Signal
Processing has made an extensive use of partially homomorphic encryption schemes such as Pail-
lier [14] and El Gamal [15], to name just a few. These schemes present a group homomorphism
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between the plaintext and ciphertext spaces which can be conveniently used to perform operations
over the encrypted plaintexts (homomorphic operations) without the need of previously decrypting
them.

Interestingly, homomorphic encryption schemes can be used to enable a third party to securely
evaluate functions under a semi-honest adversary model. In fact, even for the case of active se-
curity it does provide input privacy, although it is not simulatable security [16]. This shows the
interest on homomorphic cryptography for many signal processing applications where the compu-
tation is outsourced to an untrusted third party.

Most of the existing approaches rely on the additively homomorphic Paillier cryptosystem [[14]
as the basic block for performing encrypted additions between ciphertexts, and multiplications
between a ciphertext and a cleartext. These approaches can mainly cope with encrypted linear
transforms [[17, [18]] with known (cleartext) coefficients.

As these solutions are usually limited to additive homomorphisms like Paillier [[14], they also
need interactive protocols in which the client (or an authority in which the client delegates trust)
must communicate with the outsourced processing party in order to produce a result [19]. This
imposes many restrictions on the client side, and presents an insurmountable barrier to the devel-
opment of secure outsourced services. Hence, the goal of unattended Secure Signal Processing,
where the client only has to pre-process the inputs and post-process the outputs, is still an open
problem.

Additionally, solutions resorting to the Paillier cryptosystem present a very high cipher ex-
pansion, and despite the proposal of techniques like packing and unpacking to mitigate this effect
[20L 21]], the cipher expansion becomes a serious problem when dealing with multimedia content
as images.

Thesis Contribution: We have introduced new solutions based on lattice cryptography which
can efficiently deal with multidimensional signals, and in particular, images [4} 5 22} 23]

1.2. Lattice-based Cryptography

In recent years, we have witnessed an increasing interest in the research of schemes enabling
operations with encrypted data. All these solutions are based on MPC techniques, which aim at
achieving privacy-preserving solutions for secure processing of sensitive signals [6]. As we have
previously discussed, many of the approaches are particularly based on homomorphic encryption,
and rely on the Paillier cryptosystem [[14] as the basic block for performing encrypted additions
between ciphertexts and multiplications between a ciphertext and a cleartext.

However, approaches based on Paillier present two serious limitations: (a) high overhead and
cipher expansion, even when mitigated by packing and unpacking techniques [[17, 20]]; and (b)
they require the involvement of the client (secret key holder) engaging in interactive protocols
with the outsourced party [[19].

Due to this lack of flexibility, lattice cryptosystems (which present a ring homomorphism) are
being progressively adopted by researchers in the field [24} 25| 26} 27, 28]. In particular, cryp-
tosystems based on RLWE (Ring Learning with Errors) present a clear advantage when dealing
with signals, as its underlying polynomial structure allows for very efficient filtering and convolu-
tion operations [29]]; hence, most of the applications involving correlations and filtering can benefit
from recent RLWE-based schemes, which keep constantly evolving [30} 131} 132]].
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Thesis Contribution: Among the signal processing applications, those working with images
or higher dimensional signals are much more demanding, as the computational cost and cipher
expansion of typical SHE cryptosystems becomes unaffordable for them. To address this prob-
lem we: (1) introduce a hard lattice problem called m-RLWE (multivariate Ring Learning with
Errors) which gives support to efficient encrypted processing of multidimensional signals, and
(2) also present a secure toolbox for secure unattended signal processing based on RLWE-based
cryptosystems [29].

Somewhat/Fully Homomorphic Encryption Schemes: Gentry’s seminal work [33} [34]] intro-
duces a new family of cryptosystems enabling FHE (Fully Homomorphic Encryption) schemes
that can perform both additions and multiplications in the encrypted domain, while being resilient
against quantum cryptanalysis. Despite the relevance of their theoretical contribution, current FHE
schemes are not entirely practical for real scenarios [35]], so the most promising alternative relies
on SHE (Somewhat Homomorphic Encryption) schemes, which have been shown [25]] to be able
to efficiently work with encrypted signals and encrypted transform coefficients. As a counterpart,
while FHE schemes can perform an unbounded number of encrypted operations, SHE schemes
can cope only with a limited number of consecutive encrypted operations over the same cipher-
text; nevertheless, in most real scenarios, the maximum number of operations that have to be
performed on the encrypted data can be previously known, so SHE naturally fits.

Post-Quantum Cryptography: As we have highlighted, Somewhat and Fully Homomorphic
Cryptosystems appear as a promising solution enabling both encrypted additions and multiplica-
tions, but this is not their only advantage. As a byproduct of being based on hard problems over
lattices, they can be proven secure against classical and quantum computers [36].

Since the introduction of Shor’s algorithm [37], it is known that some problems which were
considered secure against classical adversaries can be efficiently solved by means of a quantum
computer [36]. Among these problems, we can mention integer factorization and (elliptic-curve)
discrete logarithm, which are the basis of the current most widespread cryptosystems (RSA, Pail-
lier [14] or El Gamal [15]). Lattice-based cryptography yields the most suited solution to achieve
both resilience against quantum attacks and, at the same time, operate on encrypted information.

The quantum-resistance property is another driver for our goal of providing more efficient
schemes which can deal with real problems and, additionally, can stand as future-proof against
quantum computers.

1.3. A Brief Summary of the Thesis Objectives

The main objective of this thesis is to advance the state of the art for privacy protection when
dealing with sensitive (multidimensional) signals in untrustworthy environments. For this purpose,
we have applied and developed novel cryptographic tools in the field of Secure Signal Processing.

With this main objective in mind, this thesis has produced novel contributions in the following
two research lines:

= Privacy protection when dealing with multidimensional signals. Images are multimedia
signals that can carry especially sensitive information, so the scenarios where they are used
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pose serious privacy constraints. Some representative examples comprise biometric recog-
nition, medical image processing, media sharing in social networks or videosurveillance.

Thesis Contribution: In this thesis, we propose novel efficient methods from homomorphic
encryption especially targeted at the protection and encrypted processing of multidimen-
sional signals like images or video.

= Design of new primitives and protocols for encrypted signal processing. If the scenarios
dealing with sensitive signals involve outsourcing the data or processes (i.e., cloud servers or
grid, the use and share by means of web services, etc.), the privacy problems are aggravated,
as currently the privacy guarantees for the data owner are mainly based on her trust on the
outsourced environment.

Thesis Contribution: In this thesis, novel encrypted efficient operations within the field of
signal processing are studied along with security and efficiency improvements to the already
existing solutions (e.g., filtering, different types of signal transforms, matrix operations,
etc.). Hence, a complete set of tools and encrypted signal processing primitives is provided,
therefore reducing the needed confidence between the owner of the private information and
the party operating on it.

In general, these two high-level objectives are not specifically addressed in any concrete chap-
ter of the thesis. However, their achievement is guaranteed by a set of more specialized contribu-
tions which are deeply studied in each chapter. These more technical contributions are detailed
next together with the structure of the thesis.

Trust model: As a working hypothesis in the signal processing applications exemplified in this
thesis, we consider a semi-honest setting where the adversary can try to infer as much information
as possible, but does not deviate from the protocol.

It is important to remark that for most of the proposed solutions, we consider a two-party
scenario where we want to move the bulk of the computation to the server (untrusted party).
As our focus is on unattended processing (one-round), our solutions provide input privacy for a
malicious adversary, although not simulatable security [16].

1.4. Structure of the Thesis

This thesis is divided in three main parts: (1) The first part includes our contributions to the
underlying cryptographic layers which work as building blocks of higher-level practical secure
applications. It introduces the main definitions involved in the multivariate RLWE problem and
discusses its hardness together with the possible advantages it brings about. (2) The second part
introduces a secure framework for signal processing. We present a toolbox which enables to
perform in an unattended way the main operations which are present in most signal processing
applications. (3) The third part exemplifies the use of our toolbox for Secure Signal Processing
with several practical applications: going from genomics to multimedia. Finally, we conclude with
a discussion section where we draw some conclusions and also sketch out some of the possible
future research lines that this thesis opens up in the field of Secure Signal Processing.
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Roadmap: Although the thesis is clearly divided in three separate parts, as we have already
discussed, the different contributions are highly interdependent (see Figure [l This means that
there is no unique path to read this thesis, and many of the concepts introduced in one chapter are
built over tools introduced in the other parts (not necessarily in a sequential order).

A roadmap: Part I1I:
Signal Processing
Structure Of the Chapter 8 [C4] Applications
Thesis
Part III

Part II

Chapter 4 [J1]

Chapter 6 [C

Partl: Part II
Multivariate Ring

Learning with Errors and
Lattice-based Chapter 5 [C5]

Cryptography

Part II:
A Toolbox for Secure
Signal Processing

Part 1 Appendix A [I1] Chapters 2 and 3

Figure 1.1: Relation between the different contributions.

With this in mind, we have tried to make each chapter as self-contained as possible. However,
due to space constraints and also to avoid repetitions, we refer to the specific chapter where the

'Figure details the existing interconnections between the different Chapters and publications (this includes
journal papers, conference papers, other publications and patent applications) produced in this Thesis.
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required concept is discussed in depth.

In view of the above restrictions, we have decided to follow a bottom-up strategy; that is,
we first formalize and introduce the main cryptographic definitions and hard problems (see Part][l)),
afterwards we present a set of higher-level operations (built over the previous definitions) for signal
processing (see Part[[I), and we end up by exemplifying our results with some more practical
applications (see Part [TI).

1.5. Summary of Part[l: Multivariate Ring Learning with Errors and
Lattice-based Cryptography

Lattices have become a very promising tool for the development and improvement of new
cryptographic constructions, notably those belonging to the field of homomorphic encryption. In-
stead of directly working with lattice assumptions, it is frequent to deal with assumptions whose
underlying security can be based on the hardness of lattice problems. Among them, the family of
LWE (Learning with Errors) [38l [39] has become the preferred one due to its versatility. Lyuba-
shevsky et al. [40, 41]] proposed a variant of LWE called Ring-LWE (or RLWE), which can be
reduced from hardness problems over ideal lattices (instead of the general ones used in the LWE
version). RLWE has proven to be more practical than LWE, as the underlying primitives can be
usually more efficient; e.g., RLWE enables a notable reduction in the size of the public and private
keys in public key cryptosystems.

Summary: In this part, we formalize a multivariate version of RLWE, denoted multivariate
RLWE, m-RLWE. Due to its particular structure, the security of this multivariate version is espe-
cially sensitive to the chosen parameterization, so we will perform a careful and detailed security
analysis, showing how secure parameteres can be chosen. Additionally, we also discuss the ef-
ficiency improvements that this multivariate version can introduce into the basic cryptographic
blocks.

Other Cryptographic Primitives: Although in this thesis we focus on primitives for homo-
morphic cryptography, ideal lattices have also been used to develop algorithms for key exchange
[42] and signatures [43], among others. Hence, we want to remark that those primitives based on
RLWE could be also extended to the m-RLWE problem.

Thesis Contributions: The main contributions of this part are divided in two chapters and one
appendix:

» Chapter 2; Multivariate Ring Learning with Errors. The “Multivariate Ring Learn-
ing with Errors” problem is introduced as a generalization of Ring Learning with Errors
(RLWE), introducing efficiency improvements with respect to the RLWE counterpart thanks
to its multivariate structure [4]. Nevertheless, the recent attack presented by Bootland et
al. [44] has important consequences on the security of the multivariate RLWE problem with
“non-coprime” modular functions; this attack transforms instances of m-RLWE with power-
of-two cyclotomic modular functions of degree n = [ [, n; into a set of RLWE samples with
dimension max; {n;}. This is especially devastating for low-degree modular functions (e.g.,
®4(x) = 1+ 22). In this chapter, we revisit the security of multivariate RLWE and propose
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new alternative instantiations of the problem that avoid the attack while still preserving the
advantages of the multivariate structure, especially when using low-degree modular func-
tions. Additionally, we show how to parameterize these instances in a secure and practical
way.

= Chapter 3: Applications of Multivariate RLWE on Lattice-based Cryptography. In
this chapter, we propose novel constructions and strategies based on m-RLWE that bring
notable space and time efficiency improvements over current RLWE-based constructions,
including, but not limited to: (a) faster degree-n polynomial multiplication leveraging an
a-generalized fast Walsh Hadamard Transform, reducing the required elemental products
by a factor log n; (b) more efficient homomorphic packing/unpacking strategies with a sin-
gle switch key operation, independently of the used number of slots; (c) better space-time
trade-offs for relinearization operations, needing only log, n + 1 matrices with a worst-case
chain of (bgT?”} relinearizations; (d) full utilization of packing slots for complex coeffi-
cients embedding. These contributions enable vastly more efficient primitives for (fully)
homomorphic encryption based on the proposed m-RLWE.

» Appendix [Al A Reduction to Multivariate RLWE. In this Appendix we formalize the
generalization of RLWE to multivariate rings, denoted multivariate RLWE or m-RLWE, and
introduce its security reduction to hard problems over the tensor product of ideal lattices, as
an extension of the original RLWE proof by Lyubashevsky et al. [41, |45]. It is important
to remark that due to the Bootland et al.’s attack [44], we know we are reducing to an easy
problem. In Chapter [2] we search for those instantiations of multivariate RLWE which are
not easy (or that are isomorphic to RLWE over a general number field).

This appendix is adapted with permission from ArXiv: Alberto Pedrouzo-Ulloa, Juan Ramon
Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. On Ring Learning with Errors over the
Tensor Product of Number Fields. ArXiv e-prints, CoRR abs/1607.05244v3, February 2018.

1.6. Summary of Part[II: A Toolbox for Secure Signal Processing

Many signal processing applications deal with privacy-sensitive signals that must be protected
whenever they are outsourced to an untrusted environment. Approaches based on Secure Signal
Processing (SSP) [6] address this challenge by proposing novel mechanisms for signal processing
in the encrypted domain and interactive secure protocols [[19] to achieve the goal of protecting
signals without disclosing the sensitive information they convey.

Summary: In this part, we search for unattended secure solutions, that is, those solutions which
do not need the intervention of the secret key owner in the middle of the process. To this aim, we
propose a toolbox of Secure Signal Processing primitives mainly based on lattice-based cryptog-
raphy. We also cover the case of multimedia contents (in general any multidimensional signal),
showing how the obtained toolbox can be adapted to work with multidimensional signals.

Our Contributions: The main contributions of this part are divided in two chapters:

= Chapter 4 Number Theoretic Transforms. This chapter presents a novel and compre-
hensive set of approaches and primitives to efficiently process signals in an encrypted form,
by using Number Theoretic Transforms (NTTs) in innovative ways. This usage of NTTs
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paired with appropriate signal pre- and post-coding enables a whole range of easily com-
posable signal processing operations comprising, among others, filtering, generalized con-
volutions, matrix-based processing or error correcting codes. Our main focus in this chapter
is on unattended processing, in which no interaction from the client is needed. To implement
our solution, we make use of efficient lattice-based somewhat homomorphic cryptosystems.
We also exemplify these approaches and evaluate their performance and accuracy, prov-
ing that the proposed framework opens up a wide variety of new applications for secured
outsourced-processing of multimedia contents.

This chapter is adapted with permission from IEEE: Alberto Pedrouzo-Ulloa, Juan Ramon
Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. Number Theoretic Transforms for Se-
cure Signal Processing. IEEE Transactions on Information Forensics and Security, vol. 12,
no. 5, pp. 1125-1140, May 2017.

= Chapter [5; Revisiting Multivariate Lattices. This chapter introduces a new pre-/post-
coding block that addresses the Bootland e al.’s attack and achieves the efficient results
of our initial approach while basing its security directly on RLWE with dimension [ [, n;,
hence preserving the security and efficiency originally claimed. Additionally, in this chapter
we provide a detailed comparison between a conventional use of RLWE, m-RLWE and our
new pre-/post-coding procedure, which we denote “packed”-RLWE. Finally, we discuss
a set of encrypted signal processing applications which clearly benefit from the proposed
framework, either alone or in a combination of baseline RLWE, m-RLWE and “packed”-
RLWE.

This chapter is adapted with permission from ACM: Alberto Pedrouzo-Ulloa, Juan Ramon
Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. Revisiting Multivariate Lattices for En-
crypted Signal Processing. Tth ACM Workshop on Information Hiding and Multimedia Se-
curity (IH&MMSec), July 2019.

1.7. Summary of Part [[II: Signal Processing Applications

In the previous parts, we have searched for general solutions for signal processing applica-
tions. To this aim, in Part [[I| we present a toolbox of secure solutions which take advantage of
common operations in signal processing. However, it is worth noting that, in general, each spe-
cific application can pose additional difficulties depending on the nature of the used signals. We
consider two very different types of signals:

= Multidimensional signals like 2-D and 3-D images or videos are inherently sensitive signals
which require privacy-preserving solutions when processed in untrustworthy environments,
but their efficient encrypted processing is particularly challenging due to their structure,
dimensionality and size.

Many image processing applications require to cope with polynomial operations and com-
parisons at the same time, this is not an easy task with current homomorphic encryption
schemes.

= Genomic data is a paradigmatic example of highly sensitive information. Due to the recent
advances in Next Generation Sequencing (NGS), we are seeing an increase in the availability
of genomic data for more precise analyses (e.g., testing for the genetic susceptibility to a
particular disease).
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Current laboratories’ facilities cannot cope with this data growth, and genomic processing
has to be outsourced.

We see that both scenarios must deal with high volumes of data and they also suffer from
severe privacy risks.

Summary: This part exemplifies how to use the tools presented in Parts || and |II] for several
signal processing scenarios dealing with sensitive signals. We briefly enumerate these scenarios
and their respective particularities:

= We choose a representative example from the genomic domain, due to the inherent sensitiv-
ity of the managed signals: genomic disease susceptibility testing. To this aim, we present
a secure protocol for genomic susceptibility testing, where we explain how our techniques
can be combined with lattice-based cryptosystems.

= The rest of the described applications focus on multimedia contents: (1) We show how
efficient block-processing operations can be performed with multidimensional signals. (2)
We work with a fundamental operation in image processing as image denoising. (3) As an
example of a more complex application, we make use of the previous results to construct a
secure camera analyzer.

Our Contributions: The main contributions of this part are divided in three chapters and one
appendix:

= Chapter [6: Genomic Susceptibility Testing. This chapter proposes an encrypted genomic
susceptibility test protocol based on lattice homomorphic cryptosystems, and introduces
optimizations like data packing and transformed processing to achieve considerable gains
in performance, bandwidth and storage.

This chapter is adapted with permission from IEEE: Juan Ramoén Troncoso-Pastoriza, Al-
berto Pedrouzo-Ulloa, and Fernando Pérez-Gonzdlez. Secure Genomic Susceptibility Test-
ing based on Lattice Encryption. The 42nd IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP17), March 2017.

= Chapter[7; Image Denoising. This chapter proposes methods based on 2-RLWE (Bivariate
Ring Learning with Errors) to efficiently perform the whole image denoising operation on
encrypted images in a fully non-interactive way; we show how to combine homomorphic
polynomial operations and thresholding without involving decryption or interaction, there-
fore enabling fully unattended encrypted image processing. We evaluate our solutions for
real image sizes and strict security parameters, showing their practicality and feasibility.

This chapter is adapted with permission from IEEE: Alberto Pedrouzo-Ulloa, Juan Ramon
Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. Image Denoising in the Encrypted
Domain. The 8th IEEE International Workshop on Information Forensics and Security
(WIFS16), December 2016.

= Chapter [§; Camera Attribution Forensic Analyzer. This chapter proposes a new frame-
work to efficiently perform outsourced PRNU (Photoresponse Non-Uniformity) fingerprint
extraction and detection on encrypted images in a fully unattended way. For this purpose,
we rely on lattice-based homomorphic cryptosystems paired with advanced optimization
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strategies. We evaluate our solutions in terms of efficiency, security and performance for
real image datasets, showing the feasibility of camera attribution in the encrypted domain.

This chapter is adapted with permission from IEEE: Alberto Pedrouzo-Ulloa, Miguel Mas-
ciopinto, Juan Ramon Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. Camera Attribu-
tion Forensic Analyzer in the Encrypted Domain. The 10th IEEE International Workshop
on Information Forensics and Security (WIFS18), December 2018.

Appendix Block-Processing. This appendix proposes several relinearization-based
techniques to efficiently convert signals with different structures and dimensionalities. To
this aim, we make use of multivariate RLWE (multivariate Ring Learning with Errors) which
generalizes RLWE. The proposed hard problem and the developed techniques give support
to lattice cryptosystems that enable encrypted processing of multidimensional signals and
efficient conversion between different structures. We show an example cryptosystem and
exemplify some of the proposed transformation techniques in critical and ubiquitous block-
based processing applications.

This appendix is adapted with permission from ArXiv: Alberto Pedrouzo-Ulloa, Juan Ramon
Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. Multivariate Cryptosystems for Secure
Processing of Multidimensional Signals. ArXiv e-prints, CoRR abs/1712.00848, December
2017.

During the thesis period, we have made other contributions in this topic, but due to limitations
of space we have not included them in the thesis. We briefly describe them below:

1.8.

Conference Publication [C1]: Multivariate Lattices for Encrypted Image Process-
ing [4]. This work introduces the use of multivariate RLWE for the efficient processing
of encrypted multidimensional signals. To this aim, we extend an RLWE-based cryptosys-
tem to this multivariate setting and showcase its convenience for encrypted image filtering.

Patent Application [P1]: Secure Outsourced Prediction. This work proposes a method
for secure prediction in an untrusted environment. Given encrypted training and testing
datasets, the method can securely train a prediction model and also predict new samples
when a model for prediction is available.

Patent Application [P2]: Secure Outsourced Annotation of Datasets. This work pro-
poses an unattended method for secure annotation of privacy-sensitive datasets in an out-
sourced environment. Taking as input a private annotation reference, the annotation method
searches for tokens and embeds extra information in a sensitive dataset.

Publications

We list next the main publications which have been produced as the result of this thesis.

1.8.1.

1

Journal papers

Alberto Pedrouzo-Ulloa, Juan Ramoén Troncoso-Pastoriza and Fernando Pérez-Gonzalez.
Number Theoretic Transforms for Secure Signal Processing. IEEE Transactions on Infor-
mation Forensics and Security, 2017.



12 1.8. Publications

1.8.2. Conference papers

C1 Alberto Pedrouzo-Ulloa, Juan Ramoén Troncoso-Pastoriza and Fernando Pérez-Gonzélez.
Multivariate Lattices for Encrypted Image Processing. In IEEE ICASSP, 1707-1711, 2015.

C2 Alberto Pedrouzo-Ulloa, Juan Ramén Troncoso-Pastoriza and Fernando Pérez-Gonzalez.
Image Denoising in the Encrypted Domain. In IEEE WIFS, 1-6, 2016.

C3 Juan Ramoén Troncoso-Pastoriza, Alberto Pedrouzo-Ulloa and Fernando Pérez-Gonzalez.
Secure Genomic Susceptibility Testing based on Lattice Encryption. In IEEE ICASSP, 2067-
2071, 2017.

C4 Alberto Pedrouzo-Ulloa, Miguel Mascriopinto, Juan Ramén Troncoso-Pastoriza and Fer-
nando Pérez-Gonzélez. Camera Attribution Forensic Analyzer in the Encrypted Domain. In
IEEE WIFS, 2018 (Best paper award).

C5 Alberto Pedrouzo-Ulloa, Juan Ramoén Troncoso-Pastoriza and Fernando Pérez-Gonzéilez.
Revisiting Multivariate Lattices for Encrypted Signal Processing. In ACM IH&MMSec,
2019.

1.8.3. Patent applications

P1 Title: SYSTEM AND METHOD FOR SECURE OUTSOURCED PREDICTION
EPO Patent Application No: EP17382623
Filing Date: 20/09/2017
Inventors: Juan Ramoén Troncoso-Pastoriza, Alberto Pedrouzo-Ulloa, Fernando Pérez-
Gonzilez
Assignee: University of Vigo

P2 Title: SYSTEM AND METHOD FOR SECURE OUTSOURCED ANNOTATION OF
DATASETS
EPO Patent Application No: EP17382624
Filing Date: 20/09/2017
Inventors: Juan Ramoén Troncoso-Pastoriza, Alberto Pedrouzo-Ulloa, Fernando Pérez-
Gonzalez
Assignee: Gradiant, University of Vigo

1.8.4. Other Publications

11 Alberto Pedrouzo-Ulloa, Juan Ramén Troncoso-Pastoriza and Fernando Pérez-Gonzalez.
On Ring Learning with Errors over the Tensor Product of Number Fields. In ArXiv e-prints,
CoRR abs/1607.05244, 2016.

12 Alberto Pedrouzo-Ulloa, Juan Ramén Troncoso-Pastoriza and Fernando Pérez-Gonzélez.
Multivariate Cryptosystems for Secure Processing of Multidimensional Signals. In ArXiv
e-prints, CoRR abs/1712.00848, 2017.
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Chapter 2

Multivariate Ring Learning with Errors

2.1. Introduction

Lattices have become a very promising tool for the development and improvement of new
cryptographic constructions, notably those belonging to the field of homomorphic encryption. In-
stead of directly working with lattice assumptions, it is frequent to deal with assumptions whose
underlying security can be based on the hardness of lattice problems. Among them, the family of
LWE (Learning with Errors) [38,[39] has become the preferred one due to its versatility. Lyuba-
shevsky et al. [40,41]] proposed a variant of LWE called Ring-LWE (or RLWE), whose hardness
can be reduced from hardness problems over ideal lattices (instead of the general ones used in the
LWE version). RLWE has proven to be more practical than LWE, as the underlying primitives
can be usually more efficient; e.g., RLWE enables a notable reduction in the size of the public and
secret keys in public key cryptosystems.

The ring structure of RLWE enables homomorphic cryptography with a ring homomorphism
supporting both addition and multiplication of ciphertexts. Among the possible polynomial rings
used for this purpose, the most practical ones are those where the modular function is a cyclotomic
polynomial of the form 1 + 2", with n a power of two. They present two advantages: (a) they en-
able efficient implementations of polynomial operations through fast radix algorithms of the NTT
(Number Theoretic Transforms), and (b) the polynomial operations over the used ring correspond
to basic blocks in practical applications in Computer Vision and Signal Processing [29, 5| 146],
comprising, among others, linear convolutions, filtering, and linear transforms.

A multivariate version of RLWE (m-RLWE) was proposed as a means to efficiently deal with
encrypted multidimensional structures, such as videos or images [4, 46] (see Appendix [A). In this
scenario, the use of a tensorial decomposition in “coprime” cyclotomic rings (see [45) 41} 40])
is not applicable a priori, as these structures require that the modular functions have the same
form (e.g., 1 + 2™). This is the context in which m-RLWE [4] was originally introduced (see

Appendix [A)).

Related uses of the Tensor product in the literature: The use of the tensor of lattices and/or
adding a multivariate structure to the involved rings has been the subject matter of several previous
works, but with very different targets. We briefly survey here the closest ones: (a) In [47], the
authors applied the standard tensor product of lattices to improve the hardness factor of the SVP
problem under different assumptions. (b) In [45]], the authors define an isomorphism between

15
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An example of an RLWE sample

To fix ideas, it might help to consider we are working in a polynomial ring like R, = Z4[x]/(1 —
x™). Polynomials belonging to the mentioned ring R, can be alternatively seen as Z-transforms of a
conventional unidimensional signal of length n, but whose coefficients are integers reduced modulo gq.
Multiplication between polynomials is equivalent to the cyclic convolution between the corresponding
signals.

Informally, the RLWE assumption states that given a pair (a,b = as + ¢) where a < R, is uniformly
random and e < Y is drawn from the error distribution (consider a discrete Gaussian distribution for
simplicity), this sample is very hard to distinguish from the pair (a, u) where u < R, is also uniformly
random.

By assuming this indistinguishability assumption, it is very easy to define a simple cryptosystem based
on RLWE. To this aim, plaintext information can be encoded in the noise term by working with signals
belonging to the ring Ry = Z[z]/(1 — z™).

Let a plaintext m € Ry, we could encrypt it by doing (@’ = ta,b’ = a’'s + te + m), in such a way that
the plaintext is encoded in the lower bits of the error term.

Interestingly, the previous RLWE sample (a,b = as + €) can be alternatively expressed as a pair of
signals (a[l], b[l] = a[l] ® s[l] + e[l]) for I = 0,...,n — 1 (being ® the cyclic convolution operation).
Hence, it can be seen that the RLWE sample is “equivalent” to filtering a known and uniformly random
signal a[l] with a secret filter s[l|, and afterwards adding a gaussian noise ell].

Table 2.1: A Signal Processing perspective: An example of an RLWE sample.

some cyclotomic fields and a tensor product of cyclotomic fields when in ®,,(z), if m can be
factored into several (different) prime powers. (c¢) The “tensor” representation also appears in the
definition of the GLWE problem (also called Module-LWE [48]]) which was originally introduced
in [49,150]. In fact, analogously to LWE versus RLWE, the introduced multivariate RLWE problem
can be seen as a ring version of the GLWE problem, by means of adding for a second time a
ring structure into the module. (d) Finally, the FHEW fully homomorphic encryption scheme
features [S1]] a ring tensoring for a speed-up of the homomorphic accumulator, and also bivariate
rings are used as a means to enhance the efficiency of polynomial products inside the refreshing
procedure in [52].

A reduction: It can be shown that the m-RLWE problem can be reduced from worst case dis-
crete Gaussian Sampling (equivalent to SIVP) over the tensor of rings (see Appendix [A)). Unfor-
tunately, a recent work [44] shows an effective attack against m-RLWE when the univariate sub-
rings share common roots, therefore considerably lowering the security of the underlying problem.
Hence, our main contribution in this chapter is to redefine the m-RLWE problem and find secure
instantiations that preserve the efficient results on multivariate RLWE, by basing their security
on a subset of RLWE on general number fields (see the recent work by Peikert er al. [53]], that
generalizes the RLWE problem to any modulus and any ring over number fields).

We now informally introduce the definition of m-RLWE, the attack by Bootland et al. [44], and
the rationale of our solution, all exemplified in the bivariate case.

Bivariate RLWE: Let K1) = K, & K, be the tensor product of 2 cyclotomic number fields
of dimensions n, = ¢(my) and n, = ¢p(my), R = Z[z,y]/(Pm, (), Pm, (y)) the tensor of their
corresponding rings of integers, and R its dual.
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RLWE and its convenience for signal processing

Following with the example of the RLWE sample (a,b = as + e) whose elements belong to the ring
Ry = Zg[x]/(1 — x™) (see Table[2.1), we know that we can easily encrypt a signal m/[l] (being m(x) its
Z-transform and whose elements belong to Z;) by considering (a’, b = a’s + te + m).
Additionally, this cryptosytem also allows for homomorphic operations. Consider two encryptions
(a1,b1 = a1s + te; + my) and (ag,be = azs + tes + mo). If ¢ is high enough compared to the
maximum value of the noise terms, we can easily obtain a homomorphic addition of the plaintexts by
doing

(Gadd = @1 + a2,baaqa = b1 + b2 = aqaqs +t(er + e2) + (M1 +ma)).

Although the process for a homomorphic multiplication is slightly more complicated, it can still be
done:

(@mult, Dmult, Cmuit) = (a1a2, a1bg + asby, bibs) .

Although we skip the details, the triple (@uits Omuit, Cmuit) €an be seen as an encryption of the
polynomial product m;ms mod 1 — 2™, which, considering the signal representation, is equivalent to
ma[l] ® mall].

Consequently, it seems that this very simple cryptosystem is very convenient for some basic signal pro-
cessing blocks: (1) A signal can be encrypted in a whole ciphertext, and (2) we have two homomorphic
operations which correspond to cyclic convolution and addition of signals.

Table 2.2: A Signal Processing perspective: RLWE and its convenience for signal processing.

We define a Bivariate Ring LWE sample (see Definition [2| for the general formulation of m-
RLWE) as the pair (a,b = (a-s)/q+e mod R"), where a + R, is uniformly random and e <+ ¥
comes from the error distribution W.

Bootland ef al.’s attack: Choices of modular functions f,(z) = @, (2), fy(y) = Pm,(y)
as fz(x) = a™ + 1, fy(y) = y™ + 1 have been proposed in [4], as this structure presents
computational advantages and can be very beneficial for practical applications.

Bootland et al.’s attack is able to exploit common roots on the involved rings to factorize the
multivariate RLWE samples into RLWE samples of smaller dimension. For example, consider
that n, = n, = n; by applying the substitution y <— x, we obtain n RLWE samples of dimension
n each, hence decreasing the n? lattice dimension of the original m-RLWE sample.

Secure multivariate RLWE instantiations: Let m = mgm, and gcd(mg, m,) = 1; then,
the m-th cyclotomic field K = Q(() = Q[x]/(Pp(x)) (with ¢, the m-th root of unity) is
isomorphic to the bivariate field

K = Qla,yl/ (@, (@), B, (). @1

Consequently, by considering instantiations satisfying ged (m,;, m,) = 1, the bivariate RLWE
problem becomes equivalent to the equally sized RLWE problem. However, we would like to
search for other instantiations where the modular functions can have a similar form and, if possible,
the same degree.

By restricting ourselves to the most common scenario of power of two cyclotomics, modular
functions of the form {2"* + d,., y"™v + d,, 2" + d., ...}, could avoid Bootland et al.’s attack for
some parameters {n, d, Ny, dy, Nz, ds, . ..}. B.g., the rings Z[z]/ (2% + 1) and Z[y]/(y*" + 5)
do not have common roots, so trivial substitutions such as x — y cannot be applied. Additionally,
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Motivation for a multivariate RLWE sample

In Tables and we have briefly shown that the RLWE assumption can be used to define a very
simple cryptosytem allowing for both homomorphic additions and convolutions of encrypted signals.
This observation gives us the starting point for the main idea introduced in [4]]. If an RLWE sample
(a,b = as + €) can be equivalently expressed as a pair of signals (a[l], b[l] = a[l] ® s[I] + e]l]) for
l=0,...,n—1,in [4] we can wonder whether this convolution can be extended to work with higher
dimensional signals.

With this in mind, we considered a multivariate RLWE sample by substituting the previous unidimen-
sional convolution by a multidimensional convolution.

This redefinition of the cryptosystem allows for homomorphic additions and multidimensional cyclic
convolutions of encrypted multidimensional signals.

Exemplifying it with 2-dimensional signals (e.g., images), we have

(a(z,y),b(z,y) = a(z,y)s(z,y) + e(=,y)),

where the different polynomials belong to the ring Ry = Zg[z,y]/(1 — 2"=,1 — y™v).

A cryptosystem defined with the previous bivariate RLWE sample can encrypt 2-dimensional signals
of lengths n, and n, (i.e., m[l;,l,] forl, =0,...,n, —1landl, = 0,...,n, — 1). Analogously to
the unidimensional case, polynomials represent the bivariate (in general, multivariate) Z-transforms of
the signals (e.g., a plaintext for m[l,,,] would be represented by its bivariate Z-transform m(z,y) €
Zt[xay]/(l -z, 11— yny))

Table 2.3: A Signal Processing perspective: Motivation for a multivariate RLWE sample.

whenever we reduce modulo ¢ and work over R,, we can impose (for the sake of efficiency) that
both modular functions 254 +1 and 32" +5 factor in linear terms enabling the use of variants of the
NTT. Additionally, slot encoding and slot manipulations are still possible in the plaintext ring by
means of the pre-/post-processing, as presented in [29]. Analogously to the negayclic convolution,
these pre-/post-processing steps preserve the properties of the NTT transform over a ring with an
a-generalized convolution [54] (see Chapter [3).

This seems to effectively avoid a substitution attack; however, there might be some small ideal
divisor for which, modulo some particular ¢, the noise does not increase substantially, and we can
distinguish the resulting sample from uniform. This attack has been extensively studied by Peikert
in [53] and we will discuss it in Section[2.7.1]

The proposed solution: The previous strategy preserves most of the advantages of the multi-
variate constructions while apparently avoiding the effects of Bootland et al.’s attack. However,
the security of these instantiations is not based on any specific formulation of the RLWE problem,
and there is no trivial way of parameterizing them. This raises the following questions:

1. Can we find multivariate rings similar to Z[x,y, .. .|/ (2" + dy, y™ + dy, . ..) while (a)
still preserving the aforementioned advantages of this structure, and (b) basing its security
on the hardness of the RLWE problem (see Definition[7)); i.e., without a decrease in the ring
dimension due to Bootland’s attack (see Proposition[I))?

2. If these multivariate rings exist, how can the values {n,ny, ...}, {dz,dy, ...} be chosen to
easily define the ring of integers R, its dual RV and the basis?

From this point forward, we focus on answering these two questions. To this aim, we identify



Chapter 2. Multivariate Ring Learning with Errors 19

number fields whose ring of integers (and their dual) have the sought structure (see Section [2.4)).
In particular, we divide this set of fields in two categories:

1. Multiquadratic number fields (see Section [2.5). These structures enable efficient radix-2
transforms for faster polynomial arithmetic (see Section [3.2]in Chapter [3).

2. More general number fields with modular functions {x"* + d, y™ + dy, ...} (see Sec-
tion [2.6). These structures support all the signal processing applications described in [5]],
and the matrix operations introduced by the original MHEEAN scheme [56] (not based on
coprime cyclotomic polynomials [57]) while preserving the equivalent RLWE security.

Rationale for the security of our solution: The weakness of some m-RLWE instantiations
is rooted on the existence of (small norm) zero divisors in the compositum field. For example,
Q[z,y]/(z%+1,y%+1) has zero divisors as =+ (e.g., (v +y)(z —y) = 0), and hence m-RLWE
samples defined on rings Z[z,y]/(x? + 1,y + 1) can be easily factored, as the effective degree
can be reduced with substitutions {x — y,—x — y}. Additionally, as these roots have small
norm, the noise in the reduced samples is not increased enough to preserve security.

Instead of the previously proposed Z[x,y]/(z? + 1,4% + 1), we work with a bivariate ring
with modular functions of the form {z"* + d, y™ + d,} (we use Z[z,y]/(z* + 1,y + 3) as our
example). The use of different modular functions avoids a trivial substitution attack. However,
we need to rule out the possibility of (small norm) substitution attacks, such as the one from [44],
modulo some ¢; even if they exist, finding them would require solving a hard subset-sum mod ¢
(knapsack) problem.

As there is a security reduction from ideal lattices to RLWE defined on general number
fields [S3]], we search for the ring of integers of multivariate number fields. This gives us a way to
find secure parameters for the used ring, and also the right error distribution to guarantee that the
noise increase after a substitution modulo g is enough to preserve the required security [S5]. To
exemplify this rationale, we compare the differences between a bivariate cyclotomic ring (which
can be seen as a univariate cyclotomic ring), and our proposed solution.

Consider the ring Z[2]/®12(2) with ®15(2) = 2% — 22 + 1. There is an isomorphism with the
bivariate ring Z[x, y]/(®4(x), ®3(y)) where ®4(x) = 2%+ 1 and ®3(y) = 3 +y + 1. Therefore,
our intuition is that if we found an effective substitution attack on our example ring Z[z, y] /(22 +
1,y? + 3), this would work analogously for the cyclotomic bivariate case Z[z, y] /(®4(z), P3(y)).
In particular, if we apply the transformation T'(y) = 2y + 1 in the ring Z[y]/(y? + 3), we obtain
Z[y]/y? + y + 1, which is the mentioned cyclotomic ring with ®3(y). Consequently, for this
particular case, it is clear that the existence of an attack in our example ring implies an attack to
the bivariate cyclotomic ring.

For more general multivariate rings, we can apply a similar idea. In general, for a secure
bivariate ring such as Z[z, y] /(™ + d, y" + dy), we can search for a transformation y < T'(y)
where the new modular function can share at least some roots with ™= + d,.. If this transformation
can be effectively applied, we could use it to attack multivariate cyclotomic rings.

Thus, this strengthens the belief that an attack on secure m-RLWE instantiations defined on a
general number field should provide us with either an attack to RLWE on the product of prime-
powers cyclotomic rings, and/or a better understanding on the weaknesses of general cyclotomic
rings.

For a discussion on the practical security of RLWE on the proposed number fields we refer the
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Some security issues with our example of an RLWE sample

The provided examples for univariate (and multivariate) RLWE samples in Tables and[2.3|work
by considering polynomial rings with cyclic modular functions (i.e., with the form 1 — z™). However,
due to security reasons, we must be very careful on the choice of the modular function. For example, for
the function 1 — 2", an attack can exploit the fact that 1 is a small-norm integer root by evaluating the
Z-transform of the RLWE sample in 1 (i.e., the DC component). Consequently, a substitution x < 1
can be applied which simplifies the RLWE sample (a,b = as + ¢) into a new sample

SR (zam) (zsm) .

l l

a b a 3 é

where the index [ = 0,...,n — 1.

This problem is much easier than expected because we only have to distinguish the DC component of
the signals from the uniform distribution in Z, (going down the dimension from n to 1). As g is usually
poly(n), to distinguish (@, b = @3 + &) from uniform, we can efficiently try the ¢ different possibilities
for S in the expression b — as. For the right § (and considering a reasonable value for the variance
of the x distribution, which we initially considered as Gaussian in Table @ it behaves as a Gaussian
distribution.

Secure RLWE: The original RLWE problem [41} 45] was defined on rings whose modular function is a
cyclotomic polynomial. The m-th cyclotomic polynomial ®,,(x) is the unique irreducible polynomial
with integer coefficients whose ¢(m) roots are all the m-th primitive roots of unity (¢(m) is the Euler’s
totient function).

Up to today, attacks on these RLWE instanstiations (with parameters following the reduction presented
in [41} 145]]) are not substantially faster than an attack on general lattices. Consequently, current most
efficient lattice-based cryptosystems are implemented based on RLWE considering cyclotomic modular
functions and, in particular, power-of-two modular functions ®o,, () = 1+ 2™ (with n a power-of-two).

1 + a™ modular functions: Even though the use of 1 — 2" functions is discarded because of the afore-
mentioned attack, we can still use a very similar polynomial ring R, = Z,[z]/(1 + z™). This ring
allows for homomorphic additions and negacylic convolutions of the encrypted signals. In this thesis
we show how to transform these homomorphic operations into encrypted cyclic convolutions which are
more amenable for signal processing applications (see Chapters [3|and [).

Table 2.4: A Signal Processing perspective: Some security issues for our example of an RLWE sample.

reader to Section2.7.11

Contributions: The main contribution of this chapter is the definition and parameterization of
secure instantiations of the multivariate Ring Learning With Errors problem [22 5], supported by
the extended reduction [53]] of the original proof by Lyubashevsky et al. [40, 41]. The proposed
instantiations address the vulnerability leveraged on Bootland’s attack to m-RLWE [44], while
still preserving all the efficiency improvements that m-RLWE brings. Moreover we show that is
possible to securely instantiate the m-RLWE problem, because the canonical embedding of R has
a polynomial skewness (A, /A1).

We instantiate a simple cryptosystem based on m-RLWE, and exemplify with it the use of
the multivariate structure of m-RLWE to improve on complex number embedding, enabling fully
packed complex numbers, compared to the exponentially decreasing packing ratio of current ap-
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Secure multivariate RLWE samples

To define a secure RLWE sample, we have seen in Table [2.4]that we can replace in the polynomial ring
R, the modular function 1—z" by 1+x". From the point of view of signal processing given in Tables|2.1]
and[2.2] this means that in the RLWE sample (a[l], b[l] = a[l] ® s[l] + ¢[l]) (for { = 0,...,n — 1) the
cyclic convolution is replaced by a negacyclic convolution.

Following our initial motivation to work with multidimensional signals (see Table @, we can consider
the following multivariate RLWE sample

(a(z,y),b(z,y) = a(z,y)s(z,y) + e(x,y) mod 1 + " mod 1 +y™),

where the different polynomials belong to the ring R, = Zg4[z,y]/(1 + z"=,1 + y"). Hence, the
a(z,y) - s(x,y) multiplication can be seen as a 2-dimensional negacyclic convolution between a[l,, [,
and s[l,,l,] forl, =0,...,n; —landl, =0,...,n, — 1.

{1 4+ 2™ 1 + y™v} modular functions: Although initial works [4] assumed that the security of the
previous bivariate RLWE (2-RLWE) sample was equivalent to an RLWE sample with n = n,n,, we
know that due to Bootland’s et al.’s attack [44] its security is mainly equivalent to an RLWE sample with
degree max {n,,n,} (see Section . In Chapter we provide a detailed comparison between this
and other possible instantiatons of RLWE samples for the case of encrypted multidimensional signal
filtering.

Some intuitions: Working with a modular function 1 — 2", we can directly compute the DC component
of the Fourier transform by the substitution x < 1. In similar manner, when having two modular
functions 1 + =™ and 1 + y™, by applying the substitution y <— = we obtain one of the frequency
components of the Fourier transform of the bivariate RLWE sample for the dimension y. It is worth
noting that both substitutions are low-norm roots.

Secure bivariate RLWE samples with {d, + ™ ,d, + y™*}: The weakness of the previous bivariate
RLWE sample relies on the repetition of the same structure in the two dimensions (allowing for low-
norm substitutions). Similarly to the unsecure (cyclic) RLWE sample from Tables 2.T]and 2.2} we can
compute different coefficients of the Fourier Transform in one of the dimensions without considerably
increasing the noise of the sample. This allows us to deal with a transformed sample of much smaller
dimension than initially expected. To avoid this attack, this chapter focuses on studying how to securely
replace the unidimensional convolution in RLWE by a multidimensional convolution where the structure
is different for each dimension. Consequently, we search for modular functions where there are no low-
norm substitutions. This is explained in detail in Sections 2.4} [2.5|and 2.6

Table 2.5: A Signal Processing perspective: Secure multivariate RLWE samples.

proaches. This enables applications in homomorphically encrypted approximate arithmetic, com-
plex processing, and efficient multidimensional signal manipulation (see Section[2.7.2). The ap-
plications of these secure instantiations are numerous, achieving improved space-time tradeoffs in
the most critical lattice operations, and therefore enabling more efficient homomorphic processing
and closing the gap to the realization of practical fully homomorphic encryption. As we will show
in Chapter [3| m-RLWE can bring significant efficiency improvements in all of them.

Structure: The rest of the chapter is organized as follows: Section describes Bootland et
al.’s attack to multivariate RLWE. For completeness, Section [2.3]reminds some algebraic number
theory notions and the main definitions for the m-RLWE problem. Section [2.4] describes the fol-
lowed strategy to achieve secure instantiations of multivariate RLWE, including the well-known
tensor of “coprime” cyclotomic rings. Section [2.5|focuses on the analysis of multiquadratic rings.
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Section [2.6] studies a set of more general multivariate rings. Section [2.7] includes a discussion
on the achieved resilience against known attacks together with example instantiations that show-
case the practicality of multivariate RLWE, and discusses some practical applications. Finally,
Section 2.8 draws some conclusions.

2.2. Worst case security of multivariate RLWE

For the sake of clarity, we present the definition of multivariate RLWE with power-of-two
cyclotomic polynomials, as originally introduced in [4]], but all the results in this section can be
generalized to any cyclotomic function:

Definition 1 (multivariate RLWE with power-of-two modular functions as z;* + 1). Given a
multivariate polynomial ring Ry(z1, ..., x| with fj(xz;) =1+ a:?j forj =1,...,1 where n =
Hj n; (with all nj a power of two) and an error distribution x[x1,...,x;] € Rylx1,..., 7]
that generates small-norm random multivariate polynomials in Rg|x1,...,x;], the multivariate
polynomial RLWE problem relies upon the computational indistinguishability between samples
(ai,bi = a; - s + €;) and (ai, u;), where a;,u; <— Rg[x1, ..., x;] are chosen uniformly at random
from the ring Ry[x1,...,x1); s,e; < x[z1,..., x| are drawn from the error distribution.

The original works of multivariate RLWE [4, 5] assume that the search and decision m-RLWE
problems (see Definitions [3] and ) in dimension n = [], n; are as hard as the corresponding
RLWE problems in dimension n. However, Bootland et al. [44] introduced an attack that can
exploit modular functions that allow repeated “low-norm” roots in the multivariate ring. As a
result, when the subrings of the tensor have common roots, this attack is able to factor the m-
RLWE samples into RLWE samples of smaller dimension, hence reducing the security of these
m-RLWE samples to that of solving a set of independent RLWE samples which are easier to break.
E.g., for the ring Z[x, y]/(x®" + 1,y™ + 1), changes of variable y <+ 2% with i € Z} _ factors the
m-RLWE sample into n different RLWE samples with rings of modular function 22" + 1 and an
increase in the error variance of n (maximum degree of y™ + 1).

The instantiations of (multivariate) RLWE with cyclotomic rings where the different modular
functions have “coprime” order are not affected by this attack, as they do not introduce these
“common” roots (see Section [2.4.1).

We now give a more formal description of the attack, particularized for bivariate RLWE (2-
RLWE) with power of two cyclotomics (Definition . Let (a,b = as + ) € R2[z,y] and
Ry[z,y| = Zg[z,y]/ (™ + 1,y"™ + 1) with ny > nyand k = 72 without loss of generality.

Now we define the map O:

O : Zglw,y)/(z" +1,y"™ +1) = (Zg[a]/ (2" + 1))

a(x, y) - <CL(£L’, fL'k), (l(l', ZL‘gk), - ,a(gj, $(27’Ly—1)k))

This map is a ring homomorphism, and if ¢ is odd it is also invertible (see [44]). This trans-
forms the pair (a,b) € Ry[x,y] into (©(a),O(b) € Ry" [z]. If we denote each of the components
by ©;,fori =1,...,n,, we have

<(:)i(a), &;(b) = Bi(a)Bi(s) + @i(e)) € R2[x], 2.2)
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fori =1,...n,. This results in n, different RLWE samples of dimension n, and whose noise has
a variance n, times higher than the original 2-RLWE sample (the result of adding n,, independent
variables).

The attack works by trying to break the obtained n,, RLWE samples. Once this is done, as the
map is invertible, it is possible to reconstruct the original secret key with the different n,, smaller
keys.

This attack can be generalized to an m-RLWE sample (Definition [1) by recursively applying
“versions” of this map (I — 1) times. This recursion converts an m-RLWE sample into nﬂl RLWE
samples (assuming, without loss of generality, that ny < no < ... < ny) with dimension n; and

an error variance ”l times higher.

2.3. Multivariate Ring Learning with Errors

This section revisits the main definitions from algebraic number theory and multivariate
RLWE, including a generalized version of the multivariate polynomial RLWE problem which
admits any type of cyclotomic polynomial as modular function (see Appendix [A]). For the sake
of clarity, we particularize to power-of-two modular cyclotomic functions (see Definition[I]) when
exemplifying some of the results, but this does not affect to the generality of the discussion.

2.3.1. Algebraic Number Theory background

This section presents the fundamental concepts of lattices and algebraic number theory and
extends them to the more general case of a tensor of number fields on which m-RLWE is based.

The Space H ) = K); H;

When dealing with cyclotomic fields, it is useful to work with the subspace H C R x C?2
with s; + 2s9 = n, where the tuple (s1, s2) is called the signature of the number field, and H
satisfies

H = {(21,...,2,) € R®' x C?2 such that x4, 15,1 = Ts,1+4,7] € [s2]} CC"}  (2.3)
An orthonormal basis {h;} jc|, for H can be defined as

e;j if j € [s1]
hy={ U5(€ite€jts) if 51 <j < s1+ 52
%(ejf@ —ej) ifsp+52<j <514 289,
where e; are the vectors of the standard basis in R"™. Each element a = ) jemn) @ihy € H (with
aj € R) has its own [, norm. For our purposes, we define the subspace H 1) = &), el H; as the
tensor product of [ subspaces H; (each subspace H; defined as in Eq. (2.3) but with s1+2s2 = n;).

In particular, if we see each element belonging to each H; as a different linear transformation,
we are actually working with the Kronecker product of the subspaces H;. We can therefore express
an orthonormal basis for Hry given by {h;} |, as the result of the Kronecker product of the
original basis of each H;, by defining any invertible mapping for j and {j1,...,j;}, where h; =
Ricn hg,:) are the basis vectors for H(r), and n = ], ni; each {hx)} ji€[n;) 1s the orthonormal
basis of each H; C C™ fori € [l].
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Lattice background

A lattice in our multivariate setting is defined as an additive subgroup of H(r). We only
consider full rank lattices, obtained as the set of all integer linear combinations of a set of n linear
independent basis vectors B = {b1,...,b,} C H(r)

A=L(B)= Z zib; such that z € Z"

1€[n]

The minimum distance A;(A) of a lattice A for the norm ||.|| is given by the length of the
shortest non-zero lattice vector, that is, A1 (A) = minge /z20l|||-

The dual lattice of A C Hp) is defined as A* = {x € H)|(A,x) C Z} and it satisfies
(A*)* = A.

Gaussian Measures

The results on nonspherical Gaussian distributions presented in [41] can be extended to our
case. Hence, we revisit here some of the concepts for Gaussian measures, adapted to our tensor
setting.

We consider the Gaussian function p. : Hpy — (0,1] with » > 0 as p.(x) =
exp(—n||z|[>/r2). A continuous Gaussian probability distribution D, can be obtained by nor-
malizing the previous function to obtain a probability density function as »~"p,(x). Extend-
ing this to the non spherical Gaussian case, we consider the vector r = ®i€[l] ; Where
r = (ri,...,mn) € R " and 7, = (ri1,...,7in;) € (RT)" and whose components sat-
isfy 7 j4s14s0 = Tij+s,- Finally, a sample from D, is given by Zje[n] x;h; where each x; is
drawn independently from a Gaussian distribution D, over R; r; equals Hz‘e[l] rij, (where [ is
the number of “unidimensional” spaces H; in the tensor, that is n = Hie[l] n;) and we are using
any invertible mapping between {;j} jc(,) and {Ji }j, e[n.],ic[i]-

2.3.2. Main Definitions for Multivariate Ring-LWE

Let K7y = ®i€[l] K; be the tensor product of | cyclotomic fields of dimension n; = ¢(m;)
each, and R = @, Ok, (RY = Qicn O};,) the tensor of their corresponding (respectively,
dual of the) ring of integers. We have the following definitions:

Definition 2 (Multivariate Ring LWE distribution). For s € R(\; and an error distribution 1 over
K1) r, a sample from the m-RLWE distribution Asy, over Ry x T is generated by a < Ry
uniformly at random, e < 1, and outputting (a,b = (a - s)/q + e mod R).

Definition 3 (Multivariate Ring LWE, Search). Let W be a family of distributions over Kty g.
m-RLWE, y denotes the search version of the m-RLWE problem. It is defined as follows: given

access to arbitrarily many independent samples from Ag v for some arbitrary s € R;’ andp € U,
find s.

Definition 4 (Multivariate Ring LWE, Average-Case Decision). Let T be a distribution over a
family of error distributions, each over Kyg. The average-case decision version of the m-
RLWE problem, denoted m-R-DLWE, v, is to distinguish with non-negligible advantage between
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arbitrarily many independent samples from A y, for a random choice of (s,) U(R(\J/) X T,
and the same number of uniformly random and independent samples from R, x T.

For an asymptotic treatment of the m-RLWE problems, we let K(7) come from an infinite
sequence of tensors of number fields K = {K(7),} of increasing dimension n (n = [[; (1)
is the number of basis elements that form the integral basis), and let ¢, ¥, and T depend on n as
well.

Error distributions We include here two definitions about the error distributions.

Definition S (extension of Lyubashevsky et al. [41], Definition 3.4). For a positive real o > 0,
the family V<, is the set of all elliptical Gaussian distributions Dy. (over K(1yg), where each
parameter r; < « withi € [n).

Definition 6 (extension of Lyubashevsky et al. [41]], Definition 3.5). Let K (1) = ®i€[l] K; where
the K; is the mj-th cyclotomic number field having degree n; = ¢(m;). For a positive real o > 0,
a distribution sampled from [, is given by an elliptical Gaussian distribution Dy (over K(1yg)
whose parameters are r; € [n| using the unidimensional index (see Section , and each r;
satisfies r]2- =a?(1+ v/nx;) where different xj,x, that do not correspond to conjugate positions
are chosen independently from the distribution I'(2, 1)EI

Practical applications [4} 29, 146] usually deal with variants of the problem:

= discrete b: Instead of working with an error distribution ¢ over K1) g, the m-RLWE distri-
bution A, , can use x as a discrete error distribution over RY, so that the element b belongs
to RY.
q

= small key: Instead of a uniform s, s can be a "short key" equivalently sampled from the
error distribution (this is known as “normal form” in [435]), with equivalent security. Given a
list of I m-RLWE samples, s can be substituted with the error e of any sample (a, b) whose
term a is invertible in R, which occurs with constant probability by Claimbelow.

= power of 2 cyclotomic: Instead of sampling a and s from R, and Rg respectively, both
are usually sampled from R, (this is usually known as the non-dual variant). In general, the
works which consider s in I, deal with cyclotomic fields where m; is a power of two. It can
be shown that for this particular type of cyclotomic fields both definitions are equivalent.

= modulus switching: The original definitions of the problem are presented with a prime
modulus ¢ that splits the space into small independent coordinates. With the same hardness
guarantees, it is possible to modulus-switch to other compute-friendly modulus at the price
of a slight increase of the error.

[45] shows that the variant of RLWE with discrete and short error (R-DLWE, , ) is as hard as
the original R-DLWE, 4, by following the technique from [38]. These results can be adapted to
our more general case as follows:

Claim 1. The fraction of invertible elements in R is ®i€[l} Ok, /{q), for prime ¢ = 1 mod ¢(m;)

foralliis (1 — %)", withn = [[; ¢(m;). Thus, if ¢ > n, this probability is constant.
'U(R))) represents the uniform distribution over R, .
T'(2, 1) refers to the Gamma distribution with shape 2 and rate 1.
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Proof. Since R, is in bijection with the ring (Z/gZ)" via the tensor embedding mod ¢, an element
is invertible iff its image does not contain any zero. Hence, there are (¢ — 1)" invertible elements
out of ¢". ]

Pseudorandomness of m-RLWE: To show that the m-RLWE distribution is pseudorandom
(that is, there exists a reduction from the search problem to the decision variant of the hardness
problem) we rely on the results from [41], applied to the case of multivariate elements. The
main needed properties are those related to the decomposition of (g) into n prime ideals (¢ =
1 mod ¢(m;) for all 7) and the use of the automorphisms that permute the prime ideals.

2.4. Proposed approach for secure multivariate rings

Despite the efficiency benefits of multivariate RLWE, its security can be much smaller than
originally expected for those instances vulnerable to Bootland et al.’s attack [44]. This motivates
us to redefine the set of instantiations that preserve the security in the tensor lattice dimension.

This section enumerates those secure instantiations of multivariate RLWE. With this in mind,
we first briefly revise the choice of “coprime” order cyclotomics explicitly included in [45]. Af-
terwards, we discuss the possibility of using a more general set of number fields, enabling other
multivariate rings that can be more convenient for practical applications.

2.4.1. Multivariate RLWE as a subset of RLWE

The m-th cyclotomic field K = Q((n) = Q[x]/ (P (z)) (with ¢, the m-th root of unity) is
isomorphic to the multivariate field

K2 Qo ..., 2]/ (@, (21), - .., By (1)), 2.4)

where m = [[, m; is decomposed in its prime-power decomposition with gcd(m;, mj) = 1 for
all j #£ k.

This fact gives an alternative basis to the power basis {1, z, ... ,x¢(m)_1} for the ring of
integers R = Z[xz]|/®,,(x); this basis is the “powerful” basis of K composed of elements []; =7’
with 0 < j; < gzb(mi) This “powerful” basis has some very nice properties [45] which make
it more appealing than the more “conventional” power basis. Additionally the authors of [45]]
provide a detailed analysis on how the performance of ring operations can be improved by means
of this multivariate structure.

Besides [45]], the use of the multivariate structure in Eq. (2.4) has been exploited to enhance
polynomial operations in both the HEIib [59,160] and the MHEAAN [57]] libraries. This gives us a
first approach to deal with multivariate instantiations which do not suffer a decrease of the under-
lying lattice dimension. However, this structure is not flexible enough to convey the same benefits
that general multivariate structures can achieve; in particular, it cannot preserve the interesting
structure of power-of-two cyclotomics (1 + z™).

3This basis does not coincide with the power basis under the mentioned automorphism and considering the map
xmi — x; fori =1,...,1 (see [43]).
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2.4.2. More general RLWE instantiations

We look now beyond cyclotomics, into more general and flexible number fields and their
parameterization. We first introduce the definitions of RLWE over any number field [S3], and
then give the intuition on the properties required to resist the Bootland et al.’s attack. A detailed
discussion on the choice of good parameters and the security of RLWE on these number fields

follows in Sections [2.3] 2.6]and

RLWE over any number field

Peikert et al. [53] have recently generalized the RLWE problem to any number field. Let K be
a number field with ring of integers R = Of; let R be the fractional codifferent ideal of K, and
let T = Kgr/RY. Let ¢ > 2 be a (rational) integer modulus, and for any fractional ideal Z of K,
let Z, = Z/qZ. We include now the relevant definitions of RLWE over any number field that we
use in our formulation.

Definition 7 (Ring-LWE Distribution, Definition 2.14 in [53]). For s € R(\J/ and an error
distribution 1) over Kg, the R-LWE distribution A, over Ry, x T is sampled by indepen-
dently choosing a uniformly random a < R, and an error term e <— 1, and outputting
(a,b= (a-s)/q+emod RY).

Definition 8 (Ring-LWE, Average-Case Decision, Definition 2.15 in [53]]). Let Y be a distribution
over a family of error distributions, each over Kr. The average-case Ring-LWE decision problem,
denoted R-LWE, v, is to distinguish (with non-negligible advantage) between independent sam-
ples from A, y, for a random choice of (s,v) < U(R,) x Y, and the same number of uniformly
random and independent samples from Rq x T.

Theorem 1 (Theorem 6.2 from [53l]). Let K be an arbitrary number field of degree n and R =
Ok. Let o« = a(n) € (0,1), and let ¢ = q(n) > 2 be an integer such that aq > 2 - w(1). There
is a polynomial-time quantum reduction from K — DGS,, to (average-case, decision) R-LWE, v,
for any

3 = max {7(D) - V3/a-w(1). VI (E)

Additionally, it is worth highlighting some observations regarding the choice of a particular
number field in RLWE, as stated in [53]]:

» The geometry of the dual ideal RV affects the error rate v (chosen to be smaller than the
minimum distance \;(RY)). As « decreases, worst-case hardness theorems give weaker
guarantees (i.e., larger approximation factors), and known attacks on Ring-LWE become
more efficient.

= A similar phenomenon arises for rings with large “expansion factors” (see [61]) which im-
poses smaller « for achieving correct decryption; hence, good rings for practical applica-
tions have small expansion factors.

= Besides the two previous relations, there is no practical evidence on which particular number
field is better in terms of security.
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Ad-hoc countermeasures to Bootland et al.’s attack

Bootland’s attack [44] shows that a reduced RLWE sample is at least as hard as an m-RLWE
sample. To prove the converse, we can use an oracle for m-RLWE. With access to such oracle and
a set of RWLE samples with different keys, we can construct an m-RWLE sample (with a slight
increase in the noise variance) by means of the reverse map of Bootland ef al.’s attack (i.e., (:)*1).
Once this oracle returns the secret key of the m-RLWE sample, the original keys of the RLWE
sample can be recovered by means of the map o.

We can therefore express the security of m-RLWE in terms of RLWE, but the decrease of
the involved dimension considerably reduces the applicability of the problem with “non-coprime”
modular functions. The security of J[; ., ¢(ged (m;, mi)) independent RLWE samples with di-

Hz‘e[l] ¢(m;)
j#k ¢(ged (my,my))
nition [2) with dimensions {¢(m1), ..., ¢(my)}:

mension I could be reduced to that of one m-RLWE sample (according to Defi-

Proposition 1 ((:)_1 transform from [44] ). Let L independent univariate RLWE samples (a;, b;) €
R, x T for i € [L] and dimension n. We can transform (this transformation is invert-
ible when q is prime) these L samples by means of the (inverse) of Bootland et al.’s attack
into one m-RLWE sample with | dimensions {¢(m1), ..., ¢(my)}(see Definition [2) satisfying
L = H#k ¢ (ged(mj,my)) and having for the RLWE sample n = M This trans-
Sformation slightly increases the variance of the error distribution by a factor L.

The decrease in the lattice dimension by a factor L = [] ;. ¢ (gcd(m;, my)) brings about the
question of whether we can modify some of the multivariate RLWE constructions where L > 1 to
avoid Bootland et al.’s attack.

Followed strategy

By considering instantiations satisfying ged (m;, my) = 1 for all j # k, we straightforwardly
go back again to the RLWE problem. However, we would like to find other instantiations where
the modular functions can have a similar form and degree. We will hence focus on modular
functions as follows: {z"* + dg,y™ + dy, 2"* + d., ...}, which can avoid Bootland’s attack for
certain parameters, while enabling NTT-like fast transforms and preserving the advantages of the
originally introduced m-RLWE constructions.

However, the security of these instantiations is not based on any specific formulation of the
RLWE problem, so we do not have a clear way of choosing the right parameters. In the next two
sections, we focus on number fields satisfying Definition [/|and whose ring of integers (and their
dual) has the aforementioned structure. In particular, we focus on multiquadratic number fields
(Section[2.5)) and more general multivariate rings (Section [2.6)).

2.5. Multiquadratic Rings

Let K = Q(v/d;) be a field with prime d; (hence squarefree) satisfying d; = 1 mod 4; its ring

of integers is O = Z [HT‘/E] with basis {1, 1+5/‘Ti } and discriminant A = d;, then we can

also represent O as a polynomial ring Z[z]/x? — = + 1*Tdi (O is free of rank 2), according to
(see Proposition [2):
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Proposition 2 (Proposition 2.24 from [62] ). Let K = Q(\/d) be a quadratic field with d a
squarefree integer. If d = 2,3(mod4), then Oxg = 7 [\/8} ~ Z[z]/(x? — d) and Oy is free of

rank 2 over Z with basis {1, \/&} Ifd = 1(mod 4), then O = 7Z [1@/&} = ZM/(IQ_:C—F%)
and O is free of rank 2 over Z with basis {1, 1+2\/E}.

Let us extend the field to Q(\/d1, . . ., v/d;) (a multiquadratic field), with ged (d1, ..., d;) = 1,
but still sticking to the case d; = 1 mod 4. Taking into account that OO = Op when
ged (Ag, Agr) = 1, where F is the compositum over Q (see [63]) of two subfields K = Q(+/d1)

and K' = @(\/@) (see [64]), we have that O = [Hﬁ H*ﬁ} This can be generalized to
the case of a field with [ “coprime” squares, whose resulting ring of integers is

L] g L

Ok =7 (2.5)

Therefore, as all d; are different primes, the discriminants of Q(+/d;) are also coprime, which
implies that the ring of integers can be expressed as the product of the respective univariate rings
of integers.

However, the definition of RLWE (see Definition [8)) works on the dual of the ring of integers,
due to its geometric properties. The dual can be obtained through Theorem [}

Theorem 2 (Theorem 3.7 from [63] ). Let K = Q(«) and let f(T') be the minimal polynomial of
ain Q[T). Write

f(T) = (T — a)(co(a) + c1(a)T + ... + co1(a)T™ ), ci(a) € K.

The dual basis to {1, «, . ..,a" 1} relative to the trace product is

{co(a) c1 (@) cn_l(a)}
f@) fla) 7 flla) |

In particular, if K = Q(«) and o € Ok then

(Z+Za+ ...+ Za™ ) (Z+Za+ ...+ Za™M).

_ 1
~ f(a)

Particularized to the quadratic case, Theorem [2| says that whenever the ring of integers has a
power basis, the basis of the dual is

v

where f(z) =22 -z + 5% anda = 2

satisfies f/(a) = V/d;.

As dual commutes with tensoring, this result can be straightforwardly extended to the com-
positum case with several d;. Additionally, we see that we can go from the dual to O by just
scaling with 1/d; (or multiplying with the polynomial 2z — 1).

} vt 757 a5

,80 f(x) =22 — 1; evaluated at z = o = HT‘/CTZ', it

Following our requirements, we need a ring of the form Z[z1, ..., 2]/ (23 — di, ..., 2} — d)),
which is an order of the field Q(v/dy,...,+/d;), but not necessarily its ring of 1ntegers and
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a Dedekind domain However, we can only base its security on RLWE defined on a num-
ber field of the form Q(+/dy,...,+/d;) (see Definition [7) and its ring of integers satisfying

Zlzy, ..., 7)) (22 —z1 + 1_d1 L — x5 dl) We w111 therefore show that we can define
an 1nvert1ble map modulo g from the ring Ok (and its dual OY,) to the ring Z[z1, ..., 2]/ (23 —
di,... ,xl — dy), while still basing its security on the original RLWE formulation from Defini-

tion|/} Additionally, this map does not significantly increase the noise; in fact, it also decorrelates
it in the coefficient domain, enabling direct sampling of the noise in the coefficient representation
with an independent error distribution.

The map, applied to each variable z;, works as follows:

= We apply the change of variable x — IH

= We multiply the sample by a factor 2.
This mapping can be applied whenever the inverse of 2 exists modulo ¢q. The multiplication

by 2 is applied afterwards to avoid the potentially high distortion introduced by the factor % into
the noise.

Canonical Embedding
Let K = @(\f ), and note that 5 1 evaluated at z = 1+2\/3 equals ﬁ. We define the
Embedding map £ going from O}, = LZ[ /x? — z + Q to C2, as the substitutions {x «+

T Vd
1+\f Vd +— +/d} and {z + 1 f ,V/d + —+/d}. This gives this transformation matrix for £

1 ( 1 1+§ﬂi ) (2 7)
VGJ 1 27 . .

The inverse map £~ is defined as the product with matrix

( Vd-1 _1+Vd >
2 2 . (2.8)
1 1

Sampling the error directly in the coefficient domain

N

Finally, if we define the noise in the embedding of the dual ring as two independent Gaussian

variables eq, e; € x with variance o2, we have in the ring %Z[m] /2% — d after following the whole

“processing chain’:

1
— | (eo 4+ e1) z +Vd(eg — €1) | mod 2% — d.
T\ N—_—— ~———
202 2do?
Hence, the noise is not correlated in the coefficient domain and we can easily sample the error
distribution considering an appropriate variance per coefficient.

For simplicity, we have focused on a quadratic field, but the embedding can be extended to the
multiquadratic case by means of the Kronecker product.

4A recent work [[66]] discusses the hardness of a generalization of Ring-LWE called Order-LWE.
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Multiquadratic RLWE

Let us define the multiquadratic version of m-RLWE, where all the modular functions have
the form fi(z;) = d; + 22, as

Definition 9 (multivariate polynomial RLWE with quadratic modular functions). Given a multi-
variate polynomial ring RZI/ (@1, ..., 2] with fj(x;) = dj + a:? forj=1,... 1 wherel =logyn
(with na power of two) and an error distribution x[xy,...,x)] € RJ[x1,..., x| that gener-
ates small-norm random multivariate polynomials in Rz]/ [1, ..., 2], the multivariate polynomial
RLWE relies upon the computational indistinguishability between samples (a;,b; = a; - s + €;)
and (a;,u;), where a; < Rylz1,..., 2], u; < R)[x1,..., 3] are chosen uniformly at random
from the rings Ry[x1, ..., 2] and R;/ [z1,...,21); and s,e; < x[z1,...,x;] are drawn from the
error distribution (see Section[2.5).

The security reduction from Theorem [I] applies to this particular version of the m-RLWE
problem whenever —d; = 1 mod 4 and ged (A, Ax/) = 1. Section gives further insights
on the security and practicality of the chosen parameterization, and exemplifies it with a concrete
instantiation. In particular, Proposition [0 gives a sufficient condition to consider the problem
secure against known attacks.

Comparison with Gaussian integers

We now compare the multiquadratic RLWE with the particular case of power-of-two cyclo-
tomics m-RLWE (see Definition [1) where all the used modular functions have the same form
fi(z;) = 1 + 22, as originally proposed in [3] (see Appendix :

Definition 10 (multivariate polynomial RLWE with ®4(-) as modular functions). Given a multi-
variate polynomial ring Ry[x1, ..., x;) with fj(z;) = 1+ :L'jQ forj =1,... 1l wherel = logyn
(with na power of two) and an error distribution X[x1,...,x;] € Rglx1,...,z;| that gener-
ates small-norm random multivariate polynomials in Ry[z1, ..., x;], the multivariate polynomial
RLWE relies upon the computational indistinguishability between samples (a;,b; = a; - s + €;)
and (ai,u;), where a;,u; < Rylx1,...,x;) are chosen uniformly at random from the ring
Ry[x1,...,21); and s, e; < X[z, ..., 2] are drawn from the error distribution.

The comparison of our secure multiquadratic RLWE samples with RLWE samples from Defi-
nition [I0]is specially relevant, as the latter are severely affected by Bootland ef al.’s attack. Sam-
ples from Definition |10| can be reduced to a dimension of 2, by applying the map O a total of
(logyn — 1) times, yielding n/2 RLWE samples with f(z) = 1+ 22 and error variance n,/2 times
higher than the original m-RLWE sample; this can be very easily solved. Consequently, despite
of the efficiency of the polynomial operations on the rings instantiated according to Definition [I0]
they are not valid for cryptographic applications. Meanwhile, the samples from a secure instan-
tiation of multiquadratic RLWE (Definition [0) preserve the lattice dimension n and withstand
Bootland’s attack.

Another advantage of the multiquadratic RLWE problem is that it also enables very efficient
polynomial operations, without decreasing security. In particular, it is possible to apply a variant
of the Fast Walsh-Hadamard transform (over finite rings instead of the usual real numbers), fea-
turing a convolution property that relates the coefficient-wise representation with the transformed
domain. This transform can be very efficiently computed with FFT-like algorithms (specifically, a
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variant of the Fast Walsh-Hadamard transform) whose computational cost is only O(n logn) ad-
ditions and O(n) products, hence considerably speeding up practical implementations. For more
details, we refer the reader to the Section [3.2]from Chapter 3] where we show how the well-known
asymptotic cost of O(nlogn) for cyclotomic rings with polynomials of n coefficients can be im-
proved by a factor of log n in terms of elemental multiplications.

2.6. More general multivariate rings

Let us consider now general fields Q(ay "o ,all/ n), for which the a; are squarefree and

coprime, but for simplicity we will assume that they are independent primes. The results shown
in the previous section for multiquadratics cannot be straightforwardly generalized to these fields,
as the individual univariate fields Q(ag / ") can easily have common factors in their discriminants
(i.e., be non-coprime), in such a way that finding a basis for the multivariate ring of integers is not
trivial.

We explain the followed path that leads to our definition of valid, secure and easily parame-
terizable multivariate rings. We start by choosing number fields whose ring of integers Ok can
be represented as Z[x]/z"™ + ax + b, that is, as polynomial rings whose modular function has the
form ™ + ax + b. For this to be a valid ring O for K, it has to be irreducible over Q, for which
we use Fisenstein’s criterion:

Proposition 3 (Eisenstein’s criterion [67]). The polynomial p(x) = apx™ + ap_ 12" + ... +
a1z + ag, where a; € Z foralli = 0,...,n and a,, # 0 (which means that the degree of p(x) is
n) is irreducible if some prime number p divides all coefficients ag, . . . , an—1, but not the leading
coefficient a,, and, moreover, p2 does not divide the constant term ay.

Therefore, we impose the following two conditions on f(z) = 2™ + ax + b:

= Both a and b have to be divisible by a prime p and not by p? (Eisenstein’s criterion).

= If we choose b as a prime, a has to be divisible by b.

Now, we can compute the discriminant for this number field by resorting to [68| Chapter 2.7]:

Proposition 4 (An example of the calculation of a discriminant [68]] ). For the calculation of A
in a number field K = Q(x) being a extension of finite degree n of Q and f(x) = 2" + ax + b
the minimal polynomial of x over Q, we obtain

nn=1) nin—1 n—1 n—1 _n
Ag=(-1)"=2 (""" "+ (-1D)"" " (n—=1)"""d"). 2.9
For n = 2 (respectively, 3) we rediscover the well-known expressions a®> — 4b (respectively,

—27b* — 4a?).
Theorem 3 (Theorem 8.11 from [69] ). For Z-lattices L' C L inside K, [£' : £]* < oo and
discz(L') = [C': L£]? - discz(L).

In particular, if L' C Ok and the integer discz(L') € Z — {0} is squarefree then (O : L] = 1;
ie, L' = Ogf

In [69], discz(L) denotes the determinant of the basis of £ for any Z-basis of L.
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If we choose values for a and b such that A is squarefree, Theorem 3| guarantees that the ring
of integers has a power basis of the form {1, o, o2, . ..}, with a a root of 2" +az+b. Consequently,
Z[zx]/x™ 4+ ax + b is a valid ring of integers.

By including more “univariate” subrings, Z[z1, ..., z;]/(z} + a1z + b1, ..., 2] + aiz + by)
becomes a valid ring of integers when all the discriminants are coprime [64]. Therefore, this is a
feasible strategy to define RLWE over a multivariate ring, as the product of univariate rings with
modular functions =™ + a;x + biﬁ

Finding valid parameters for f(x) = 2" + ax + b: Unfortunately, the two previous conditions
(Eisenstein’s criterion from Proposition [3|and Theorem [3)) cannot be satisfied at the same time:

= To satisfy the Eisenstein’s criterion, b and a have to be divisible by at least a prime p (i.e.,
ged (a,b) = u-p for some u € Z), this introduces a factor p"Lin Ak (see Equation (2.9)),
in such a way that A is not squarefree and not satisfying [Ox : £] = 1 in Theorem 3]

We could still work with these multivariate rings provided that their discriminants are co-
prime, but it seems that there is no straightforward way to determine the “powerful” basis
of the ring of integers: starting from Proposition 4| it is known that Z[a] C Ok C iZ[a]
where f(a) = 0.

= Additionally, Eisenstein’s criterion is a sufficient but not necessary condition for irreducibil-
ity of the modular functions. Without the imposed restrictions, we could search for square-
free and coprime discriminants, but we would have to verify the irreducibility of the involved
functions case-by-case. Nevertheless, this is not impossible to find, as it is known that mono-
genic fields are not scarce [[70]; in fact, for random polynomials f, it has been conjectured
that Z[x]/ f (x) of degree > 4 is a ring of integers with probability = 0.307 [71].

Transformation based on Modulus Switching

Let us assume that we have found valid (monogenic) x}' + a;x; + b; functions defining the ring
of integers Z[z;]/x]" + a;z; + b;; they do not yet feature the desired 2™ + d form.

In order to achieve this, we consider a map from the original RLWE samples to RLWE samples
modulo ¢, that removes the term az if ¢ divides a. It is worth noting that this transformation is
nothing but a modulus switching to ¢, and if it were possible to break RLWE modulo ¢, the original
secret key could be recovered or at least the indistinguishability assumption could be broken.

The trick relies on all the modular functions having the form f;(z;) = ] + a;q z; + b;.
~—~
a;
Hence, a reduction modulo ¢ converts the modular functions into f;(x;) = «} + b;. We show the
effect of this transformation on the ring O}, for the univariate case (it extends to the multivariate
case, as dual commutes tensoring):

» O}, is defined as ﬁ(’) 5 under the polynomial ring Z[z] /2" 4 aqx + b;, this implies that
the dual is Zlx]/x" + alqz + b;.

nz"~l4alq

8To define the dual O}, we can make use of Theoremwhich states that whenever the ring of integers has a power
basis, the basis of the dual is the same basis, scaled by ﬁ = , where « is a root of f(x).

nan”—l4aqa
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» After reducing modulo ¢, we obtain ﬁZq [x] /2™ + b;; considering that x has inverse
modulo ¢, we can multiply numerator and denominator by x to obtain % = —~

= The factor ﬁ can be removed by just a scaling (moving to the ring of integers O ), so we
can directly work on Z,[x]/x™ + b;. This gives a “basis” {b;, z, 22, ..., 2" "1} (or a basis
1 a 2 a1 ith li
i o TR } without scaling).

Decodability of the transformed z" + ax + b: Elias et al. [70] use an heuristic perturbation
method to bound the spectral norm of the canonical embedding with f(z) = z" + az + b. As
the condition number is stable for most of the random perturbations of the canonical embedding
matrix associated to 2" + 1, they conjecture that many f functions have a bounded spectral norm
in terms of a and b; therefore, we can consider that the spectral norm s1(Ny) (/N represents the
inverse of the canonical embedding matrix) is likely bounded by y/max (a, b) - det (N f)l/ " [72].
Consequently, the same arguments about noise behavior in [[72, 155] still apply, and in order to
guarantee the prevalence of the security reduction (see Proposition [6), the noise wraps around
modulo ¢ in some of the polynomial coefficients (max (a,b) ~ ¢). This is due to the large ¢
factor introduced in f(x), which requires the use of a high error variance, rendering some of the
polynomial coefficients modulo ¢ useless. This makes these RLWE samples harder to use for
cryptographic applications.

Valid and practical parameterizations for Multivariate Rings

The previous solutions to parameterize multivariate rings with modular functions =" +d are not
satisfactory, as (a) the search of valid univariate rings is not easy to handle (due to the impossibility
of using Eisenstein’s criterion) and (b) the obtained samples are not practical for cryptographic
applications due to their high noise in some polynomial coefficients.

Here we follow a slightly different approach, releasing the condition on equal-degree modular
functions; that is, we consider multivariate rings as Z[x1, . .., 2] /(2] +di, ...,z +d;). Again,
to simplify the explanation we only consider an univariate ring with modular function 2™ + d, but
all the results can be analogously extended to the multivariate case (see Section [2.5) by requiring
coprime discriminants.

n(n—1)

First, for f(z) = 2™ + d, Equation (2.9) simplifies to Ay = (=1)" = n"d" L.

Let d be a prime number and n = u"* a prime power. Then,

» f(x) is an irreducible polynomial over QQ by Eisenstein’s criterion (Propostion .
» f(z) is monogenic for d and n satisfying the following Proposition

Proposition 5 (Adapted Proposition 3 from [[70] ). Let n be a power of a prime u. If d is squarefree
and u? does not divide (—1)" (d"~1 + 1)d, then the polynomials ™ + d are monogenic.

Proposition shows that f(z) can be monogenic even when its discriminant is not squarefree.
If f(x) satisfies Proposition we have O = Z[z]/2" 4+ d and O}, = —L~7Z[z] /2" + d.

In order to extend these results to multivariate rings Z[z1, ..., x;]/(2]* +di, ...,z + dy),
we only have to consider functions {z]' + dj, . .. ,x;” + d;} satisfying Proposition |5 and having
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coprime discriminants. This basically means that all the d; and n; are respectively different primes
and power primes.

Analogously to the multiguadratic rings in Section [2.5] we can directly map the error distri-

bution in the coefficient domain. In particular, for the ring %Z[xz] /x}" + d;, the parameter
n;—J

gt
for the error distribution in the (j — 1)-th coefficient (1 < j < n;) is given by /n;d, ", where
r is the parameter of an independent spherical error distribution in the embedding domain [[72].
This extends to multivariate rings by means of the Kronecker product. As the resulting embedding
matrix is the Kronecker product of the embedding matrices associated to each univariate ring, the
singular values are the result of the Kronecker product of the singular values for each univariate
embedding matrix.

Finally, we introduce the definition of multivariate RLWE with the proposed modular functions
fz(.%'z) =d; + 1‘?1

Definition 11 (multivariate RLWE with modular functions as x:” + d;). Given a multivariate
polynomial ring Ry[x1, ...,z with fj(x;) = d; + x? forj=1,...,1 wheren = Hj n;j (where
all nj are prime powers) and an error distribution x[x1, ..., x| € R/[x1,..., 2] that gener-
ates small-norm random multivariate polynomials in R;/ [1,...,x], the multivariate polynomial
RLWE relies upon the computational indistinguishability between samples (a;,b; = a; - s + €;)
and (a;, u;), where a; < Rylx1,...,21), ui < R/[x1,... 2] are chosen uniformly at random
from the rings Rq[x1, ..., 2] and RZ [x1,..., 2] s, e < x[x1,...,x] are drawn from the error
distribution.

For the ring RY[z1, ..., x], we define x[x1, ...,z as the distribution generating polynomi-

ng=Jj

als belonging to RY[z1, ..., x;| and whose parameter per coefficient satisfies r Hie[l] Viid;
where 1 < j; < n;and 1 < <, and hence represents the parameter for the coefficient associated

to the monomial z7' B ' -1

Some examples of valid parameters: In order to show the feasibility of the proposed param-
eterization, we exemplify it with some practical use cases for bivariate RLWE; we will consider
n; = 211 = 2048 and ny = 37 = 2187, and d; = 5, dy = 7, for which we prove that they meet
the conditions of Proposition [3]

» 22 = 4 does not divide 52°47 + 1, or equivalently, 52°47 + 1 % 0 mod 4. We have 52047 4+
1 mod4 =127 4 1=2:£0.

= 32 = 9 does not divide 73 1 41, or equivalently, 73141 # 0 mod 9. We have 731y
1=7173" 41 =7"173"mod6 ;1 — 7241 =50 =5mod9 0.

Consequently, with this choice of parameters we can work on the number field K =
Q((_5)1/20487(_7)1/2187), with OK — Z[x,y]/(x2048 + 57y2187 + 7) and O}/{
1

447897622047 2186 Ok.

As for the example mentioned in the introduction, with functions 2% + 1 and y27 + 5, we can
also verify that

s %% 4 1 is the ®195(x) power-of-two cyclomic, hence it is monogenic.

» 27 + 5 is monogenic by Proposition as 32 = 9 does not divide 5 or 52¢ + 1.
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Additionally, as both discriminants are coprime, the product is directly the corresponding ring of
integers.

2.7. Security of multivariate RLWE and example instantiations

This section includes a discussion on several aspects of the proposed solutions in this chap-
ter, namely their security, the geometric interpretation of the problem, and the feasibility of the
proposed parameterizations. With this purpose, we enumerate the known attacks in the literature
and include an example instantiation of a simple bivariate RLWE scheme. Finally, we summarize
some of the applications that our constructions enable. For a discussion on a more advanced set of
efficiency improvements on cryptographic primitives we refer the reader to Chapter 3]

2.7.1. Resilience against known attacks

The formulation proposed in this chapter involves working with rings whose modular function
is ™ +d or, more generally, " +ax+b. Some particular instantiations of these rings have already
been studied in the literature and we can find specific attacks to “variants” of the RLWE problem
(e.g., PLWE together with non-dual and dual RLWE versions) defined over them.

In general, the known attacks can be divided in two main types [55]:

= Attacks using a reduction modulo an ideal divisor q of the modulus qR [73l (74} [70, [75,
76, [77]. These attacks try to distinguish between the error distribution and the uniform
distribution modulo an ideal divisor.

= A reduction to errorless LWE [72] which exploits the relation between RLWE and LWE.
Expressing RLWE in its LWE form, the error term of some of the equations can be removed
by means of a rounding operation, and linear algebra can be used to search for the secret
key.

All these attacks have been generalized and studied in depth by Peikert in [55]], where he con-
cludes that all the concrete insecure RLWE instantiations made use of error distributions which
were insufficiently well spread relative to the rings, meaning that none of the vulnerable instan-
tiations satisfy the conditions from Theorem [I|to have worst-case hardness. In [55], Peikert also
gives sufficient conditions to make RLWE secure against the previous attacks. We summarize the
main relevant results for our constructions.

Proposition 6 (Invulnerability condition from [55]]). Let ) = D, (see Deﬁnition@ be a spherical
Gaussian error distribution over Ky for some r > 0; a sufficient condition for invulnerability to
the attacks from [|73| 74} |70, 75| 72} 55 |76] is

r> 2. (2.10)

The validity of Proposition [f] to resist the previous attacks is shown in the following two
theorems: Theorem [] (for the attack based on reduction modulo an ideal divisor) and Theorem [3]
(for the attack based on errorless LWE).

Theorem 4 (Theorem 5.2 from [55])). Given a Ring-LWE sample (a,b = s-a+e) € Ryx Kr/qRY
where e < D, is transformed into n LWE samples (Aq, b = sT A, + el'), where b € (R/qZ)"



Chapter 2. Multivariate Ring Learning with Errors 37

and e € R™ are respectively the coefficient vectors of b € Kg/qR" and e € Ky (with respect
to the chosen basis of RV), and A, € Zy*" is the matrix of multiplication by a € R, with any
element of R, (with respect to the chosen bases of R, R"). Then, for any Z-basis BY = (bY)
of R used above, each entry of e is a continuous Gaussian of parameter at least rv/n > 2y/n
(which is the required lower bound to apply the worst-case hardness theorems for plain-LWE).

Theorem 5 (Theorem 5.1 from [53])). Let q C R be any ideal of norm N(q) < 2", and let the
error parameter v > 2 satisfy condition (2.10). Then the reduced error distribution D, mod qRY
is within statistical distance 2~2" of uniform over Ky /qR".

2.7.2. Geometric interpretation and examples of multivariate RLWE

In this section, we give a high level overview of how to instantiate a secure multivariate RLWE
sample from Definition[TT] exemplifying it in the bivariate case (all rings are defined over variables
x,y, omitted when unambiguous).

We also use this example as a means to showcase complex numbers packing into slots, ob-
taining a net improvement on the number of available slots per ciphertext when comparing to the
recent results in [56]. For the sake of clarity, we introduce a simple SHE scheme which enables ho-
momorphic additions and multiplications without taking into account some of the more advanced
techniques typically considered in the literature (see Appendix [2.A] for a brief explanation of the
possible optimizations).

A multivariate RLWE sample

For simplicity, we consider a bivariate RLWE sample (a,b = a - s+ ¢e) € Ry x R(\J/, where
a € Rylz,yl, s € R/[z,y] and e < x[z,y] € RY[z,y]. We can use a uniformly random s or
follow conventional approaches where s is a small key (see Section [2.3)).

Geometry of R, its dual R" and an example for {22 + 3,32 — 5}: To easily illustrate the
geometry of R and RY, we use a simple example R = Z[z,y]/(z* + 3,y* — 5). By means of
the canonical embedding, we know that the substitutions {z < 41/—3, y < 4+/5} yield the four
different slots in the embedding domain.

This clearly shows that \; (R) < y/n = 2 by the embedding of 1, and we can also obtain the
embedding of the elements z, y and xy. zy can be used to obtain an upper-bound for \4(R), such
that A4 (R) < 2v/15.

This is easily generalizable to any multiquadratic with [ = log, n variables, by considering
the embedding of 1 and [];c(; z;, obtaining A1 (R) < v/ and A\p(R) < V/n][icy Vi As
the [-th prime is asymptotically p; ~ [logl, a worst-case for [ = log,n is d% ~ ll(logl)l =
(log, n)'°82 " (log, log, n)'°%2™. Combining the two previous expressions we have that A, (R)
(and hence also the ratio /\l?g)) is polynomially upper-bounded by n.

These bounds are straightforwardly extended to the dual R by taking into account the corre-
sponding “tweak” factor. For the multiquadratic scenario, the dual only suffers a scaling by the
square roots of the d; terms (R is sparser than the dual R"). However, considering higher degrees
in the modular functions x:“ + d;, the tweak factor can turn the noise in the non-dual version of
RLWE into highly non-spherical.
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A very detailed analysis of these effects (including also some enlightening visual examples)
can be found in [55]].

Choice of parameters: We show now how to select correct parameters {n,, ny, d,, d, } satisfy-
ing the conditions established in Sections [2.5] and [2.6]for valid number fields.

As a brief summary, and focusing on n;, n, > 2, this mainly implies that: (1) the discriminants
of K, = Q[z]/x"* + d, and K, = Q[y]/y™ + d, are coprime, i.e., gcd (Ag,,Ak,) = 1, and
(2) Nz, ny are prime powers satisfying Proposition 5]

This enables the definition of O = R = Z[z,y] /(2™ 4+ dy, y™ + d,) as the ring of integers.
Analogously, the dual is O}, = ———L—7[z,y]/(z" + dy, y™ + dy) (see Sectionfor

Ngnyzne—ly"y =
some particular choices).

In this bivariate case, the error distribution x[z,y] samples polynomials in O}, whose co-

efficients are independently sampled from Gaussian distributions with different standard devia-
ng—jx nyij
ny

tions. In particular, o is equal to ry/nd, "* d, for the coefficient associated to the monomial

ale Lyl with 1 < jp <ngand1 < j, < n,,.

Working on ¢Ok: As it is usually done with power-of-two cyclotomics, we can directly
transform the dual into the ring of integers by means of a scaling. If we have O} =
nmymwlfly,Ly,lZ[:v, yl/(z" + dg,y™ + dy), we can first multiply the dual by % to see the
simplified relation %(’)IV( = Izydy Ok.

~ nd

Finally, analogously to the 2™ + 1 functions, we can scale the (a, b) sample by n = n,n, and
also dd,. This gives us a sample (a(z,y), V' (z,y) = nd.dyxyb(x,y)) € Rz. Consequently, we
can directly work on the ring of integers with (a,b = as +e) € Rg where a < Ry, s < R,
(or also s « x[z,y]) and e < x[z,y]. After the multiplication with the monomial xy, the

error distribution x|z, y] generates independent coefficients from a Gaussian distribution of o =

ng—jz NYJy 2ng—jez TYTIy
ryndy " dy ™ forl < jp <mngandl < j, <ny o=rynd, " dy" forj, =1and
neg—jz 2Ny—Jy o2ng—1 2ny—1

1<jy<nyo=rynd,;" dy " forl< j, <ngandj, =1whileoc=rynd," d,"
for j, = jy, = L.

SHE over Multivariate Rings: The basic example cryptosystem described in Table [2.6|follows
the structure of the SHE version introduced in [78] and implemented in [79)]. The main difference
relies on the fact that our polynomial elements belong to the multivariate rings R[z,y|, R¢[z,y]
and Ry[z,y] (see Definition I 1), contrarily to the traditional univariate version Z[z]/1 + 2™ and
its analogous rings modulo ¢ and ¢. In Table [2.6|the diagonal of J has the corresponding standard
deviations of x normalized by r (i.e., o/r) for each coefficient of the bivariate polynomials.

In particular, our plaintext ring R; is basically a bivariate polynomial R;[z,y] =
Zi[z,y]/(x™ + dg,y™ + d,) which is encoded as a sub-module of T = Kg/R" (see Defini-
tion . Our example is based on the scheme introduced in [78]], but other choices are possible,
and we briefly discuss them in the Appendix Regarding the achieved noise bounds, they
are analogous to the computations from [78]] by taking into account the expansion factor of the
involved rings.

The additional variables of the multivariate structure bring about some significant advantages:
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Table 2.6: Parameters and Primitives of a Somewhat Homomorphic Cryptosystem based on a secure multi-
variate version of RLWE from Definition |1 1| (see [4} 5]).

Parameters

Let R¢[z,y| be the cleartext ring and Rgq[z,y] the ciphertext ring. The noise distribution x|z, y] in
Rg [,y takes its coefficients from a spherically-symmetric truncated i.i.d Gaussian A'(0, 72J?). q is
an integer satisfying ¢ < ¢ and is relatively prime to ¢. All the previous parameters are chosen in terms
of the security parameter A where n = 2llog 11

Example SHE Cryptographic Primitives

SH.KeyGen | Process s, e« x[z,y], a1 < Rq[z,y]; sk = sand pk = (ap = —(a15+te),a1)
SHEne | Imput | pk=(ag,a1) andm € Ru[z,y]
u, f, g < x|, y] and the fresh ciphertext is ¢ = (co,c1) = (aou + tg +
Process
m,aiu+tf)
SH.Dec Input skand c = (5017 GELIRY cy-1)
Process m= ((ZZ:O Cis') mod q) mod t
SH.Add Input €= (CO’“"Cﬁ,‘l)aﬂd d = (06,-.-1‘3’7*1)
Process | Cadd = (€0 + €0y Cmax (8,7)~1 T Cax (5,7)-1)
SHMult |0 c=(c,...,cp-1)and e’ = (cf,..., ¢\ )
P Using a symbolic variable v their product ¢”’ can be obtained from the rela-
o | () (i ) = S

more efficient polynomial operations (see Section [3.2]in Chapter [3), better space/efficiency trade-
offs when working with automorphisms (see Section [3.3]in Chapter[3), and can also be very useful
when working with multidimensional structures (see Section Chapters [7] and [§ and Ap-
pendix B} and also the works [4} 5, [56] for more details on practical applications). In particular,
in [56} [57]] the authors present a library called MHEAAN, based on multivariate RLWE, which is
optimized to perform homomorphic matrix operations.

Correctness and Security: The condition for correct decryption is that the effective noise
H(ZZ:_OI ¢is') mod ¢)||  remains smaller than ¢/2. Let us consider a simplified version of The-
orem 2 from [78]] where only the effect of noise is taken into account, and let max {o} be the
maximum standard deviation of the polynomials sampled from x|z, y]. Let M be the maximum
coefficient of the evaluated degree-D polynomial; if M (¢ max {U}dxdyn\/ﬁ)D is smaller than
q/2, the scheme of Table can evaluate degree-D multivariate polynomials over elements which

belong to R;[z,y]. We could also consider a tighter empirical condition for ¢, as stated in [79].

Regarding the security of this SHE scheme, it relies on the indistiguishability assumption of
the polynomial multivariate version of RLWE (with adequately chosen secure parameters x[x, y|,
{ng,dy,ny,dy} and q) featured in Definition breaking this assumption implies, as stated in
Theorem [I] the existence of a quantum algorithm which solves short vector problems over ideal
lattices. For a practical estimation of the bit security, we can apply the LWE security estimator
developed by Albrecht et al. [80, [81] to the cryptosystems built on multivariate RLWE and also
the estimates included in the standards document [82] for a general random lattice with the same
dimension (n = [][n;). This is plausible, analogously to what it is typically done with ideal
lattices, a secure m-RLWE instantiation works with full-rank lattices, for which no substantially
faster attacks are known than for general lattices.

Improving on the packing capacity of complex numbers

We address the packing of integer numbers in Chapter [3| (see Section [3.3)), but complex num-
bers are more difficult to efficiently pack. Nevertheless, we can also leverage the multivariate
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structure to represent the complex arithmetic in a much more efficient way than previous recent
approaches. Knowing that a total of n/2 complex slots can be packed over the ring Z[z]/1 + 2",
Cheon et al. [31},56] expand these results to the bivariate case Z[z,y]/(1 + 2™, 1 + y™), pack-
ing a total of ”7”"2—7’ = 7 complex slots. Generalizing this strategy to [ dimensions, packing is
restricted to 57 complex slots (where n = Hizl n;) when working over multivariate rings as
Zixi,...,z)/(L+ 2, ... 1+ x;”)E] Consequently, this strategy leaves a huge gap of unused

potential slots when transitioning to a multivariate ring.

Nevertheless, it is possible to achieve the same number of complex slots as the univariate
counterpart (that is, n/2 complex slots), effectively substituting the multivariate complex embed-
ding map (as used in [56]) by its univariate version. Let us consider the ring Z[z1, ..., x;]/(d1 +
L d+ x?l ), and choose one of the [ independent variables to work with the canonical em-
bedding map, x; without loss of generality. If we have a total of n/2 complex numbers to pack
in one multivariate polynomial plaintext, we organize them as a set of nﬂl complex vectors with
length n; /2. For each complex vector we use the encoding from [31]], defined as the composition
of the inverse of the complex embedding map and a discretization. This yields nil polynomials
belonging to the ring A = Z[z1]/d; + x7*.

Coming back to the multivariate ring representation, we can consider the new message as a
polynomial in the ring Z¢[x1, ..., 2;]/(di + 27", ..., d; + x;'"). Hence, we gather all the polyno-
mials in A as the different coefficients of the ring Az, ..., ;]/(d2 + 252, ..., d; + x}'"), and we
define encoding/decoding matrices working over d; + z."* modular functions (i.e., c-generalized
INTTs/NTTs over ¢, see Section [3.2]in Chapter[3)) for ¢ = 2, ..., [, considering the identity matrix
I,,, of size ny xny for x; and the modular function d; +$71“ . Using the vector representation of the
plaintext polynomial, the encoding/decoding is performed by means of one matrix multiplication
which can be efficiently realized with FFT-like algorithms.

This method can pack a total of n/2 complex slots while preserving the properties for the
automorphisms and also removing the gap of the method used in [56]], where the fraction of used
slots decreases exponentially with the number of dimensions.

Finally, it is worth looking at the case where the considered multivariate rings are those from
Definition |§] in Section In this case, the modular functions have the form d; + xf so the
variable x1 can directly represent the imaginary unit, therefore perfectly mapping the complex
arithmetic without the need of applying the canonical embedding map over the polynomials in A.

2.7.3. Applications to Signal Processing

For the sake of completeness, this section focuses on some of the Secure Signal Processing
(SSP) applications that benefit from m-RLWE to process encrypted signals in a more efficient and
secure way than under RLWE, showcasing the applicability of m-RLWE (we refer the reader to
Chapters[7]and[§] and Appendix [B|for a detailed exposition of the different signal processing appli-
cations). While these results were originally presented on weak instances of m-RLWE vulnerable
to the Bootland et al.’s attack, they can be adapted to deal with those rings from Definition[I1]

Image filtering (see Appendix [B). In image processing, filtering is one of the most common
building blocks, and it can be seamlessly implemented as a cyclic multidimensional convolution.
While RLWE-based cryptosystems support univariate convolutions, they need to encrypt each row
or column of the image or filter separately in order to implement a 2D or 3D convolution between

"While this strategy was introduced for a weak instance of multivariate RLWE (i.e., vulnerable to Bootland ef al.’s
attack), a similar approach works for rings following DeﬁnitionE}
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two encrypted images (or an image and a filter). Conversely, m-RLWE introduces a natural way
to work with multidimensional linear operations, and it achieves a more compact representation
of the data, as it can effectively cipher one signal value per coefficient of the encryption polyno-
mial. As shown in [4]], the time needed for an encrypted convolution with an m-RLWE-based
cryptosystem is between one and two orders of magnitude faster than with its RLWE counter-
part for common image sizesﬂ while the security of the former can much higher (whenever we
work on a secure instantiation of multivariate RLWE), due to the large degree of the multivariate
polynomials.

Image denoising (see Chapters [7] and [8)). Another ubiquitous image processing operation is
image denoising. This operation involves a linear (Wavelet) transform, a thresholding non-linear
operation applied to each sub-band, and an inverse transform. By resorting to 2-RLWE and a poly-
nomial representation of the thresholding operation, it is possible to efficiently perform all these
operations with a circuit of limited depth and without an intermediate decryption of the image [46]].
This produces a denoised image of size 256 x 256 in a few minutes. If the 2-RLWE scheme is not
implemented in a weak instantiation, the RLWE counterpart would require polynomials of large
degree in each image dimension to achieve the same security level, which renders the computation
several orders of magnitude slower than with a 2-RLWE cryptosystem.

Increased flexibility in image processing (see Appendix [B)). Finally, it is worth noting that the
additional degrees of freedom that m-RLWE introduces give more flexibility to cope with signals
with different structures, which is plainly impossible with the regular RLWE. In [5], mechanisms
for converting across different signal structures and perform efficient block processing are shown.
Hence, m-RLWE enables (a) better packing schemes by grouping image pixels in blocks (e.g.,
for encrypted JPEG de-/compression by using block Discrete Cosine Transforms), or video se-
quences in frames, (b) encrypted multi-dimensional transforms that can work on a block-by-block
basis taking advantage of the large signal dimensionality to increase the cryptosystem security
with respect to their RLWE counterpart, (c) the use of the extra variables to encode additional
information which can be used to homomorphically evaluate encrypted divisions in the signal
values, (d) flexible changes of the signal structure to update the packing and organization of the
blocks, in order to seamlessly enable different operations on different dimensions.

2.8. Conclusions

This chapter addresses the main security flaw of the multivariate RLWE problem revealed by
Bootland et al. For this purpose, we have defined and parameterized practical and secure instantia-
tions of the multivariate Ring Learning With Errors problem, supported by the extended reduction
of the original proof by Lyubashevsky et al. [40l 41]. The proposed instantiations are resilient
against Bootland’s attack to m-RLWE [44], while still preserving all the efficiency improvements
that m-RLWE brings. We have shown how to find practical parameters for the proposed instanti-
ations to make them both secure and usable.

81n (4], the authors implement an m-RLWE extension in C using GMP 6.0.0 and FLINT. For a filtering application
with an image of size 1014 x 1014 and a filter of size 11 x 11, they achieve runtimes of 134 s with RLWE and 8 s
with the extension.
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2.A. Further Optimizations

The scheme we have chosen to exemplify the use of multivariate rings with RLWE in Sec-
tion can be further optimized. We based our choice on the scheme introduced in [78] for
simplicity and clarity, but many other options could be taken into account. For example, in [|83] the
authors provide a detailed comparison among four of the main variants which are currently used
in the literature: BGV [49,50], NTRU [84] and their corresponding scale-invariant versions [|85]]
which are, respectively, FV [86] and YASHE [87].

The use of a scale-invariant version simply involves additional division and rounding opera-
tions over the polynomial coefficients; these operations can be seamlessly addressed when working
with multivariate polynomials.

The main optimizations which are considered for the comparison in [83] are modulus switch-
ing and key switching [88]]. The first one has been used in RLWE to work with leveled SHE
schemes [49, [50], and it requires a chain of decreasing moduli in such a way that, after each ho-
momorphic multiplication, a switch to a smaller modulus is performed. The effect of this operation
is a notable reduction in the noise increase after each multiplication. Similarly to scale-invariant
schemes, the use of modulus switching requires division and rounding operations over the coeffi-
cients of the polynomials.

Regarding the key switching operation, its use removes the dependency between the number
of polynomial elements in the ciphertexts and the depth of the evaluated circuits. It is also used
when working with automorphisms, where it helps to recover the ciphertexts under the original
secret key.

Both modulus and key switching can be extended to work with multivariate polynomials.
Firstly, division and rounding can be directly applied over the coefficients of multivariate poly-
nomials, and secondly, switching key matrices can be analogously generated with multivariate
polynomials.

Finally, an additional “optimization” which we could incorporate is the use of bootstrapping to
obtain a FHE scheme, hence removing the upper bound on the depth of the evaluated circuits. For
this purpose, conventional procedures could be applied over the SHE scheme, mainly consisting
of homomorphically evaluating the decryption circuit by having access to an encrypted version of
the secret key.

After Gentry’s seminal work [33}[34]], different improvements on the use of bootstrapping have
appeared in the literature, varying from the recryption of binary gates [89, (90, |35} 91} 1511 192]] to
the optimization of the depth of the decryption circuit for RLWE-based SHE schemes [60, 30, [32].
An interesting follow-up work would be to study the behavior of our multivariate scheme with
these different approaches.

2.B. Concrete Security Estimates

In order to give an example of some concrete security estimates for different choices of pa-
rameters with the example cryptosystem, we can make use of the LWE security estimator de-
veloped by Albrecht et al. [80, 81]]. ﬂ To this aim, we can call the function estimate_lwe(n, «,
q, secret_distribution = “normal”, reduction_cost_model = BKZ.sieve) considering the relation

® Available online in https: //bitbucket .org/malb/lwe-estimatorl
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min {o} = aq/v/2m; where the minimum standard deviation of the x distribution for the equiva-
lent LWE samples is considered (see Section [2.7.2).

For the n parameter, analogously to what it is typically done with ideal and general lattices, we
assume that the underlying lattices of the secure multivariate RLWE samples do not necessarily
have substantially faster attacks than those known over a general random lattice with the same
dimension (hence considering n = [ [ n; as the dimensionality of the lattice).






Chapter 3

Applications of Multivariate RLWE on
Lattice-based Cryptography

3.1. Introduction

Current hot problems in (fully) homomorphic encryption involve the optimization of elemen-
tary polynomial operations through fast transforms and, especially, the search for optimal strate-
gies to execute homomorphic slot manipulations and trade off storage and computation needs for
relinearization operations. These are fundamental blocks in homomorphic processing and in the
implementation of the bootstrapping (see [60, 30, 32} 92]]) primitives enabling fully homomorphic
encryption.

To motivate the content of this chapter, we first present a survey on the state of the art on fully
and somewhat homomorphic encryption, transformed-domain processing and the associated opti-
mizations for rounding operations under RNS (Residue Number Systems) representation, SIMD
techniques, and a brief discussion on the improvements that this chapter brings about with respect
to the current state of the art.

Fully/Somewhat Homomorphic Encryption (FHE/SHE): Most of the efficiency improve-
ments that RLWE has introduced are based on the algebraic structure of the used cyclotomic
rings R = Z[z]/®,,(z). With the adequate choice of modulus ¢ for R; = Z,[z]/®,,(2), the
cyclotomic polynomial splits in ¢(m) linear factors, and this enables the use of the CRT (Chi-
nese Remainder Transform) to efficiently and independently add and multiply the corresponding
elements belonging to R, [45]].

Additionally, this property has also been considered for the plaintext ring, as a tool to batch
several integers in one encryption (as many as n = ¢(m) values when the modular function fully
splits in linear factors), which contributes to a reduction in the cipher expansion.

From a practical perspective, some of the most recent libraries dealing with lattice-based cryp-
tography, such as the HEIlib [59 |60, 93], PALISADEE] SEALE] and NFLIib [94]], take advantage
of this fact to optimize the polynomial operations. The first one uses the double-CRT represen-
tation, that is, a first CRT (Chinese Remainder Theorem) splitting the cyclotomic polynomial in

! Available online in https://git.njit.edu/palisade/PALISADE,
2 Available online in http://sealcrypto.orgl
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linear factors, and a second CRT factoring the coefficients of the polynomials depending on the
prime-decomposition of the modulus ¢q. The two latter libraries are specialized for power-of-two
cyclotomic rings Z[z]/1 4 2", so they consider a CRT representation for the coefficients together
with an efficient NTT/INTT representation. For example, in the NFLIib the NTT is calculated
with an efficient variant of a radix-2 FFT algorithm [1]. It is also worth mentioning that the
HEAAN [31]] library has been recently updated to work with this CRT and NTT representation.
Conversely, the PALISADE library implements several cryptosystems and uses both approaches
depending on the modular function of the involved rings.

In the case that all the involved operations are polynomial multiplications and additions, work-
ing in this transformed domain enables polynomial operations with a cost of O(n) elemental op-
erations between coefficients. However, the current state-of-the-art homomorphic schemes, such
as BGV [78150] and FV [86]], apply a rounding operation over the polynomial coefficients which
is not compatible with the double-CRT (or CRT and NTT) representation.

This means that this rounding has to be applied in the coefficient-wise representation, with the
corresponding overhead for swapping between representations.

A rounding over the RNS (Residue Number System) representation: Rounding (quantiza-
tion) is an essential operation for scale-invariant (e.g., FV) and leveled cryptosystems (e.g., BGV).
Therefore, Bajard et al. [95] have studied in detail how to perform a rounding operation without
leaving the CRT representation (also called RNS, Residue Number System).

They implement their method using the NFLIib library for the FV cryptosystem and show that
for practical parameters, staying in the CRT domain outperforms the results of the usual approach
of moving between domains. Additionally, it is also shown how the asymptotic complexity of
decryption is improved by a factor of O(logn) when staying in the CRT domain.

Unfortunately, this asymptotic improvement is not preserved when comparing the multiplica-
tion primitives, as the effect of the NTT/INTT computations is the same for both implementations.

In any case, even when there is no an asymptotic improvement for all the primitives, the use
of the RNS representation proposed by Bajard ef al. [95] enables to fit all the used values into the
size of a machine word, which in practice helps in considerably improving the performance when
comparing with an implementation requiring the use of multi-precision arithmetic.

In a recent work, Halevi et al. [96] propose further optimizations beyond the results of Bajard
et al. [93]], and implement them in the PALISADE library. They achieve a simplification in the
procedure and also avoid the additional noise that their method introduces inside the ciphertexts.
For a detailed comparison between the methods from [96] and [95] we refer the reader to [97],
where CPU and GPU implementation runtimes are provided for both.

Ciphertext packing techniques and automorphisms: As we have already discussed, the spe-
cial structure of the cyclotomic rings not only enables some optimizations on the involved opera-
tions. In fact, we can also batch several plaintext values into the same ciphertext by resorting to
the CRT.

Smart and Vercauteren [98]] showed how to exploit the factoring of the modular function over
the plaintext space to encode a vector of “slots”. Therefore, a basic arithmetic operation over
the encrypted plaintext is equivalent to applying the same operation component-wise over all the
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encoded slots. This property is one of the functionalities implemented in the HEIlib librar which
enables a framework for encrypted SIMD operations.

When working over these “packed slots”, being able to exchange contents among them is also
convenient. This swapping operation among slots can be performed by means of the available
automorphisms on the plaintext ring R, = Z;[z]/®,,(2); these automorphisms can be seen as
applying a change of variable z — 2 for i € Z, over the corresponding polynomial elementsﬂ

The combination of the packed representation together with the use of the automorphisms
has become one of the main blocks for several primitives working over the ring R (specifically,
those which rely on the use of linear maps over encrypted vectors); one of the most representative
examples is its use for the bootstrapping [59, 60].

Whereas the automorphism operations by themselves are very efficient (as they can be applied
as linear operations over the ciphertext polynomials), the resulting ciphertexts are not encrypted
over the original secret key. Hence, a relinearization or switching key operation has to be used to
convert the ciphertext back to an encryption over the original secret key.

Consequently, it is important to reduce both the size of the evaluation keys (composed of the
set of required relinearization matrices) and the runtime associated to the switching key process. A
recent work [99] has introduced improvements on both the size of the evaluation key and also the
corresponding runtimes when working with these automorphisms for linear maps over encrypted
vectors, showcased in HEIib.

However, in general, there exists a tradeoff between the number of required relinearization
matrices and the increase on the computational cost of the operations, that we optimize in this
chapter.

Motivation and contributions of this chapter: A careful examination of the previous results
reveals that if we were able to either (a) efficiently compute the rounding operation without hav-
ing to reverse the NTT/INTT (or, more generally, the CRT over the cyclotomic polynomial in
the double-CRT representation) or (b) speed-up the runtimes involved on its calculation, then the
efficiency of the current somewhat homomorphic encryption schemes could be considerably im-
proved (as almost all the operations in these schemes need to call this basic block). Additionally,
the effect of an efficiency improvement on these multiplications goes beyond somewhat homo-
morphic encryption schemes, enhancing also any cryptographic primitives involving polynomial
multiplications, including the candidates of the NIST Post-Quantum challenge [81]]. Our contri-
butions in this matter are:

= We improve the cost of the underlying polynomial operations for cryptographic primitives
based on RLWE (it could also be applied in the NTRU setting [100, [101]). We show how
the well-known asymptotic cost of O(nlogn) for cyclotomic rings with polynomials of n
coefficients can be improved by a factor of logn in terms of elemental multiplications. To
this aim, we propose to work over a multivariate ring which possesses a convolution prop-
erty relating the coefficient-wise representation with the transformed domain by means of

31t could also be considered in the libraries specialized for power-of-two modular functions by applying the

INTT/NTT functionalities as a pre-/post-processing over the plaintexts before/after encryption/decryption (see Chap-
ter ). However, the HElib library provides more freedom in the definition of the slots.

It might be useful to consider again the ring Z[z]/(1—2"), which is typically used in Signal Processing applications

(see Table 2.1]in Chapter [Z). These automorphisms on the Z-transform would be analogous to a circular shift in the

[frequency domain (Shift theorem of the DFT), which also translates to a linear phase multiplication in the time domain.
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an a-generalized variant of the Walsh-Hadamard transform (over finite rings instead of the
usual real numbers). This transform can be very efficiently computed with FFT algorithms
(specifically, with a variant of the Fast Walsh-Hadamard transform) whose computational
cost is only O(nlogn) additions, hence being much more amenable for a practical imple-
mentation.

= We enable a considerable improvement on the homomorphic packing/unpacking with a sin-
gle switching key operation (removing the dependency between the number of slots and
the number of automorphisms/switching key operations), and we show that the available set
of automorphisms in these multivariate rings presents a particular structure which enables
to deal with different tradeoffs between the size of the involved evaluation keys and the
efficiency of the switching key process. In general, we can show that with an increase of
O(logn) in the chain of the switching key process (it must be noted that in this multivari-
ate rings the operations can be reduced by a factor of O(logn) multiplicative operations,
hence having a constant increase in terms of multiplicative cost), the number of required
relinearization matrices is log, n. We also discuss several tradeoffs between this size and
computational cost; for example, when working with more general multivariate rings, we
can have an increase by a factor of O(/n) in the size of the evaluation key and 2 times the
cost of a basic switching key process; in general, with a size of O(nl/ *) we would have
an increase in the cost by a factor of k. Taking a look to the improvements recently intro-
duced in [99], our results can enhance their tradeoffs for those scenarios where the same
“effective” slot encoding is used.

Additionally, it is also worth mentioning that in [31] the authors discuss how to pack complex
numbers by means of the complex embedding. They extend this result to bivariate rings in [56],
however their packing cannot work with as many complex slots as the usual univariate counterpart
(they have a reduction by a factor of two per each new dimension). In this work we have also
exemplified how to correctly embed complex slots into these multivariate rings so as to have as
many complex slots as their univariate counterpart (see Chapter 2)).

Structure: The rest of the chapter is organized as follows: Section particularizes the prob-
lem to rings enabling an c-generalized Walsh-Hadamard Transform, and compares its perfor-
mance with fast NTT algorithms currently used in state-of-the-art RLWE cryptosystems. Sec-
tion introduces the strategies for homomorphic packing/unpacking and the space/time trade-
offs improving on current RLWE relinearization and bootstrapping operations. Finally, Section[3.4]
draws some conclusions and Appendix reviews the Full and Baby-step/giant-step strategies
from [99, 93]].

3.2. Multiquadratic Rings with Fast Walsh Hadamard Transforms

This section focuses on improving the cost of the underlying polynomial operations for cryp-
tographic primitives based on RLWE, especially polynomial products (convolutions). We show
how the well-known asymptotic cost of O(nlogn) for cyclotomic rings with polynomials of
n coefficients can be improved by a factor of logn in terms of elemental multiplications when
working on m-RLWE (or RLWE over a multivariate number field). To this aim, we particularize
the multivariate version to degree-2 polynomials and introduce an (c«-generalized) variant of the
Walsh-Hadamard transform (over finite rings instead of the usual real numbers), featuring a convo-
Iution property that relates the coefficient-wise representation with the transformed domain. This
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transform can be very efficiently computed with FFT algorithms (specifically, with a variant of the
Fast Walsh-Hadamard transform) whose computational cost is only O(n logn) additions, hence
being much more amenable for a practical implementation. It is worth noting that the effect of the
efficiency improvement brought about by our approach goes beyond somewhat homomorphic en-
cryption schemes (including also the NTRU setting [100L[101]), also enhancing any cryptographic
primitives involving polynomial multiplications, e.g., the candidates of the NIST Post-Quantum
challenge [81].

For this section, we deal with a specific version of m-RLWE (multiquadratic RLWE) where
all the used modular functions have the same form f;(z;) = d; + :n? (see Definition |§[)

The security reduction from Theorem [I] applies to this particular version of the m-RLWE
problem. To this aim, parameters d; have to be chosen as indicated in the beginning of Section[2.5]
Additionally, Proposition [0] gives a sufficient condition to make the problem secure against the
attacks described in Section

After defining the specific version of the problem, we introduce the (c-generalized) Hadamard
transform, that we apply to reach the aforementioned performance gains on polynomial convolu-
tions.

3.2.1. Faster polynomial arithmetic over multivariate rings

The Hadamard transform over real numbers is usually applied by means of the recursion

1 (H;_y H;_,
Hi= NG < H, , -H;, ) ’ S

where 1 € Nand Hy = 1.

It can be seen that matrix H; with ¢ > 1 is equivalent to the Kronecker product of ¢ DFT
(Discrete Fourier Transform) matrices of size 2 (H; equals the DFT matrix of size 2); that is, it
canbe seenas a2 x 2 x --- x 2-DFT transform (defined over ¢ dimensions of length 2 each).

% times

Analogously to the DFT, the Walsh Hadamard Transform (WHT) of size n possesses a par-
ticular fast algorithm called FWHT (Fast Walsh Hadamard Transform) which can be very ef-
ficiently computed with no products and with a cost of O(nlogn) additions and subtractions
(see [102, 103]). Hence, when working over rings satisfying a convolution property with the
Hadamard transform, it is possible to efficiently compute the multiplication of elements from
these rings with a cost of O(n) elemental multiplications.

Security reasons prevent us from directly working over rings satisfying this convolution prop-
erty with the Walsh Hadamard transform (that is, multivariate rings whose modular functions are
f(z;) = 22 — 1), as they can be easily factored into (x; — 1)(x; + 1) over Z. Therefore, we resort
to the type of multivariate rings presented in Definition 9] and apply an (a-generalized) variant of
the WHT.

a-generalized convolutions: An a-generalized convolutiorﬂ corresponds to the ring operation
defined over polynomials belonging to Z,[z]/1 — az". Figure shows the realization of an a-

SFor example, with &« = —1 we have a negacyclic convolution. In the literature, this convolution operation is also
called negative wrapped convolution.
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generalized convolution between vectors of length N (with ! = 0, ..., N —1), by means of a cyclic
convolution combined with an element-wise pre/post-processing applied before/after [54, 29].

a-generalized Convolution

T ] e s

v a ' ' a N i Cyclic Convolution : Post-processing .

e | N
' Pre-processing _'_> | - =2 | : ' C !

T ey : M\ T

Cp o N : | :

Figure 3.1: Block diagram for the implementation of an «-generalized convolution by means of a cyclic
convolution.

As the cyclic convolution can be efficiently computed by means of standard fast algorithms,
this means that an a-generalized convolution can be implemented with only a light overhead (O(n)
scalar products). E]

a-generalized Walsh-Hadamard transform: We are mainly interested in modular functions
with the form 22 + d;. We can rewrite 1 — az™ as —a((—a) ™! + 2™). Hence for 27 + d; we have
di = (—og) ' = —a; !, For this particular type of polynomial rings we can define the following
direct and inverse transforms:

1 0 1 0
W,=H d wl=271 H
1 1<0 (a1)_1/2)’ e (o <a1>1/2> "

1 -1
where the square-roots («;)? and (a;) 2 have to exist in R, for all ¢ (see Definition |§I) Equiva-
(%) to check when the

—d; mod
(et

lently, if ¢ is an odd prime, we can make use of the Legendre symbol

multivariate ring factors into linear terms. To this aim we need that

1 1
1 -1

= 1 for a prime

q and for all <. We also redefine H; = ( > without taking into account the normalizing
1

factor 5.

Therefore, now we can extend this definition to multivariate rings with modular functions of
the form x? + d;: we consider the Kronecker product of the matrices Wy and W, * as W; =
X jielil Wi and W[l = ielil Wfl, arriving at the following expression:

10 o 10
Wi = Hi ®(o <aj>—1/2>  and Wi =2 ®<o <aj>”2> i

Jeli Jj€ld]
where the normalizing factors are again left outside H;.

Consequently, if we define the vector a = (avy, . . ., al)T, when working over the multivariate
ring Ry[z1, ...,z with f;(z;) = d;j + x? for j = 1,...,1 we can use the transforms W; and

81t is common to include these additional scalar products inside the butterflies of the FFT algorithms to further
enhance the efficiency.
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VVf1 analogously to the use of negacyclic NTTs in the univariate RLWE. Both W; and VVfl
transforms can be efficiently computed in O(n) (where n = 2') elemental multiplications thanks
to the FWHT. This enables the computation of the H; matrix multiplications with only O(n logn)
additions and subtractions and no products, which brings a net improvement with respect to the
analogous and widespread radix implementation of the NTT.

Implementation of the Fast Walsh-Hadamard Transform (FWHT): Algorithm [I] shows a
pseudocode implementation of the (cyclic) FWHT (Fast Walsh-Hadamard Transform) implemen-
tation (see [[102,/103]]), computing the Hadamard transform of a length-n vector a. It can be easily

seen that this algorithm requires a total of n log, n additions (specifically, "IOQg? " additions and

"IOQg? " subtractions), instead of the n? additions/subtractions required when directly applying the

matrix multiplication.

Algorithm 1 Fast Walsh-Hadamard Transform (H;a with ¢ > 1).

1: procedure FASTWALSH-HADAMARDTRANSFORM(a)
2: Input:

3: a such that length(a) = n = 2" and i > 1

4: Algorithm for FWHT (a) (computing H;a):

5 depth = 1;

6: for j = O until logyn — 1 do
7

8

9

scale = 2 x depth;
for k = 0 until Lw do

scale

for [ = scale * k until scale * k 4+ depth — 1 do
10: ac = all];
11: a[l] = a[l] + a[l + depth];
12: a[l + depth| = ac — a[l + depth];
13: depth = 2 * depth;
14: Output:
15: a <+ H;a

Finally, the c-generalized version of the direct (inverse) FWHT can be defined by adding a
right (left) product by a diagonal matrix, so that the total cost for the negacyclic FWHT on a
length-n vector is n elemental multiplications and n log, n additions.

Implementation and evaluation: Polynomial multiplications are the main bottleneck of lat-
tice cryptography, as they are the most time-consuming basic blocks of any cryptographic algo-
rithm, from encryption/decryption to relinearization and bootstrapping. The replacement of the
traditional NTTs by FWHT by transitioning from cryptographic constructions built on univari-
ate RLWE to the proposed multivariate version can bring a considerable improvement in terms
of computational efficiency. To showcase the achieved gains, we have implemented Algorithm I
in C++ and compared it with one of the currently most efficient radix-2 implementations of the
NTT [1f]; this is the algorithm featured in the NFLIlib, one of the fastest lattice-based crypto-
graphic libraries available for homomorphic encryption. NFL also off-loads the complexity of the
bit-reversal operation to the INTT, in order to speed up the NTT, and makes use of SSE and AVX?2
optimizations to further enhance the obtained performance. Figure shows the comparison of
the obtained run times for a wide range of practical values of n (vector size or polynomial degree),
when using our FWHT implementations, including an SSE/AVX?2 vectorized version. It can be
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seen that we obtain a reduction to about 45-50% of the time of the NTT (38-43% of the INTT) in
the non-vectorized implementation of the FWHT with respect to the fast NTT of NFLIlib, while
the vectorized one further reduces this figure to 22-24% (19-22% of the INTT). Finally, it is worth
noting that the memory consumption of the FWHT is much lower, as it does not need to store the
tables of the twiddle factors.

4
10 T T T —
—T—NTT =
—I— INTT - 1
FWHT = T
3 —-I—' FWHT (AVX2) = = 4
10 — .- |
—
/I/ bl
— /,/
0 = sl
3 = 7
o 10 _— ~E E
E ~ -
[ P /,/3:/
= ,I/’
= /’/
101 /’Z 3
1= _ ]
E ,/I ]
-
100? | | | | | | | |
10 11 12 13 14 15 16 17 18 19
log ,(n)

Figure 3.2: Runtimes of the proposed FWHT compared to the NTT/INTT from [[L].

3.3. Slot manipulation in multivariate rings

In this section we introduce the main improvements that m-RLWE brings to slot manipulation
when packing several plaintext inputs into a ciphertext, with applications in relinearization and
bootstrapping operations. Packing into slots [98]] helps to take advantage of the available space
in the plaintext ring, therefore improving cipher expansion. The use of this packing strategy
also enables working with homomorphic “slot”-wise additions and multiplications, i.e., SIMD
(Single Instruction, Multiple Data) operations with encrypted data. This is usually combined
with a mechanism to efficiently move and exchange the plaintext contents across slots, by taking
advantage of the properties of the available automorphisms in the used ring. In general, in the
ring Ry = Z[z]/®m(z), we can define a set of automorphisms ¢(m) as different transformations
pi : Ry — Ry with i € Z*,, which apply a change of variable z — 2’ over the elements in R;.

Current lattice-based homomorphic cryptosystems leverage automorphisms to perform linear
transformations across plaintext slots. Whereas applying an automorphism is a very efficient oper-
ation, it produces a ciphertext encrypted under a different secret key, and consequently, a switching
key operation is needed to recover a ciphertext under the original secret key. This switching key
process has two main drawbacks [99]: (a) a notable computational overhead and (b) an increase
in the memory requirements due to the need of adding additional public information (“switching
key/relinearization” matrices, a.k.a. evaluation keys).
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In general, there is a tradeoff between these two dimensions: when the number of evaluation
keys increases, the involved switching key runtime decreases, and conversely, when the number of
keys is reduced, a chain of several switching key operations is needed, hence increasing the run-
time. In a recent work [99]], Halevi and Shoup explore several strategies to optimize this tradeoff,
claiming improvements of even 75 times faster runtimes than those of their previous implementa-
tion, together with a reduction of up to a half in the required memory space to store the evaluation
keys.

This section focuses on two different aspects: (1) We show how the introduced multivariate
rings over the RLWE problem (see Sections [2.5] and [2.6|from Chapter [2)) enable considerable im-
provements in the efficiency of the homomorphic packing/unpacking into slots, therefore greatly
improving essential blocks for homomorphic encryption, such as bootstrapping, and (2) we an-
alyze the structure of the available set of automorphisms on these rings, also showing that our
solution can improve both the runtime and the memory requirements with respect to the state of
the art in [99]).

Remark: Itis worth noting that, for simplicity in the exposition, all the exemplified solutions are
sketched out with negacyclic rings. We plan to extend in the future these results to the more general
multivariate rings showcased in Chapter [2] To this aim, we have to resort to the generalized pre-
/post-processing presented in [29]], together with the decomposition of the NTT/INTT transforms
into a chain of automorphisms and convolution operationsE]

3.3.1. Efficient Slot Packing/Unpacking

The homomorphic packing/unpacking of plaintext values into slots is one of the most impor-
tant examples of the evaluation of linear transformations on the ciphertexts, bootstrapping being
one of the most representative applications [60, 30, [32]]. The way current cryptosystems imple-
ment this packing/unpacking is by means of a decomposition of the matrix multiplication into
element-wise products between the different diagonals of the matrix and different rotated versions
of the ciphertext (hence by adding the result of a set of multiplications between plaintexts and
rotated ciphertexts).

The main bottleneck of this process is the number of switching key matrices required to rotate
the ciphertexts. Working with n slots, a total of n—1 rotations, hence n— 1 switching key matrices,
is required in the worst case. Available strategies to reduce this number of matrices come at the
cost of also increasing the runtimes per automorphism/switching key operation.

Thanks to the introduced n-RLWE, we break the need of a number of rotations (automor-
phisms/switching key operations) equal to the number of slots, and we enable homomorphically
packing/unpacking operations with a single switching key operation. This is mainly due to the
structure that the multivariate rings from Definition [9] present, which enables a much more effi-
cient algorithm to compute the slot packing/unpacking, as we show next (again, we exemplify all
the results with the negayclic variant from Definition [I0).

Consider a plaintext ring R;[x1, ..., z;], then the required matrices for packing and unpacking

"For example, when discussing automorphisms with multiquadratics, the changes of variables {z; — —z;} used
with functions =2 + 1 are still valid.
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are respectively:

e (@4 ) v (@3 )

JeEl]

B B-1

where 8 = (—1)1/ % is the 4-th root of unity over the plaintext modulo ¢. Instead of directly
applying these linear transformations (following the conventional approach), we resort to the NTT
pre-/post-processing presented in [29], where the authors show how a DFT/NTT transform can
be expressed in terms of element-wise products (NTT and a one-stage pre-/post-processing) and
a negacyclic convolution. We show this process step by step, by computing first H; and then B
(resp. B~ .

H; evaluation: Adapting the results from [29] to the structure of our particular rings, it can be
seen that the H; matrix can be homomorphically evaluated by means of an automorphism and
a negacyclic convolution with an all ones vector. That is, if we have encrypted a polynomial
a € R[z1,..., 2], letus define a polynomial 1(z1, ..., 2;) = [];c(1+;), such that the result
of the multiplication

1(1‘1, e ,xi)a(—xl, ey —xi) S Rt[:cl, . ,xi]

is a polynomial whose coefficients correspond to the cyclic Hadamard transform.

B! and B evaluation: The mentioned pre-/post-processing corresponds to the main diagonal
of the matrices B~! and B, which comprise only four different values: {1, —1,371, —371} for
B~!and {1,-1,3, -3} for B. This element-wise multiplication can be performed homomor-
phically over the encrypted polynomial coefficients through a change of variable in the cipher-
text’s polynomials: (1) {mj — B_lxj }je[i} to calculate the B~! matrix multiplication, and (2)
{w; — Bz;}jep for the B matrix multiplicationﬂ

Finally, we only need a relinearization/key switching operation to recover the original secret
key after the two changes of variables {x; — —x;},cp;) and {z; — Bx;} e[, for packing (respec-
tively {; — 87} e and {z; — —x;};¢;) for unpacking).

3.3.2. Automorphisms and their Hypercube Structure

We show now how m-RLWE improves on the tradeoffs between space and computational cost
when dealing with automorphisms, with respect to the univariate version.

Let A[z] /1422 be a polynomial ring as the one described by Deﬁnition and « be an element
a € Alz]/1 + 2% then, we denote by 6'”)(a) € A[2]/1 + 22 the transformation over @ which
applies the change of variable z — 2% with i € Zj. For these particular rings, both transformations
are, respectively, the identity z — z and the negation z — —z. Reducing modulo ¢ (the modulo
of the plaintext ring), the effect of the latter transformation over the slots would be equivalent to a
block shift where each block is composed by one half of the total slots. This shift is graphically

$Making use of the decomposition of the formulation of the Bluestein FFT algorithm from [29]], we can imple-
ment this change of variable by means of a homomorphic negacyclic convolution with NTT/INTT(diag(B)) and
NTT/INTT(diag(B~1)).
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illustrated in Figure where 1) is the 4-th root of unity modulo ¢ (i.e., ¥* = 1 mod t), and the
two blocks of slots encoded respectively in o (1)) and «(¢)3) get shifted by applying z — —zﬂ

a(z) a(—z)

o) (@) A T al) a(@)

LTy

F P ——— [ ———
T " T . S

L L L L L L L L LT LT LT LTI

Figure 3.3: Representation of the rotation between two blocks of slots encoded in a.

Going back to the notation R;[x1,...,z;] with fj(z;) = 1 + wJQ for our ring, we can then
apply combinations of these two transformations with the different variables x; for j € [I]. Anal-
ogously to [99]], this gives a multidimensional structure on the automorphisms group considering
the composition of transformations

Hil,m,il (a) = 9($1)(9(m2)( .. az(l&?l)(a) .. )) S Rt[l‘l, ey :El],

71 19
where o € Ry[x1,...,71],t =1 mod 4andiy,...,i € Zj.

This multidimensional structure of the automorphisms group can be seen as an [-tuple with 2
different values per component (which gives a total of 2! different automorphisms). Hence, sim-
ilarly to the shift property of a multidimensional DFT [104], this group satisfies both the abelian
and sharply transitive properties required to perform any type of permutation [[105]].

Logarithmic increase in space and computational cost (Strategy 1): The effect of each of the
automorphisms over the slots can be visually represented as a hypercube with as many dimensions
as independent variables the rings have, that is, with a total of log, n dimensions. As a graphical
example, Figure [3.4]shows the slot structure corresponding to a multivariate ring with 7 indepen-
dent variables; in this case, each different vertex of the hypercube represents one of the n = 128
available slots, where the allowed transitions between vertices depend on the chosen strategy, as
we describe next.

In case of storing n switching key matrices (corresponding to all the automorphisms), any
vertex transition will be allowed through one single switching key operation. However, it is pos-
sible to store less switching key matrices (which, combined, represent the whole set of automor-
phisms), hence increasing the number of subsequent automorphisms/switching key operations for
transitioning from one vertex to another.

Due to the specific structure of our multivariate rings, we propose an optimal strategy with
log, n switching key matrices, each one corresponding to a different transformation x; —
—x;; with the additional advantage that these transformations are their own inverses. Follow-
ing this strategy, we can also see the different slots (vertices in Figure [3.4) as a binary vec-
tor of length log, n, where the available operations are bit-wise XOR operations with vectors

With rings A[z]/d + 2* we have similar automorphisms {z — 2z} and {z — —z}.
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Figure 3.4: Representation of the hypercube structure of the group of automorphisms available in the
multivariate polynomial RLWE with ®4(-) as modular function and considering 7 independent variables

{xl,...,x7}.

{(1,0,...,0),(0,1,0,...,0),..., (0,...,0,1)} belonging to the standard basis of dimension
log, n. In the example of Figure (with log,n = 7), this method would be equivalent to
working with 7 independent vectors (of the standard basis) enabling only movements between
vertices in the dimension associated to the vector.

It can be seen that with this strategy the farthest slot to a given one is always the slot repre-
sented as its ones’ complement, i.e., the opposite vertex. This implies a total of logy n automor-
phisms/switching key operations. Hence, in the worst case we have an increase in the computa-
tional cost by a factor of logy n when storing logy n switching key matrices and working with n
slots. This is a considerable reduction in the memory requirements when compared to the approx-
imately O(D) and O(v/D) factors considered by Halevi and Shoup [99] when working with D
slots (in one dimension).

As a quick comparison, for the practical values reported in [99], i.e., n = ¢(m) = 16384,
our strategy achieves an increase factor of 14 on the computational cost, which is not considerably
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higher than their results, but with huge savings in storage for our case: we store only 14 matrices,
compared to the 51 matrices and 3 automorphisms/switching key operations achieved by [99] for a
similar value of ¢(m) = 15004 and one dimension with D = 682 following a baby-step/giant-step

strategy (see Appendix [3.A).

Finally, it must be noted that when applying a switching key, noise constraints force the need
of decomposing the coefficients of the involved polynomials in some specific basem As this
decomposition does not straightforwardly commute with the NTT/INTT (or CRT over the poly-
nomial modular function) representation, the inverse and direct transforms have to be applied over
the polynomials. Our setting in multivariate rings with FWHT enables a reduction on complex-
ity for these transforms by a factor of O(logn) in terms of elemental products; i.e., this yields a
net gain factor of log n in storage while keeping the same order of (multiplicative) computational
complexity.

Efficiency/space tradeoffs: In practical scenarios, the tradeoff between used memory and com-
putational cost might require a different balance with less space efficiency than the log, n achieved
by the described strategy. Consequently, we also cover two additional strategies which lead to an
improvement of the computational cost by a factor of 2.

Strategy 2: Our first approach adds to the previous log, n matrices those which are associated
to “diagonal” vectors in our hypercube representation of the autormorphisms (see Figure[3.4); that
is, we work with automorphisms {x; — xi’, xj — x } wherel;, l; € Zj and i, j € [logy n], being
i # j. Going back again to the binary representation of the slots, the additional automorphisms
could be seen as the result of all pairwise XOR operations of different vectors of the standard basis

of length logy n.

The number of needed switching key matrices is therefore increased to

<1 + log, n> ~ (1+41logyn)logyn
2 B 2 ‘

In order to calculate the associated computational cost for this strategy, we resort to induction,
working first with the odd natural numbers, and afterwards with the even natural numbers. Let the
multivariate ring Ry[x1, ..., 2] with f;(z;) = 1+ 2? where i = 1,...,l and | = log, n, if we
consider only the odd values of [ we have:

» For [ = 1, any transition can be applied with only one automorphism/relinearization opera-
tion.

= Assuming that | variables require k£ automorphisms/relinearization operations, it can be
shown that adding two variables (i.e., [ + 2), £ 4+ 1 automorphisms/relinearization oper-
ations are needed. We can graphically see this by resorting to the binary representation:
moving between any two slots implies, in the worst case (consider one vector and its ones’
complement), one additional XOR operation.

= Therefore, by induction, odd values of [ require [%1 automorphisms/relinearization opera-
tions.

!0This is true unless we resort to the strategy of Bajard ez al. [93]] which takes advantage of the CRT decomposition
over the polynomial coefficients. However, this strategy cannot be applied always, as it requires a highly composite
modulo with primes of an adequate machine size (see [94]).
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The argument is analogous for even [. First, we consider [ = 2, where with only one auto-
morphism/relinearization operation is enough to move between any of the slots. Next, the same
reasoning as before could be applied between [ and [ + 2 variables, resulting in a total of % auto-
morphisms/relinearization operations for [ variables.

Taking into account both results, this strategy yields an increase in the number of automor-
phisms/switching key operations by a factor of [logT?”] Hence, we can reduce by a half the
computational cost compared to our previous strategy, with a quadratic increase in the memory
requirements of mb&% instead of logy n. For instance, with n = 16384 this would give

an increase in cost by a factor of 7 and a total of 105 stored matrices.

Strategy 3: The incurred increase in space requirements by Strategy 2 might not be accept-
able for certain applications; therefore, our next approach preserves the cost improvement, but
achieving a negligible increase in the number of required matrices: 1 + log, n matrices instead of

O((logn)*).

The idea behind this approach is adding to the switching key matrices for transformations of
the form {x; — —z;} fori =1,...,logy n the following one

{xl — —T1,... 71'10g2n — _$10g2n}-

As a graphical explanation, let us consider again the binary representation of the slots: in
addition to working with those XOR operations with vectors belonging to the standard basis of
length log, n, now we can also apply the ones’ complement of every “slot” in one operation (e.g.,
in Figure [3.4] we could directly move with one automorphism/switching key operation from point
A to point B).

Therefore, the worst case automorphism requiring [ = (bgT?"] matrices with our first strategy
can now be computed with just one matrix. Moreover, as we know that [ — (é] < (é] for any

I € N, then the farthest slot position can be achieved by only [%} = [logTQ"} automorphisms.

Consequently, we can see that with 1 + log, » matrices, we only need a maximum of [logTQ"]
automorphism/switching key operations. For instance, with n = 16384 this would give an increase
in cost by a factor of 7 and a total of 15 matrices in terms of use of memory.

3.3.3. Automorphisms in Multivariate Power-of-Two Cyclotomic Rings

It can be useful to expand Definition [J] to also cover more general multivariate rings, which
can be leveraged by some applications (see Section [2.7.3]). Most of these applications consider
a general multivariate ring as I? and I;, where each of the modular functions can be defined as
different power-of-two cyclotomic polynomials f;(x;) = x;" + 1

In this section the discussed efficiency/space tradeoffs achievable with automorphisms on the
FWHT-enabled rings will be expanded to these rings (at the cost of lacking the faster FFT algo-
rithms for the negacyclic Hadamard transform).

" Analogously to the procedure we followed with multiquadratics, we exemplify these results with power-of-two
cyclotomics. These results can be similarly extended to more general rings with the form ;¢ + d; (see Definition .
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Table 3.1: Practical space/efficiency tradeoffs of automorphisms for n = 16384.

l 2 31415167

# Matrices 256 | 80 | 52 | 36 | 34 | 28
# Calls to switching key (worst-case) | 2 314|567

Tradeoffs in the size/efficiency of automorphisms

We consider the ring R introduced in Definition |1} particularly, we work with R;[z1, ..., =]
where ¢ = 1 mod 2n; for ¢ = 1,...,l. Analogously to our derivation in Section [3.3.2] when
working with an element « € Ry[z1, ..., z;], we have the transformations

61‘17._.7” (a) = 6(:51)(9(962)( .. Hz(lﬂ?l)(a) .. )) (S Rt[IL’l, e, .CC[},

i1 12
now with i; € Z3, forall j.

This multidimensional structure can be seen again as an [-tuple, where each component has n;

different values, hence giving a total of n = Hi:l n; different automorphisms.

Strategy 4: Our main strategy works with n; — 1 matrices for each variable x;, where each
switching key matrix will correspond to an automorphism {x; — xi’} forl; € Z3,, (except {x; —
x;})and i = 1,... 1. This strategy yields a total of Zi’:l n; — | matrices with a computational
cost of [ automorphism/switching key operations. Let us assume that all the matrices for every
“univariate” change of variable have to be stored. However, the number of required matrices per
“univariate” change of variable could be further improved [[99] (that is, we could work with subsets
A; € Z5,,, in such a way that the corresponding automorphisms would be {z; — xil} forl; € A;

andi=1,...,0).[q

To ease the analysis, we consider those n; = ni fori = 1,...,1 (hence being all n; equal)
This gives us several tradeoffs depending on [ and n where we have l(n% — 1) matrices and an
increase in the computational cost by a factor of [. Table[3.1|shows the number of required matrices
and the increase in computational cost for n = 16384 and several values of [. As nt is not always
a valid value (that is, a power of two), the choice of n; can be optimized to achieve the smallest
possible number of automorphisms (3 n;) such that n = [ n;.

Conversely, Table [3.2] summarizes the different tradeoffs we have presented in this section.
It is worth noting that we have focused on power-of-two cyclotomic modular functions, but this
strategy could also be considered with any other cyclotomic modular functions and those used in
Definition [L1| for secure multivariate RLWE instantiations.

3.4. Conclusions

This chapter provides a set of possible applications with the secure multivariate RLWE in-
stantiations discussed in Chapter [2] The applications of these secure instantiations are numerous,

12For a brief summary of Halevi and Shoup full and baby-step/giant-step strategies, see Appendix

Bt important to remark that the condition n; = nT for all i includes non-secure multivariate RLWE instantiations
(see Chapter[2). However, as in practice they could be chosen of relatively similar size, we assume this equality to make
the analysis easier.



60 3.A. Full and Baby-step/giant-step

Table 3.2: Space/efficiency tradeoffs of automorphisms.

Strategy # Matrices # Calls to switching

key (worst-case)

Strategy 1 from Section [3.3.2 logy n logy n
Strategy 2 from Section [3.3.2 w (logTan
Strategy 3 from Section (3.3.2 1+ logyn (bgTQ"}
Strategy 4 from Section |3.3.3 ~ntl—| l
Strategy 4 (general) from Section [3.3.3 22:1 n; — 1 l

achieving improved space-time tradeoffs in the most critical lattice operations, and therefore en-
abling more efficient homomorphic processing and closing the gap to the realization of practical
fully homomorphic encryption. In particular:

= We introduced the a-generalized Walsh-Hadamard Transform as the basic block that can
replace Number Theoretic Transforms in multivariate rings, achieving an improvement on
the computational complexity of degree-n polynomial products by a factor log(n) in terms
of elemental multiplications, with additional savings in memory usage (see Section[3.2).

= We enabled net improvements in cryptographic primitives built on top of m-RLWE, such as
efficient time and space computation of automorphisms, relinearizations, packing, unpack-
ing and homomorphic slot manipulation, and, consequently, bootstrapping, improving on
current achievable trade-offs in RLWE (see Section [3.3).

It is worth highlighting that some of the exemplified solutions are sketched out with nega-
cyclic rings (mainly those from Section [3.3)). We plan to extend these results to the more general
multivariate rings showcased in previous chapter. In any case, we have briefly explained how this
extension can be realized.

3.A. Full and Baby-step/giant-step

In a recent paper [99,93]], Halevi and Shoup introduce several improvements on the operations
with automorphisms and their associated switching key matrices, implemented in HEIlib. To this
aim, they take advantage of the underlying algebraic structure that can be found on the group of
automorphisms in RLWE. Specifically, they exploit the fact that these automorphisms can have a
multidimensional structure [105] which depends on the group Z, /(t).

The HElib library considers a “basis” gi,...,94 € Z, where each element has “order”
D1, ..., Dy, respectively (each D; is a positive natural number). This basis induces the following
representation for the elements belonging to Z, /(t):

{97 ... g5 0<e <Dji=1,...,d}.

Due to the existing bijection between the slots and vectors (eq, .. ., eq) now we can indepen-
dently apply rotation in each different “hypercolum” ¢ (where ¢ = 1,...,d) by means of one

14 A rotation by h in the dimension i is defined as a map from the slot associated with (e1,...,€i,...,eq) tothe slot
(e1,...,ei +hmod D;,..., eq).
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(if the ¢-th hypercolumn is a good dimension) or two (if the ¢-hypercolumn is a bad dimension)
automorphisms

Without exploiting this multidimensional structure, we would have to work with a total of
¢(m) different matrices to represent all the available automorphisms in the ring R; in a practical
scenario, ¢(m) can easily be above one or two thousand. However, by taking advantage of the
different dimensions, we could represent the different automorphisms with as many as Z?Zl D;
matrices, and roughly increase the number of required switching key operations by a factor of d.

In [99], the authors describe two main strategies for working in each of these dimensions:

» Full strategy: D; matrices are needed for a dimension ¢ and produce a cost of one or two au-
tomorphisms/switching key operations depending on whether ¢ is a good or bad dimension.

= Baby-step/giant-step: g + [D;/g] — 1 (roughly O(1/D;)) matrices are needed for a dimen-
sion i where g = [+/D;]; this yields a cost of two or three automorphisms/switching key
operations depending on whether ¢ is a good or bad dimension.

The HEIlib library [99] works by default with the full strategy for those dimensions of length at
most 50 and with the baby-step/giant-step for higher lengths.

As an example, in [99] the authors report runtimes for the parameters m = 15709 where
¢(m) = 15004, r = 22 and only one dimension with D = 682, hence working with 682 slots.
With a full strategy and considering a good dimension we would have a total of 681 matrices; and
51 matrices with a baby-step/giant-step strategy (682 and 52 matrices considering a bad dimen-
sion).

We say that the i-th hypercolumn is a good dimension if the order of g; in Z, is D;; otherwise it is considered a
bad dimension.
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Chapter 4

Number Theoretic Transforms

This chapter is adapted with permission from IEEE: Alberto Pedrouzo-Ulloa, Juan Ramon
Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. Number Theoretic Transforms for Secure
Signal Processing. IEEE Transactions on Information Forensics and Security, vol. 12, no. 5,
pp. 1125-1140, May 2017.

4.1. Introduction

This chapter addresses the problem of unattended secure signal processing by providing a
whole set of strategies and approaches to efficiently deal with composable unattended encrypted
processing of sensitive signals, by relying on novel uses of Number Theoretic Transforms (NTTs)
and appropriate pre- and post-processing techniques which enable efficient outsourced encrypted
processing. Our proposal achieves a two-fold objective: replacing typical real or complex trans-
forms for speeding up the underlying polynomial operations, and enabling an encrypted imple-
mentation of transformed processing in a flexible and efficient way. To the best of our knowledge,
this was the first work that takes advantage of the polynomial structure of signals to represent them
in a cryptosystem finite ring, where lattice cryptography can be very efficient, such that somewhat
homomorphic cryptosystems can be leveraged to implement low-complexity and low-expansion
ciphers and encrypted operations.

Main Contributions: Before delving into the description of our proposed techniques, we briefly
enumerate our contributions here in order to clarify the targets and scope of this chapter:

= We propose the use of NTTs with Proth prime numbers as an efficient way for performing
ciphertext multiplications.

= We present an efficient pre- and post-processing stage applied to the signals that allows us to
perform: (a) very efficient generalized convolutions with only one ciphertext multiplication,
including cyclic convolutions, (b) homomorphic NTTs with only one ciphertext multiplica-
tion, extensible to other typical fast transforms (like the Discrete Fourier Transform, DFT),
and (c) any type of generalized linear convolution together with an NTT or INTT (respec-
tively DFT or IDFT).

= We leverage the use of the relinearization primitive as a means to perform the pre- and post-
processing homomorphically. Hence, we reduce the intervention of the secret key owner

65
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in the middle of the process, allowing for a set of unattended encrypted signal processing
applications. We also present several optimizations to further reduce key-owner interven-
tion: (a) embed both the pre- and post-processing inside the homomorphic calculation, (b)
enable component-wise multiplications together with encrypted linear convolutions with-
out an intermediate decryption, (c) improve the efficiency and cipher expansion through
batching/unbatching procedures.

= We introduce and discuss a set of exemplifying encrypted signal processing applications
which can be performed thanks to our novel mechanisms, comprising, among others: ele-
mentary signal processing operations (shifts, changes in sampling rate, reflections, modu-
lations), matrix multiplications, Cyclic Redundancy Check (CRC) codes, linear transforms
and interleaving operations.

Structure: The rest of this chapter is structured as follows: Section [{.2] briefly reviews some
preliminary notions and basic cryptographic concepts needed to develop the proposed approaches.
Sectiond.3]introduces the use of NTTs together with an optimal choice of parameters for enabling
secure signal processing applications; Section .4 presents an approach to generalize convolutions
and filtering in the encrypted domain; Section[4.5|proposes a series of optimizations to increase the
efficiency of typical outsourced operations, and Section exemplifies the use of the proposed
techniques and primitives to produce a wide range of essential composable building blocks for
unattended secure signal processing.

4.2. Preliminaries

The majority of the traditional SSP approaches make use of additive cryptosystems like Pail-
lier [14], which enables the calculation of additions between encrypted values by multiplying
their encryptions; however, additive homomorphisms lack flexibility for tackling more complex
and non-linear operations. Hence, the use of lattice cryptosystems which present a ring homo-
morphism (addition and multiplication) is being progressively adopted by researchers in the field
[25, 24, (106, 146]; an example is Lauter’s cryptosystem [79], a Somewhat Homomorphic Encryp-
tion (SHE) based on the Ring Learning with Errors (RLWE) problem that can evaluate a bounded
number of consecutive encrypted operations. Other recent representative RLWE-based examples
are FV [86] and YASHE [87], cryptosystems that outperform Lauter’s in terms of both efficiency
and the upper bound on the number of encrypted operations. Moreover, novel lattice cryptosys-
tems advance further in the direction of efficient processing and multi-key operation [84], and also
in the fast execution of bootstrapping for achieving true Fully Homomorphic Encryption [107]]
(FHE).

We revisit here an RLWE lattice-based cryptosystem, which we use for our mechanisms, dis-
cussing the security properties of lattice cryptosystems and the choice of parameters; we also
revise the basic form of Number Theoretic Transforms (NTTs), which are the building blocks that
we use to produce efficient secure signal processing primitives.

4.2.1. RLWE-based cryptosystem

For the sake of the exposition, we have chosen Lauter [79] to showcase our proposed mecha-
nisms, but they can be easily applied to any other RLWE-based cryptosystem (a brief comparison
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of some of the most recent homomorphic cryptosytems together with some additional reasons for
choosing the Lauter cryptosystem can be found in Section 4.2.1). For completeness, a slightly
adapted definition of the RLWE problem particularized to the case of Lauter cryptosystem is pre-
sented:

Definition 12 (RLWE problem [41]], adapted from Definition [T with I = 1). Given a polynomial
ring Ry[z] = Zg[2]/(1 + 2™) and an error distribution x[z] € Ry[z| that generates small-norm
random polynomials in Ry[z]), RLWE relies upon the computational indistinguishability between
samples (a;,b; = a;s +t - e;) and (a;,u;), where a;, u; < Ry[z] are chosen uniformly at random
from the ring R,|z], while s,e; < x[z] are drawn from the error distribution, and t is relatively
prime to q.

The fundamental primitives and parameters of Lauter’s cryptosystem are described in Ta-
ble[d.1] Lauter’s ciphertexts are composed of at least 2 polynomial elements belonging to the ring
R, [z]; the cryptosystem allows for additions (the smallest ciphertext is previously zero-padded)
and multiplications on these tuples of polynomials, whose size is increased after each multiplica-
tion (the original size can be brought back by resorting to the relinearization operation, explained
in Section .5.1)). The security of the cryptosystem is based on the hardness of reducing the n-
dimensional lattices generated by the secret key and also on the semantic security provided by the
RLWE problem (two encryptions of the same or different messages are indistinguishable). Further
details about possible attacks to the cryptosystem are included in Section 4.2.2]

With this cryptosystem, messages encoded as univariate polynomials can be encrypted in only
one ciphertext (instead of encrypting each coefficient in a different ciphertext). This has the main
advantage of enabling to homomorphically perform encrypted linear convolution operations in a
natural way with only one multiplication between ciphertexts; there is only a small overhead due
to the larger cardinality of the involved encrypted polynomial coefficients, which belong to Z,
instead of the plaintext Z;, with ¢ > t. In order to allow for D consecutive products and A sums
over the same ciphertext, the needed ¢ for correct decryption is lower-bounded by

q > 4(2to?/n)P (2n) P2V A. (4.1)

Remarkably, Lauter can be securely adapted to work efficiently with multidimensional signals
(2D and 3D images or video), by extending the RLWE problem to a multi-variate case [4]; this
extension enables working with complex-coefficient polynomials, by using bi-variate encryptions
in which one of the modular polynomials is f(w) = 1 + w?. We will revisit this idea for some of
our constructions.

Choice of the RLWE-based cryptosystem

Although we have chosen the Lauter cryptosytem as the basis for our proposals, any RLWE-
based cryptosytem can be used in order to apply the proposed methodologies and tools. The only
requirement is the use of a modular function of the form f(z) = 1 4 2™ which, in fact, seems to
be the most accepted and widely used by the cryptographic community due to its efficiency and
well studied properties.

Besides its simplicity, there are some interesting motivations for our choice of the Lauter
cryptosystem. Costache and Smart [83] recently presented a comparison in terms of efficiency,
cipher expansion and security of the four main variants of RLWE-based cryptosytems: the NTRU
and BGV schemes, which encode the messages in the lower bits of the decryption equation, and
their corresponding scale-invariant versions YASHE and FV, encoding the messages in the upper
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Table 4.1: RLWE-based Lauter Cryptosystem: Parameters and Primitives.

Parameters

Let Ri[z] = Z¢[2]/(1 + 2™) be the cleartext ring and Rq[z] = Zg[2]/(1 + 2™) the ciphertext’s.
The noise distribution x[z] in Rq[z] takes its coefficients from a spherically-symmetric truncated i.i.d
Gaussian NV(0, 021); g is a prime ¢ = 1 mod 2n, and ¢ < q is relatively prime to q.

Cryptographic Primitives

SH.KeyGen | Process s,e <+ x[z], a1 < Rq[z] sk = s and pk = (ag = —(a1s + te), a1)
SH.Enc Input pk = (ao,a1) and m € R¢[z] . .
Process u, f,g < x|z] and the fresh ciphertext is ¢ = (cp,c1) = (aou + tg +
m,aju+tf)
SH.Dec Input skand ¢ = (co, Clyevy Cy—1)
Process m = (( 7 o CiS ) mod ) mod ¢
SH.Add Input co = (co,...,cg—1)and e1 = (cf, . .. 7/‘3/7—1)
Process Cadd = (€0 + €05+ Cmax (B,y)—1 T Coax ([37’7)—1)
SHLMult Input co = (co,...,ca_1)and ey = (06,...,0’7_1) —
Using a symbolic variable v their product is (Zi:o civz)
Process (Z’Y 1 / ) Zﬁ-‘r'v 2 //,Uz

bits of the decryption equation. They show that the most efficient schemes for the case of small
and large moduli in the plaintext coefficients are respectively YASHE and BGV cryptosystems,
where the former performs only slightly better than BGV for very small plaintext moduli ( =
2). Therefore, we chose Lauter cryptosystem as a representative of the BGV family, as a large
number of signal processing applications work with reasonably large signal values and some of
our contributions assume a relatively large value for ¢.

Finally, a recent attack [108]] against NTRU cryptosytems also affects YASHE for some prac-
tical values that were considered secure until now. Considering A as the security parameter, this
attack allows to break these cryptosytems in sub-exponential time in A for super-polynomial g()\);
and even in polynomial time when ¢(\) increases. As this attack has no known effect on the BGV
cryptosystem, our choice seems to be the most suitable thanks to both its efficiency and security.

4.2.2. Security of Lattice-based Cryptosystems

This section revisits some practical aspects related to security of lattice cryptosytems. The
underlying assumption supporting the security of the used cryptosystems is the indistinguishability
of the RLWE distribution w.r.t. a uniform distribution. There are mainly two types of attacks that
can be considered: (a) distinguishing attacks [[109], whose goal is to break the indistinguishability
assumption through basis reduction algorithms, and (b) decoding attacks, which are aimed at
obtaining the secret key s. We focus on the former.

Although we do not specifically account for decoding attacks, by using values for n similar
to those used in [79], the cryptosystem achieves protection against them as described in [110].
Therefore, we adhere to these minimum values for n.

Security and runtime attack as a function of the root Hermite factor o

The best attacks against lattice cryptosystems rely on basis reduction algorithms. Given an
arbitrary basis of a lattice, these algorithms try to obtain a nearly orthogonal basis with small
vectors. Among them, BKZ [111]] is currently one of the most efficient ones. It uses blocks of size
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Table 4.2: Performance of Lauter cryptosystem (D = 1, A = 1, t = 65537, s = +/2m) and Paillier
cryptosystem.

Lauter cryptosystem

n 1024 2048 4096 8192 16384
[logs (q)] 53 55 56 58 59
1) 1.0090 1.0046 1.0024 1.0012  1.0006
Bit security (Eq.(@.3)) ~ 30 ~162 ~410 =930 ~ 1270
Encrypt. time (us) 114 224 444 860 1780
Decrypt. time (pus) 37 77 159 326 695
Poly. Mult. time (ys) 24 46 91 171 353
Poly. Add. time (us) 7 12 24 47 107
Pre/Post time (145) 4 8 17 32 64
Paillier cryptosystem
Modulus size (bits) 1024 2048 3072 7680
Bit security <80 112 128 192
Encrypt. time (ps) 2947 19438 54122 521981
Decrypt. time (us) 2806 19269 54006 521761
Scalar Mult. time (ys) 27 92 182 729
Scalar Add. time (us) 3 10 21 87

ranging from 2 to the dimension of the lattice; increasing block sizes produce better bases at the
cost of a higher computational load.

We take as a commonly adopted measure of security the root Hermite factor 6 > 1 for the
underlying lattice, which is directly related to the running time needed for a basis-reduction algo-
rithm to succeed. In fact, the runtime of an attack is approximately proportional to ¢*/1°89 for a
constant k; i.e., a lower § implies a higher security. For the optimal distinguishing attack using
BKZ, we obtain the following expression for ¢ [[79]:

logy(8) = (loga(c - q/s))*/(4nlogy(q)), (4.2)

where n is the rank of the lattice, ¢ & y/In(1)/, € is the attacker advantage (¢ = 273%), and s is
a scale parameter of the error distribution (for the n-dimensional Gaussian s = o+/27).

In order to calculate the corresponding bit security, we resort to the lower bound estimate

tBKz((S) of [110]2
1.8

- 10g2 1)

tprz(0) = logy (T z(0)) — 110. (4.3)

For the other cryptosystem parameters, we choose ¢ = 2732, ¢ = 1 and for ¢, we choose
the smallest prime that satisfies the bound (4.1]), where we have A = 1, D = 1 and ¢ = 65537.
Table shows different runtimes and the relevant security parameters (0 and bit security) of the
used cryptosystem.

Paillier cryptosystem performance: Paillier cryptosystem [[14] has been extensively used in
recent years for secure signal processing. Therefore, we compare the efficiency of our proposed
solutions exploiting Lauter with typical solutions resorting to Paillier. Due to the different hardness
problems in which both cryptosystems are based on, we base our fair comparisons on the bit-
security that can be achieved with both schemes. Table[#.2]reports the corresponding runtimes and
bit security for different modulus size of the Paillier cryptosystem (with plaintext values upper-
bounded by 256). For Paillier, we resort to the bit security estimate of RSA [112]. It is also
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important to note that Paillier can only deal with one scalar plaintext, while all the primitives using
Lauter work in parallel with n plaintext values encrypted in one ciphertext, each one encoded
in a different coefficient of the polynomials in R;[z], which is a clear advantage. Despite that,
Table .2] shows that the encryption of one scalar with Paillier is much slower than the time needed
to perform our proposed pre-/post-processing (see Section and the encryption of n» numbers
with Lauter.

4.2.3. Number Theoretic Transforms (NTTs)

Signal processing heavily relies on transformed processing, for which the usually employed
transforms are based on the DFT (Discrete Fourier Transform), due to the physical meaning of
the frequency domain, the efficient algorithms for their computation, the good energy compaction
properties, and the possibility of taking advantage of the cyclic convolution property. The latter
implies a correspondence between the cyclic convolution of two signals and the element-wise
product of their transforms, enabling very efficient computation of convolutions by working in the
transformed domain.

When dealing with secure encrypted processing, DFTs cannot be directly translated to the
encrypted signals, due to their reliance on complex arithmetic and non-integer numbers, which
cannot fit in the finite rings of the cryptosystems without a quantization; this poses subsequent
problems of accuracy loss and scale factor accumulation (cipher blow-up). When working in
finite rings, we can find an alternative approach by resorting to integer transforms, more amenable
to encrypted processing: NTTs (Number Theoretic Transforms) are transforms with the same
structure as the DFT, with the peculiarity that they operate with elements belonging to a finite field
or ring instead of the complex field.

More formally, in a finite ring R, = Zy[z]/f(z) with p = Hfi 1 pi", an NTT of size N can
be defined (with the cyclic convolution property) if the following properties hold [[104]:

= There exists an /N-th root of unity « in R, for which ged(c, p) = ged(N,p) = 1.

» Nisadivisorof ged (p1 — 1,...,px — 1).

The expressions for the forward and inverse transforms are

N—-1
X[k =) al]o modp, k=0,1,...,N -1 (4.4)
=0
N-—1
z[l] =N~1 X[kle=®* mod p, n=0,1,...,N — 1.
k=0

Analogously to DFTs, NTTs possess a cyclic convolution property, and they also enable fast
computation algorithms like radix-2 and radix-4. Remarkably, the NTTs lived a golden age in
Signal Processing when the available hardware at the time (FPGAs and DSPs) could only work
with finite precision arithmetic, but were later replaced due to the generalization of floating-point-
capable hardware.

For our purposes, their important property is that they work in the same integer rings as lat-
tice cryptosystems do and, therefore, they impose no rounding errors or cipher blow-up. Conse-
quently, NTTs can be used to efficiently perform polynomial multiplications, and they have been
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recently proposed as a means to speed up finite-ring polynomial multiplications: there are some
cryptosystem realizations that make use of NTTs for improving the efficiency of their polyno-
mial operations [113| (114} [115/[116, [117]]. Our proposed techniques go further, by focusing on
an unexplored specific subset of the available NTTs and adjusting the cryptosystem parameters
accordingly, to produce new primitives that enable highly efficient implementations, as we show
in the next sections.

4.3. Number Theoretic Transforms in Secure Signal Processing

Once we have introduced the notions of lattice-based somewhat homomorphic cryptosystems
and the basic formulation for NTTs, we discuss the proposed setup for the optimal combination
of these two concepts with the goal of achieving extremely efficient, unattended outsourced signal
processing.

We particularize the NTT for its application to the cryptosystems presented in [79] and [4]. In
that case, the cryptosystems require the use of a ring R, = Z4[z|/(1 + 2™), where ¢ is prime, and
n is a power of 2. Additionally, ¢ must verify ¢ = 1 mod 2n and meet the lower bound defined
by the number of operations allowed on the same ciphertext, cf. Eq. (4.1)). Therefore, combining
these restrictions with the existence of the size-n NTT in the ring R4, we have

» n divides ¢(q), where ¢(q) = ¢ — 1.
» ¢ verifies both Eq. @.I) and ¢ =1 mod 2n.

Prior works simply assume that such a prime exists and do not address its generation or adaptation
to efficient processing with a given cryptosystem. We can prove that these restrictions are verified
by the set of Proth primes [[118} (119} [120], which can be easily generated. A Proth number q is
characterized by the form ¢ = k2! 4-1 where [ is an integer, k is an odd positive integer and 2! > k.
The primality test for Proth numbers follows by virtue of Proth’s theorem:

Theorem 6 ([121]]). For a Proth number q, if there is at least an integer a satisfying a2 = 1
mod q, then q is prime.

Once ¢ is fixed, an n-th root of unity « can be found by searching those numbers that have an
order greater than or equal to n in the set of integers [1, ¢ — 1]. If the found « has an order d higher
than n, then the n-th root of unity is obtained by considering o™ =1 mod (q), where an is
an n-th root of unity. Algorithm [2]details this procedure.

This choice of parameters enables efficient cyclic convolutions between the ciphertext ele-
ments with no rounding errors, as they allow for efficient algorithms for NTT and INTT (e.g.,
radix-2 or radix-4). The particularity here is that the cyclic convolutions allowed by this setting
are actually nega-cyclic, and further processing has to be applied to enable “regular” cyclic con-
volutions, as we explain in the next section.

4.4. Generalizing Convolutions and Transforms in the Encrypted
Domain

Equipped with the presented description of RLWE cryptosystems and the proposed optimal
parameters for NTTs, we detail here the main contribution of this chapter, comprising a versatile
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Algorithm 2 Cryptosystem’s Parameters (g, n, o)) Generation .

1: procedure SEARCH CRYPTOSYSTEM PARAMETERS(N)

2: Input:

3: N < desired size for the NTT (where N is a power of 2)

4: Search prime p for the NTT of size N

5: while p not found do

6: Find p of the form p = k2! + 1 (with k and | natural numbers, where k is not a power
of 2)

7: if p is prime and N divides p — 1 then

8 break;

9: Search N-th root of unity o
10: for i = 1 until p — 1 do

11: if ¢ is a M -th root of unity with M > N then
12: o iM/IN

13: break;

14: Output:

15: For the ring R, we have ¢ = pand n = N
16: An N-th root of unity «

set of novel secure signal processing primitives:

= We show how to efficiently perform any encrypted cyclic, negacyclic or generalized con-
volution in an RLWE-based cryptosystem in a more efficient way and without wasting any
coefficient. For that purpose, we propose an efficient pre- and post-processing for the input
signals and the result respectively, enabling further operations in the encrypted domain.

= In order to allow for transformed operations under encryption, we propose a practical
method for computing an encrypted NTT or DFT with an RLWE-based cryptosystem.

= Finally, both results are generalized in a framework that enables any kind of encrypted
convolution and linear transforms with a convolution property.

4.4.1. Encrypted Cyclic Convolution

Along with the linear convolution, the circular or cyclic convolution is frequently used in sig-
nal processing. To implement a linear convolution with an RLWE cryptosystem [79, [78] and its
extensions [4], we need a value of n large enough to store the result of the convolution. More-
over, the cyclic convolution poses additional problems as the modular function f(z) = 1+ 2" in
the cryptosystem only allows for negacyclic convolutions [122]]. A straightforward approach for
calculating the cyclic convolution would be the following:

= The cryptosystem modular function is of the form f(z) = 1 + 2%, with N power of two.

» The larger signal is assumed to have length N /2 (in other case, it is zero padded).

= By the homomorphic properties of the cryptosystem, the allowed polynomial multiplication
enables computing z(2)h(z)(1 + zV/2) mod (1 + zV).
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It can be shown that the output of this product holds the result of the negacyclic convolution in
the N/2 first coefficients, and the result of the cyclic convolution in the last N/2 coefficients. The
drawbacks are that: (a) half of the used coefficients are wasted, unnecessarily increasing cipher
expansion, and (b) the result is located in a portion of the ciphertext, so reusing it for further
operations becomes harder.

We present our method for calculating the encrypted cyclic convolution, by using just one
polynomial product and element-wise pre- and post-processing. This approach yields a more
efficient cipher expansion, and it also enables to continue performing operations with the results
of the convolutions.

Efficient Pre- and Post-processing

We rely on a generalization of the cyclic convolution between two signals z[{], h[l] in terms of

a complex value «, proposed by Murakami [54]]. The a-generalized cyclic convolution is defined
as

y(z) = z(z)h(z) mod (1 — az™), 4.5)

where x(z), h(z) and y(z) are the Z-transforms of x[l], h[l] and y[l] (we use the definition for the
Z-transform as a power series in z instead of the more common z~1).

This generalization lets us specify different types of convolutions depending on the chosen a:
for = —1 we obtain a negacyclic convolution (we refer the reader to [[122] for more details on
negacyclic convolutions), which corresponds to the homomorphic operation offered by RLWE-
based cryptosystems with f(z) = 1+ z™. Conversely, & = 1 conforms to the cyclic or circular
convolution. We aim at a regular cyclic convolution (o« = 1), but we are bound to a negacyclic
one by the cryptosystem homomorphism, as a modular function of the form f(z) = 1 — 2™ would
not be irreducible in the integers (see [[109, [123]] for further details on the security reasons behind
discarding 1 — 2™ as the modular function).

Supported by Murakami’s formulation, we can enable the calculation of a cyclic convolution
between two N-length polynomials z[l] and h[l] by carrying out the following steps:

= Prior to encryption, the input signals are pre-processed with component-wise products:

1] =z[l)a" N (-1)"NQ, 1=0,...,N -1,
W) =hllla N (-1)NQ, 1=0,...,N -1,

o

where () is the quantization applied to signals z/[l], h'[l].
» Then ¢/(2) can be calculated under encryption with a homomorphic polynomial product

Y (2) = 2'(2)(z) mod (1 + 2V)

» The output decrypted signal y'[n] is post-processed
I/N (—1) —l/N
o
yll] = y'[l]T~
With the described procedure, the a-generalized cyclic convolution can be successfully imple-
mented with a single product of encrypted polynomials; in particular, the cyclic convolution can
be implemented with o = 1.
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It must be noted that the element-wise product between the pre- and post-processing vectors
is equal to a constant signal of ones, so the polynomial product between two pre-processed poly-
nomials “preserves” the pre-processing and can be subsequently operated. Consequently, we can
implement several products between ciphertexts and the results of ciphertext products without the
intervention of the key owner in the middle of the process. That is, for performing several cyclic
convolutions we only need the key owner to apply the element-wise pre-processing to the original
encrypted signals.

A final remark must be made regarding the complex arithmetic assumed by Murakami’s for-
mulation. The N-th roots of —1 needed for building the pre- and post-processing vectors can be
tackled in two ways: (a) complex numbers can be embedded in the cryptosystem by incorporating
a modular function f(w) = 1 4 w? to the multivariate ring [4], and (b) Murakami’s concepts can
be applied to finite rings, so that /" and (—1)1/ N are elements of Z;, and the conditions for the
existence of the N-point NTT are still satisfied. In that case, we could discard the quantization )
and perform the encrypted a-generalized convolution without rounding errors.

Consequently, we have solved the two main limitations that current approaches have for calcu-
lating a cyclic convolution under encryption: our approach does not introduce any rounding errors,
it does not need to discard any coefficient (reducing the effective cipher expansion), and it can cope
with successive operations without intermediate decryptions. We evaluate now its performance in
terms of computational complexity.

Performance evaluation of the encrypted cyclic convolution: We have implemented Lauter’s
RLWE-based cryptosytem in C++ using the GMP 6.0.0 [124] and NFLIib [94] libraries. Figures
and compare the encrypted cyclic convolution performance with a 2048-bit modulus
Paillier-based convolution (one of the convolved signals cannot be encrypted) versus the proposed
method with Lauter’s cryptosytem with n = N on an Intel Xeon E5-2620 processor running
Linux. We show the comparison of (a) the encrypted convolution, and (b) the encryption and de-
cryption times with our pre- and post-processing. Additionally, the computational cost of perform-
ing a cyclic convolution of two encrypted signals with our scheme is lower than the straightforward
method, due to the reduction in the needed coefficients (no coefficients are discarded).

We are not considering relinearization steps after each multiplication, but account for the de-
cryption of the extended encryptions. We can see that RLWE-based cryptosystems are more ef-
ficient than Paillier, also having a much lower cipher expansion. Moreover, our method enables
chaining several consecutive encrypted cyclic convolutions in a natural way.

Finally, we can see that in our method n = N; hence, when we increase the size of the
encrypted signals we are also reducing the root Hermite factor 4, therefore increasing the runtime
of a distinguishing attack (see Section|4.2.2)) and achieving a much higher bit-security than Paillier
(see Table [4.2).

4.4.2. Encrypted NTTs

With the relation of equivalence between the clear and encrypted convolutions, we can use
the efficient radix-2/radix-4 algorithms of the NTTs for performing the negacyclic convolutions
of encrypted signals as shown in Section 4.3 In this case, the NTT is applied directly on the
encrypted signals as a means to speed up the calculation of the polynomial product (nega-cyclic
convolution), which gets reduced to a component-wise product in the transformed domain.
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Figure 4.1: Performance of encrypted cyclic convolutions and NTT.

However, there are cases where the NTT must be applied to the clear-text signals, and we must
replicate the computation of the NTT once the signals are already encrypted, in such a way that
once we decrypt we get the transformed coefficients of the clear-text signal. Therefore, we aim
here at the encrypted implementation of NTTs (homomorphically applied to the cleartext) inde-
pendently of whether the underlying encrypted polynomial products are implemented with the aid
of NTTs. Previous works have focused only on the implementation of the encrypted DCT or DFT
[[17]], but not on NTTs. For this purpose, we propose a mechanism to obtain the NTT of a signal
under encryption with only a cyclic convolution and a pre- and post-processing step. This pro-
cedure can also be applied to any other transform with a similar structure, with the difference of
having to work with rounded real or complex numbers. In fact, we could separately operate with
the real and imaginary parts of the signals or even embed complex numbers in the cryptosystem [4]
by incorporating a modular function f(w) = 1 + w?. Hence, we can use the same procedure to
implement the encrypted versions of the corresponding real or complex transforms, but working
over complex 2/N-th roots of unity; hence, by applying a pre- and post-processing step we get to
homomorphically perform a DFT with only one cyclic convolution, or one DCT with two cyclic
convolutions (for the DCT we would resort to Euler’s formula to represent the cosines as a com-
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bination of complex roots of unity). It must be noted that unlike the NTT, both the DCT and the
DFT would need quantization prior to encryption in order to be able to represent the real numbers
as integers, with the corresponding increase in cipher expansion and quantization error.

We first introduce the proposed encrypted NTT algorithm, which we later extend for comput-
ing NTTs, INTTs and generalized cyclic convolutions.

Encrypted NTT with pre- and post-processing

By resorting to the formulation of Bluestein FFT algorithm (also called chirp Z-transform
algorithm [125}[126])), we can compute the NTT of a signal as a single convolution and a pre- and
post-processing. The expression for the NTT of a signal x[l] is given in Eq. (4.4). We need that

a% be a 2N-th root of unity in Z; (and hence « is a IN-th root of unity in Z;), so that we can write
kl = B G l) -|- —|— . Hence,

N—

L Z L o2 n?

= 2 2 .
1=0

This shows the equivalence to a cyclic convolution followed by a component-wise product

. k?
with a2
2 Nl s 2 42
=z | =az (@[kl®az),
1=0
2 . . . .
where 2/[l] = a7z z[l] and ® denotes the cyclic convolution (assuming N is even due to the

cryptosytem requirements) Therefore, we can implement a generic NTT of N samples with a
12

2N-th root of unity az by simply performing the pre-processing with « 5 , convolving the pre-
2

12
processed signal with a2~ and post-processing the convolution result with « 5.

This procedure allows to efficiently execute an encrypted NTT as shown in Figure #.2] As
negacyclic convolutions are the only homomorphically allowed convolutions, we resort to the pre-
and post-processing shown in Section {.4.1] which must be applied “inside” our convolution box
(see Figure . Thus, 2'[{] is multiplied by the pre-processing vector before being encrypted. We

12

apply the same pre-processing to o 2 .

Finally, once the result is decrypted, we have to apply the component-wise post-processing for
the cyclic convolution and, afterwards, the NTT post-processing.

The INTT (Inverse Number Theoretic Transform) implementation is analogous to the NTT,
simply swapping the used signals and including a N~! factor:

N2
x[k] =N~ la2 Za2 la(k2l)

:N*la#((aTX[k]) ®a'7).

A new application enabled by encrypted NTT calculations is the element-wise signal multi-
plication. This is accomplished by simply leveraging the cyclic convolution property of the NTT
to implement point-wise products as homomorphically allowed convolutions. Consequently, we
obtain the desired product with an INTT of the decrypted result. While this could also be achieved
with the DFT [17], the use of NTT avoids rounding and blow-up problems under encryption.
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Figure 4.2: Block diagram for the implementation of the encrypted NTT.

Performance evaluation of the encrypted NTT: Prior works have proposed the use of the
Paillier cryptosystem for performing the DFT [17]]. Our method would require a multiplication
step of the encrypted signal samples with powers of the corresponding N-th root of unity (see
Sectiond.2.3)), which cannot be encrypted due to the limited homomorphism of Paillier. However,
the security of Paillier relies on the hardness of computing ¢(/V) (Euler’s totient function) without
knowing the factorization of N. Of course, when the different powers of the /N-th root of unity
are known, ¢(V) is disclosed.

As a consequence, Paillier cannot be used for calculating the NTT without resorting to a
two-party protocol for secure multiplication [127] along with the corresponding increase of the
execution overhead. Instead of Paillier, other schemes for which knowing the different powers of
the N-th root of unity is not a security problem could be used (e.g., exponential El Gamal [[128]),
but they present additional drawbacks.

For this reason, we compare the efficiency of our proposed encrypted NTT with a straightfor-
ward encrypted realization of Eq. (4.4)), in which one ciphertext multiplication is used for each
output NTT coefficient. We use our aforementioned implementation of Lauter [[124,|94] for com-
paring the runtimes of the different schemes. Figures #.1c and d.1d compare the encrypted NTT
performance with the straightforward application of Eq. (4.4)) and our proposed method, both with
Lauter (t = F4 = 65537 II[) Our method enables the computation of the NTT with only one
ciphertext multiplication instead of N, so the computational complexity is reduced in a factor of
N.

Regarding the security, as we fix n = N, when we increase the length of the signals involved
in the computation we also increase the achieved security (see Section4.2.2)).

Related works: 1In [129], Doroz et al. also homomorphically perform an NTT under encryp-
tion, exemplified under the LTV cryptosystem [84]. The main solution proposed in [129] takes
advantage of a clever packing of the signals to encode each element of the original signal in dif-
ferent ciphertexts, and compute the corresponding fast algorithm for the NTT, enventually having
the output of the NTT in N different ciphertexts (one per coefficient). In order to improve the

'Fy is the fifth Fermat number, where Fermat numbers are defined as the set of numbers satisfying F} = 9% +1
with [ € N including zero.
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throughput they resort to batching, hence performing /N parallel NTTs. The computational cost of
their algorithm is equivalent to O(N?1og, V) elemental integer multiplications between cipher-
text coefficients. Compared to our scheme it can be seen that we achieve the same computational
cost; i.e., for one NTT we use one ciphertext product or O(N logy N) elemental multiplications
of coefficients. However, our solution presents two main advantages: (a) it is more flexible, as we
do not have to pack several messages into one ciphertext and do not require packing/unpacking
operations, and (b) our scheme only requires one homomorphic multiplication, while their solu-
tion requires log, N chained products over the same ciphertext, with the corresponding increase in
ciphertext noise, in the required coefficient bitsize, and in complexity of the elemental operations,
which our scheme does not incur.

If we compare the coefficient bitsize of our scheme log, g; with respect to Dordz’s log, g2, it
can be shown that (logy g2 —logy q1) ~ Blogy N — B bits, with B > 0 being a constant that
depends on the cryptosystem parameters. Hence, our scheme is also more efficient in terms of
coefficient size (cipher expansion), by a factor of log, N. It must be noted that this also holds for
a leveled cryptosystem, where their solution would require more levels and a deeper key chain.

The encrypted fast transform is always less space-efficient (due to the need of bigger ¢) than
the direct implementation, but depending on the cost of the homomorphic products, the fast al-
gorithm can be also less time-efficient than the naive direct implementation due to the growth in
plaintext size (accumulated quantization factors) that the former imposes, produced by its subse-
quent multiplications on the same ciphers (log, IV levels), whereas the direct implementation only
multiplies each cipher once. While this does not happen to Paillier [[17]], it is true for lattice-based
cryptosystems. Therefore, in order to mitigate this effect in their work, Dor6z et al. propose to
implement the matrix multiplication associated to the NTT transform (direct transform) instead
of the fast algorithm; hence, as their procedure only supports one multiplication with a cleart-
ext constant, their cost to perform N parallel NTTs is O(N?) elemental multiplications between
coefficients. This is considerably outperformed by our solution.

4.4.3. Generalized Convolutions and Transforms

We can generalize the two prior primitives by adding the new pre- and post-processing and
fixing one of the convolved signals, in such a way that we can achieve an INTT or NTT with
any convolution type considered by Eq. (4.3). We can formulate this as a generalization of the
Murakami scheme. The general matrix scheme is as follows:

X = PoutGB (Hn,yy) Bn,xma

. -1 -1 1 -1 1 1
with Poyy = P2(v2 )P1(B7 ), Pina = PiI(BY)P2(y2 ) and Piny = Py(87)P,(72); and
where x and y are the two input vectors, and X represents the result vector. P;(z) is the following
matrix

10 --- 0
0 x 0

Pi(z) = :
00 ... gWN-D

2Qur algorithms and those in [[129] are exemplified in different cryptosystems, but can be independently applied to
LTV or Lauter, so we find it fairer to compare their theoretical computational costs in terms of elemental operations
between ciphertext coefficients instead of implementation-dependent runtimes.
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and G 3(v) is the 3-generalized cyclic matrix of the vector v

vo  PBun-1 -0 P
U1 Vo e Pug

Gs(v) = : :
UN-1 UN—2 -+ o

The values for the different parameters depend on the choice of convolution or transform.
In the case of cyclic convolutions with our cryptosystem (only negacyclic convolutions can be
homomorphically performed), we consider 7% = land f = —1 (only Murakami pre-/post-
processing is applied). The elements z; and y;, for an integer ¢ such that 0 < ¢ < N, correspond
to the samples of the signals we want to convolve.

Our NTT implementation uses ¥ = o~ !, 3 = —1 and the elements y; are equal to 1 for all i.
On the other hand, an INTT would use v = «, 8 = —1, y; = 1 for all ¢, and add a multiplication
by N~! as a post-processing step.

It must be noted that due to the requirements and structure of our cryptosystem, we implement
the cyclic convolution with underlying negacyclic convolutions (i.e., we use 5 = —1). Conversely,
it would be also possible to obtain a cyclic convolution, NTT or INTT by any other convolution
type covered by Eq. (4.3) by simply using a different value of 5.

4.5. Optimizations

This section presents a series of optimizations to the contributions of Section {.4] targeted at:
(a) efficiently performing the encrypted NTT operation by means of a relinearization primitive, (b)
enabling component-wise encrypted products avoiding the pre- and post-processing needed for the
encrypted NTT, therefore removing the need of interaction by the secret key owner for performing
an encrypted NTT, and (c) enabling batch processing and maximizing the batched homomorphic
capacity. For these purposes, we rely on a relinearization step and the CRT (Chinese Remainder
Theorem), and we exploit the periodic structure of the input signals whenever they present it.
We first revise the formulation of the relinearization primitive, and then explain the proposed
optimizations.

4.5.1. Relinearization primitive

For the purpose of avoiding pre- and post-processing in the cleartexts, we can employ a re-
linearization primitive [[79) [50, [88]], commonly used in key switching algorithms to reduce the
size of the encryptions after a multiplication: when multiplying two ciphertexts ¢ = (¢, ¢1) and
c = (06, c}) from the cryptosystems [79]], [78]] and [4]], the number of elements of the resulting
ciphertext is increased ¢’ = (cjj, ¢, cy). Hence, ¢ could be decrypted as cjj + ¢//s + clys?, which
can be seen as a quadratic function of s.

This increase is undesired due to the induced overheads. Hence, a relinearization reduces ¢”
to a new ciphertext formed by only two elements ¢ = (¢, ¢}’), satisfying D(c"”, s) = D(c”, s),
where D(c, s) represents the decryption of ¢ with key s (the decryption circuits for both cases are
e + c's and ¢ + c}s + cjys?, respectively). In order to perform this relinearization, the public
key must comprise certain additional information about the successive powers of s, and circular
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security must hold for the cryptosystem to securely encrypt functions of the secret key. In case of
applying the relinearization after each product, only information of s? is needed. As a drawback,
the relinearization increases the ciphertext noise.

This is the conventional use of relinearization, but we use it additionally for performing other
types of operations as upsampling, downsampling and reflections (see Section 4.6). We present
now the formulation of a relinearization step; in our work we do not restrict the relinearization to
only powers of the secret key s, and we consider a generic decryption for a ciphertext (co, c1, c2)
as cg + c151 + cas2, with s1, s9 < X, where s3 is not necessarily equal to s% It can be shown that
the needed additional information would be (h1, ..., hfiog, q—1), Where the h; are key homomor-
phisms defined as

h; = (ai,bi = —(aisl + tei) + tiSQ), 1=0,..., ﬂogt q“ —1,
where ¢ is the module used for encoding the messages in I, a; < R4 and e; < x. Expressing

cy in base-t representation, we have ¢y = Z“Ogt a1-1 &) tZ and finally we obtain the ciphertext

(cpelin ¢eliny under the key s; as

[log; q]—1 [log, q]—1
1i li
666 mn— co + E Cgﬂ‘bi, Cie "=+ E €20

This step can be typically used either after each encrypted multiplication, in order to bring
back the expanded ciphertext to a pair of polynomials, or after several consecutive multiplica-
tions, by using relinearizations h; for each different key power. In general, given a ciphertext
(co,c1y--.,Cm—1), whose decryption function has the form ¢y + 22—11 ¢;S;, we can implement
m — 2 relinearizations to convert the ciphertext into a linear equation in terms of a unique key;
e.g., if we want to express all polynomials as a function of key s;, we use m — 2 key homomor-
phisms hl(-] ), where each homomorphism would have the key s; “encrypted” in terms of s; for
j =2,3,...,m — 1. By recursively applying these relinearizations, i.e. hz(?) to the ciphertext
composed by (cg, c1, c2), then hl(g) to the concatenation of the previous result and c3, and so on,
we arrive at the expression that encompasses all concatenated relinearizations in two equations:

. [log; q]—1 [log; q]—1
c(r]elm —co + Z 027ib§2) + ...+ Z Cm,ibz(m)v
pr =0
[log, q]—1 [log, a] =1

m
”h” =c1 + g c Za et g cm,iag )
=0

Now, considering the vectors

—(cT T T T
Chase—t _(CQ,base—t7 C3 base—t> Cm,base—t) )

a :<(a<2>)T, (a<3>)T, o (a“”))T)T,
=((6)" (69) " (50) )

T
Ci base—t = (CiOaCi,la -5 G [log, tﬂ*l) ’

i % T
al) = (aé),ag), . ,a(“())gtq]il) ,

where

. i 7 i ’
b = (o), b1, b, 1)
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we get the simplified vector expression of the relinearization

relin relin
Cy = Co+ Cpase—t b, 4] = C1 + Cpgse—t * @,

where a - b is the scalar product between the vectors of polynomials a and b. With this expres-
sion, if the key owner generates the appropriate relinearization matrices, we can flexibly convert
encryptions between different keys (key switching) and even extract or linearly combine different
individual components of an encrypted polynomial signal.

Increase of error after relinearization

The noise added to the ciphertext after the execution of one relinearization step is approxi-
mately equivalent to the noise added over the same ciphertext by as many homomomorphic addi-
tions of fresh ciphertexts as polynomials compose the vectors a and b. Therefore, if both vectors
have m[log, ¢| polynomial elements, it is equivalent to m [log, ¢| homomorphic additions. Hence,
even when some of the proposed methods in this chapter resort to a relinearization step, they still
allow for O(D) homomorphic products between ciphertexts, being D the number of products
allowed by the choice of ¢ (see Eq. {@.1))).

4.5.2. Proposed Optimizations

This section introduces several strategies based on relinearization, aimed at optimizing the
realization of the encrypted NTT proposed in Section 4.4.2] avoiding the interaction with the
secret-key owner for the pre- and post-processing steps; for this purpose, we take advantage of
the specific structure of the transform matrices. We first present a polyphase-decomposition-based
approach which reduces the key size, and then enhance it by preserving the key security. The
polyphase decomposition is a common tool used in signal processing [130]], which has also been
applied in a cryptographic setting as a means to achieve different tradeoffs in the General Learning
with Errors (GLWE) problem [50].

Our target is to calculate the NTT of an already encrypted version of z[l], which has not been
pre-processed (Section [4.4.2)). We first note that our encrypted NTT algorithm allows to perform
one of the processings under encryption, by expressing it as a convolution. For the NTT we have

—k2 k2 2
NTT(z[l]) = N} <<x[kz] ® a2) a2> @®NTT <a2> .
Analogously, for the INTT we have

INTT(z[l]) = N1 <(z[k:] ® ozk;) a52> ® INTT <af> .

With this structure, we only have to implement one of the component-wise products with the
(known) pre- or post-processing vector under encryption to get an unattended implementation of
the encrypted NTT; we use the polyphase decomposition of the inputs and exploit the use of the
relinearization to homomorphically calculate the pre- or post-processing.
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Encrypted NTT with polyphase decompositions

In order to calculate a component-wise product of the signals x[l] and h[l], we can decom-
pose them in as many polyphase components as their length. A relinearization can be used to
extract each of these components into separate encryptions, and subsequently, element-wise mul-
tiplication can be straightforwardly performed. Then, an inverse relinearization step would enable
regrouping the signals in a sole encryption which can be decrypted using the initial secret key. This
approach suffers from an excessive computational cost to perform N relinearizations; moreover,
the corresponding relinearizations to one polyphase component reduce the problem to a lattice
with n = 1, which would imply no security.

We can exploit the use of the polyphase decomposition in a smarter way, balancing the size
of the used relinearization matrices and the reduction in the security: We divide the signal in a
number of components equal to a constant M (the previous solution corresponds to M = N). For
our choice of cryptosystem parameters (see Section d.2)), we need M be a power of two dividing
N. Hence, we can express the element-wise multiplication in terms of M smaller and independent
homomorphic element-wise multiplications, where each signal has a size N/M. Therefore, we
are able to divide the sought encrypted operations as a set of simpler and easier element-wise
operations (with the corresponding reduction in the considered lattice). This process could be
recursively performed, at the cost of eventually reducing again the ciphertexts to a lattice with
n = 1, which is unacceptable in terms of security.

We still need a method to homomorphically perform the element-wise operations without re-
sorting to a reduction in the dimension of the lattice, which is presented in detail in Section[4.5.2]
By combining this method with the partial polyphase decomposition we can produce several pos-
sible solutions for an encrypted element-wise multiplication. Depending on the chosen M, we can
trade-off efficiency (lower size for the relinearization matrices) for security (lower n).

2
Our proposed process for an encrypted component-wise product x[l]a% is the following:

» Decimate x|l + m] with m € [0, M) by a factor M.

= For each polyphase component, apply a relinearization encrypting the corresponding com-
ponent in a polynomial ring isomorphic to a lattice of dimension % Gf M > 1).

» Perform the element-wise multiplication of each component by the corresponding compo-
2

nent of the signal oz by resorting to the method proposed in Section 4.5.2f (multiplication
between a ciphertext and a cleartext). If M/ = N, the multiplication can be directly per-
formed.

= Finally, a reverse relinearization process is applied to each component so that they are re-
grouped into a new ciphertext under the same key (if M > 1).

This method produces an element-wise product by the pre- or post-processing vector with-
out the intervention of the secret key owner, enabling a fully non-interactive computation of the
encrypted NTT. Moreover, the used relinearization decreases the dimension by a factor M (each
polyphase component has a length of % samples), thereby achieving a net improvement in both
computational cost and security with respect to a direct application of the polyphase decomposi-
tion (M = N).
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Encrypted NTT without lattice dimension reduction

Decreasing the size of the used key as done by the previous method implies a reduction in
security. However, it is possible to perform the sought element-wise multiplication between a
ciphertext and a known cleartext vector with no such reduction. Hence, we enable additional
secure and efficient operations like modulation or demodulation with an unencrypted carrier, or
the implementation of the encrypted NTT without the intervention of the key owner, which is our

purpose.

First, we show how to perform the element-wise multiplication of a ciphertext and cleartext
without a reduction in the lattice dimension. Finally, we explain how to use smaller relinearizations
and achieve a net improvement in the efficiency of the operations when the cleartext is periodic.

Element-wise product between ciphertext and cleartext: We consider the ciphertext ¢ =
(co, ¢1), whose decryption circuit would be ¢y + ¢1 s, and the polynomial represented as a column
vector g = (9o, g1,---,9n_1)" . If we denote by the polynomial ¢}, the result of the element-wise
multiplication between ¢y and g, the decryption circuit in matrix form will be ¢, + diag(g)C1s,
where diag(g) is a diagonal matrix composed of the elements of the vector g, and C1 is the skew
circulant matrix [122]] of the polynomial c;.

Now, we apply the relinearization algorithm and express the decryption circuit in terms of
polynomial products or, in matrix form, products between vectors and skew circulant matrices.
Considering the key homomorphism h; = (a;, b; = —(sa;+te;)+t's), withi = 0, ..., [log, q] —
1, we have

[log, q]—1 [log, g]—1
relin / § : ~ relin § ~
Cy =Cy + C’i bi, (&3] = CZ a;,
i=0 =0

where C;, i = 0,..., [log; ¢] — 1, is the base-t decomposition of the matrix product diag(g)C}.
For the decryption circuit 066”” + s to be correct, S C; has to be equal to C;S for all 4, with
S being the negacyclic or skew circulant matrix corresponding to the polynomial s. The previ-
ous equality is true when all the g; are equal (multiplication by a polynomial of maximum degree
0), but in our general case all the g; are different, and equality is not achieved. Therefore, the
ciphertext must be modified to perform the sought relinearization. diag(g)C,s can be expressed
equivalently in polynomial form as Z;:& c\9)(z)s;, being c\9)(z) the polynomial whose coeffi-
cients are the j-th column of the matrix product diag(g)C. Finally, with these requirements the
new decryption circuit has the form ¢{(z) + Z?:_ol ¢ (z2)s;.

©)

Now, considering n key homomorphisms h;”’ with i = 0,...,[log,¢q] — 1 and j =

0,...,n — 1, in which hl(] ) has the coefficient sj “encrypted” under the key s, we can perform
a unique relinearization by concatenating all the hz(.j ) and the corresponding polynomials ) (2)
as discussed in Section[d.5.1] As we targeted, the proposed relinearization does not convey a re-
duction in the size n of the lattice. Regarding the computational cost of the approach, the key
owner needs to generate the vectors @, b and cpys—; Of size n[log, ¢|, which are composed of
polynomials of n coefficients. The relinearization comprises one polynomial addition and two
scalar products Cpgse—t + b and cpgse—t - @, i€, 2n[log, ¢| polynomial products and 2n[log, ¢] — 1
polynomial additions.

Element-wise multiplication between ciphertext and periodic cleartext: When the cleartext
used in the element-wise multiplication is periodic, the length of the vectors a and b required
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for the relinearization process can be reduced, therefore decreasing the number of addends in the
decryption circuit. If g is a periodic signal with m samples per period, and m divides n, we can
use the following decryption circuit:

m—1 m—1
co + Z z' Z Ji+j mod m2 ) (z™) st (z™),
i=0 §=0

/
Cit1

where s (z) = Zj;ol smd + i]z¢ and V) (z) = Zdigl c1[md + j]z? are the i-th and j-
th components of the polyphase decomposition in m components of s and c;, respectively, and
s(®) (z™),i=0,...,m — 1, are the corresponding secret keys.

The obtained ciphertext consists of m + 1 polynomials; applying the relinearization as in
the previous section, we reduce it to only two components. Hence, when ¢ is periodic with a
period of m samples, it is possible to reduce the size of the vectors a, b and cpgse—1 to m[log, ¢]
components each. Regarding the complexity, the proposed relinearization requires 2m|[log, q]
polynomial products and 2m|[log, ¢| — 1 polynomial additions.

It is worth noting that the pre and post-processing vectors needed to implement the encrypted
NTT and INTT present some additional structure and periodicities which could be exploited in
order to increase the efficiency of the computation of the encrypted NTT. Additionally, the solu-
tions presented in this section could also be useful for other typical signal processing applications
involving periodic signals, like modulations and demodulations (see [4.6.1).

4.5.3. Element-wise multiplication of two encrypted messages

The previous sections describe a fully non-interactive encrypted NTT with efficient relin-
earization operations which enable component-wise products between an encrypted vector and
a known clear-text vector. We can now leverage the encrypted NTT to perform component-wise
products between two fully encrypted vectors of length N without reducing the security of the
scheme. Fixing the parameter n and working with [%] pairs of ciphertexts, the computational
cost in terms of elemental products mod ¢ would be O(2/1°82 N1 log, n) ~ O(Nnlog, n), step-
wise linear in terms of V.

For the sake of comparison, we define cost; as the computational cost of the techniques
presented in Section for computing of the encrypted NTT, costy for the polyphase-
decomposition-based method which with M components, and costs for the straightforward de-

459

composition in [N components (see Section Hence, we obtain the ratios ggg% ~

logy M )
(% + ﬁ) <1 — lc(’) g;zn ) + % and gggg ~ 10g12n + % The computational cost for the element-

wise multiplication between two encrypted messages is approximately bounded by three times the
computational cost for an encrypted and a clear-text message. This is due to the need of homomor-
phically computing two NTT and one INTT, which amounts to three executions of the algorithms
(or only some parts of the algorithms) previously presented in Table summarizes the
computational cost in terms of elemental products modulo ¢, the total size of the relinearization
matrices in terms of coefficients modulo g and the minimum required dimension for the lattices in
the three methods.

By increasing the parameter M we achieve a net improvement in both the size of the vectors a
and b, and the efficiency of the encrypted element-wise multiplication, at the cost of a reduction in
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Table 4.3: Comparison of the proposed encrypted element-wise multiplication methods.

Computational Cost

cost; = O ([%]rﬂ log, n)

costa = O (f%] ((Mn+ %) log, (£) + nlog, n))
costs ~ O ((%] (n? 4 nlog, n))

Total size of the relin. matrices Minimum lattice dimension
bits; = 2(n* + n)[log, q][log, q] Noming =7
bits = (4 + 225 + 22 ) log, q1[log, Muning = &
bitsz = (4n + 2)[log; q][log, q| Nming = 1

the underlying dimension of the lattice. This trade-off between the security and the implementation
runtimes is quantified in the next section.

Performance evaluation of the element-wise multiplication

The proposed constructions enable component-wise processing in RLWE cryptosystems,
which are suited and very efficient for polynomial processing. Therefore, we compare our pro-
posed methods with the use of a cryptosystem (Paillier) which is apparently more amenable to
element-wise multiplication than RLWE-based cryptosystems. We use Lauter’s cryptosystem to
implement our proposed methods for element-wise products (Sections [4.5.2} [4.5.2]and [4.5.3).

In general, the computational cost for performing N element-wise multiplications with
Paillier (with one of the messages in clear) is N modular exponentiations of Paillier ci-
phertexts. With Lauter, we would need only N element-wise multiplications (see Sec-
tion 4.5.2), but the computational cost for the relinearization is relatively high. In or-
der to have a fair comparison, we fix a value of n (polynomial degree) independent of
N (message size) for Lauter, as a function of the needed level of security. Then, the
computational cost for the element-wise multiplication of two pairs of N encrypted inte-
gers would be approximately O ([ﬁhlz logyn) = O (2[1032 Nlnlog, n) ~ O(Nnlog,n)
for the techniques from Section §4.5.2| or (201082 NI (M + -)logy (15) + logyn) =~
@) ((N M + %) logs (%) + N log, n) when resorting to polyphase decompositions (Sec-
tion[4.5.2)), using for both a radix-2 algorithm (as we have already described in the previous section

B.5.3).

Figure @] compares the different runtimes for (a) the element-wise method in Section @],
(b) the polyphase-based method from Section [4.5.3] (c) the partial polyphase method from Sec-
tion4.5.3|with M = 8, (d) Paillier-based element-wise multiplication between an encrypted mes-
sage and a message in the clear, and (e) the combination of Paillier-encrypted messages and a se-
cure interactive multiplication protocol (SMP) [[127] for computing the product of two encrypted
messages. In all the experiments, we have chosen practical parameters for the Paillier cryptosys-
tem (2048-bit, 3072-bit and 7680-bit moduli) and we vary the n used for the lattice cryptosystems.
We are considering N = 131072 (the runtimes increase linearly with V). Additionally, Figure 4.3
also compares the bit-size of the relinearization matrices used for the first and second methods
from Section4.5.3]in terms of n.

As mentioned in previous sections, increasing n produces a smaller §, and therefore a higher
security (see Section 4.2.2). Hence, depending on the required security for the applications, we
can choose an adequate value for n.
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Figure 4.3: Comparison of element-wise runtimes for different schemes.

We can see that using practical values for both RLWE cryptosystems (e.g., n = 2048) and
Paillier, the proposed optimized methods for element-wise multiplications of two encrypted vec-
tors outperform the other approaches in terms of efficiency. In fact, Paillier can only achieve
better performance when one of the vectors is unencrypted, but even in such case, RLWE-based
cryptosystems are still much more efficient for polynomial operations and, when combined with
our methods, they provide greater flexibility and a full toolset of unattended efficient encrypted
operations along with these element-wise operations, which Paillier could not provide.

4.54. CRT for cleartext batching

The second optimization we propose deals with cleartext batching and enhancing the ho-
momorphic capacity when SIMD (Single-Instruction-Multiple-Data) operations are implemented.
For this purpose, we resort to the Chinese Remainder Theorem (CRT). The CRT has been used
in numerous different applications, ranging from the conversion of a one-dimensional convolution
into a convolution with smaller multidimensional signals, to the development of error correcting
codes, secret-sharing and many more [[131].

We first revisit the CRT with a notation slightly adapted to our particular scheme. We begin
with the rings Rk, [2] = Z s [2]/ f(2) and polynomials a; < R, [z], with i = 1,...,m. If

a; = a; mod (gcd(tf", t?j )) holds for 1 < 4,j < m, then there exists a polynomial a € R[z]
with Ry[2] = Z[2]/f(2) and t = t¥1¢52 __ tkm which verifies:

a = a; mod (tiki), fori=1,...,m. (4.6)
For the existence of a, we can impose a less demanding requirement: it suffices that the ¢; be

pairwise coprime, i.e., gcd(t;,t;) = 1 with ¢ # j. In order to find the polynomial a € R;[z] that
satisfies the above congruences (4.6), we write

m
a= E Tia;d;,
=1
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where T; = t/t7 and d; fulfill &;T; = 1 mod (/).

Therefore, the existing isomorphism between R;[z] and Rt’fl [z] ® Rt'§2 [z] & -+ & Ry [2]
enables several cleartext operations through a single encrypted homomorphic operation. The pos-
sibility of exploiting this isomorphism to parallelize cleartext operations has been previously sug-
gested by several authors [50, 98]]. Smart and Vercauteren [98] propose and exemplify SIMD
operations using FHE (Fully Homomorphic Encryption) cryptosystems, for performing AES en-
cryption homomorphically and for searching in an encrypted database. Brakerski et al. [S0] pro-
pose batching the bootstrapping operation for improving the efficiency of the cryptosystem.

Our contribution comprises choosing appropriate values for ¢, such that the CRT can be applied
to parallelize any of the encrypted operations introduced in the previous sections.

Throughput optimizations for signal processing applications

In general, prior works dealing with batching operations (see [[132] for a comparison) are
mainly focused in maximizing the throughput of operations, but generally overlook the type and
usefulness of the parallelized encrypted operations, which might be severely affected by the de-
composition of the cryptosystem ring in unequal prime ideals. Contrarily, we want to present the
use of the NTT as a tool for batching operations which can be more suitable for typical signal pro-
cessing applications. Then, following the steps presented in Section .4] we briefly explain how
to achieve the maximum number of parallel operations between either integers or discrete signals,
keeping the meaning and usefulness of the batched operations.

We assume that the used modular function is f(z) = 1 + 2" and we also assume, without loss
of generality, that all the ¢; from Eq. {.6) are different prime numbers. Then, for the previously
introduced ring R;, an addition or multiplication between two ciphertexts actually conveys the
element-wise addition or multiplication between the vectors whose i-th element belongs to R &, [2].

In this case, if we want to perform the maximum number of parallel multiplications between
integers, we have to restrict the input signals to zero-degree polynomials, therefore wasting much
of the plaintext space.

By resorting to the proposed pre-processing techniques and the use of the NTT, we can fully
utilize all the available plaintext space. That is, combining the CRT and the NTT we can perform
multiplications among integers belonging to the finite field Zt;_%. In any case, we can maximize

the number of encoded integers if we choose the right values for the different t; and k;, and we
show how in the following discussion.

There exists an isomorphism between the finite field Z x, and Z;,[z]/g(x) where g(z) is an

irreducible function over Z;,. Then, in order to have g(z) = 1 + a2k (1 — ¥ is not irreducible),
we must use a cyclotomic polynomial ®oy, () = 1+ x¥i (with k; a power of two) and, finally, we
can assert that o, () is irreducible over Z;, when it satisfies

t?(%i) = tf" = 1 mod 2k;, 4.7

where ¢(+) is Euler’s totient function and k; is the smallest integer satisfying the above condition,
that is, ¢; is a generator of the multiplicative group Z3, . Further details about working with finite
fields can be found in [|133]].

As an example, if we consider k; = 2 for all ¢, we know that if ¢; = 3 mod 4, then Zt?
is equivalent to Z;,[x]/(1 + x?). Therefore, reusing again the proposed pre-processing and the
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NTT over each Z;,[z]/(1 + z¥) we can implement the batched multiplication of more integers.
Unfortunately [[134], the only cyclotomic polynomial that allows to encode more integers while
satisfying our requirements is ®4(x); e.g., if we have two messages x1, 2 € Ry[z] and each
one encodes 2mn integers (2n integers over Z;, for i« = 1,...,m) thanks to the CRT, we can
apply the proposed pre-processing for performing a cyclic convolution and, afterwards, use the
NTT for performing the element-wise product as a cyclic convolution (first, for distinguishing the
different rings I?,2, and afterwards, for distinguishing the two different Z;, which we can find on
the finite field Zt;). In this way, with only one multiplication between two ciphertexts we can
perfom the element-wise multiplication between 2mn pairs of integers. Conversely, the element-
wise addition is easily obtained without the need of the NTT or pre-processing. In case we want to
perform linear filterings instead of multiplications of integers, we can use the techniques presented
in [20, 21]] for packing a different signal in each of the involved integers.

4.6. Applications: Encrypted Signal Processing Toolset

This section exemplifies the use of the primitives and algorithms presented in previous sections
by proposing a set of practical tools and applications, which comprise matrix operations, Cyclic
Redundancy Check (CRC) codes, changes in sampling rate and linear transforms; we also show
how they can be seamlessly adopted within any RLWE-based cryptosystem [79, [/8]], by taking
advantage of its polynomial structure. For simplicity, we assume that all signals have only one
independent variable (univariate) but the methods can be easily extended to the multivariate case

[4].

4.6.1. Typical Operations in Signal Processing

We present efficient methods to implement elementary signal processing operations in the
encrypted domain when using lattice-based cryptosystems. Besides the different types of convo-
Iutions tackled above, shifts and scaling of the independent variable of the signals are also very
common operations in signal processing. In general, shift operations do not involve any change
in the cryptosystem parameters, but this is not true for operations that cause a change in the sam-
pling rate of the encrypted signal. In that case, it is necessary to “reset” the secret key to the new
sampling rate of the signal. Below, we address shift operations and changes in sampling rate to-
gether with modulation and demodulation operations which are enabled by using different types
of relinearizations.

Shift

A shift z[l — [y] represents the signal x[l] delayed by [y samples. This operation can be imple-
mented on encrypted signals, represented as z-transform polynomials, by simply multiplying them
by the monomial z/. Therefore, the cost of the operation is the product of a single polynomial.
Also, if the polynomial 2% is available in the clear, the cost is much lower, since it only involves
a product by 2! in the clear with modular function f(z). In case the shift makes the signal wrap-
around, the same effects explained for the a-generalized convolution would apply, and pre- and
post-procesing can be used to preserve the desired sign for the wrapped components.
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Changes in the sampling rate

The changes in the sampling rate of encrypted signals can imply a change in the entropy and
dimension (therefore, in security) of the used key. Considering again the use of modular functions
of the form f(z) = 1 + 2™ with n power of 2, changes in the sampling rate which are powers of 2
can be implemented in the encrypted domain following the procedure we explain in the next two
paragraphs.

Upsampling: For the upsampling, we only need to perform a change of variable in the poly-
nomial ring. For an upsampling z[l/G] with G > 1 in the ring R,[2], we just replace 2’ = 2©,
ending in R,[2“]. Hence, for upsampling we apply x(2%) and consider f(z“) and the secret key
s(z%). Since the variables of our polynomial rings can only involve natural degrees, G has to be a
natural number. In our case, using f(z) = 1 + 2" with n power of 2, G must also be a power of 2.
After increasing the number of samples, the encrypted signal can then be low-pass filtered through
a homomorphic convolution, obtaining the encryption of the interpolated signal. Regarding secu-
rity, the change of variable implies an increase in the lattice dimension; however, the entropy of
the key remains unchanged. From the point of view of the key owner, the key is the same, simply

considering different degrees for the coefficients.

Downsampling: Considering the ring R,[z], in order to perform a downsampling, we apply a
change of variable 21/C with 1 /G < 1. If the corresponding coefficients of the polynomials from
the ring R, [zl/ G] with no integer degree are discarded (plain decimation), we end up with the
ciphertext (co(zl/G), cl(zl/G)) and secret key s(z'/%). As in the case of upsampling, it is con-
sidered that G is a power of 2. Back in the variable z, decrypting ¢ = (cg, ¢1) implies calculating
co + c18, where s is the secret key. Hence, a downsampling of the encrypted message involves
performing a decimation of both ¢y and the result of the multiplication of ¢; with s. After an up-
sampling with a factor G, we can directly perform the corresponding downsampling by GG without
any impact on the number of ring elements that form the ciphertext. In contrast, for downsam-
pling without relying on a previous upsampling, we need to use the polyphase decomposition of
the decryption circuit, with the particularity that we are working in a ring with negacyclic convo-
Iutions instead of the typical cyclic convolutions. Therefore, the downsampling of the ciphertext
¢ = (cp, c1) by a factor G is equivalent to the first component of the polyphase decomposition in
G components of c. If decryption computes ¢y + ¢18, the decryption of the decimated ciphertext
would compute

G-1
h(2) + D (2) 5O (2) + 2 Z ¢ (2) s (2) mod 1 + z¢,
i=1

where c)(z) is the downsampling of ¢(z) and both c(¥) (2) and s() () are the i-th polyphase
components of ¢; and s, respectively. Now, we can reduce the ciphertext to a function of a single
key. For this purpose, we can use G — 1 concatenated relinearizations with the corresponding key
homomorphisms hZ(J) withi =0,...,[log,q] —1land j = 1,...,G — 1, which can be performed
in just one step (see Section[4.5.1). Regarding security, the entropy and size of the key are reduced
in proportion to the downsampling factor.



90 4.6. Applications: Encrypted Signal Processing Toolset

Reflection

We denote the reflection of the signal a by a’%. As the ciphertext ¢’ = (cgef ', cief ) contains the
reflection of the encrypted signal under the key s'%, to implement the reflection of the ciphertext
¢ = (co, c1) we have to use a key change of s’¢ instead of s. Finally, the key change circuit can be
represented as a relinearization of the decryption circuit cgef + 0s + c;ef 5", therefore considering
¢1 = 0 in the decryption circuit introduced in Section4.5.1]

Modulation and demodulation

Typical modulations involve the multiplication by a periodic carrier. This element-wise mul-
tiplication can be addressed by the general method presented in Section 4.5.2l However, the
element-wise multiplication between a ciphertext and a known periodic carrier can be efficiently
implemented through the method proposed in Section [4.5.2) which takes advantage of the periodic
structure of the carrier signal, and achieves better efficiency by reducing the size of the needed
relinearization matrices.

4.6.2. Encrypted Matrix Multiplication

We rely on Yagle’s [135] method to write a matrix multiplication as a single polynomial prod-
uct to implement matrix multiplications on RLWE-based encrypted signals.

For calculating a matrix multiplication of size N x N as C' = A B, Yagle proposes to compute
¢(z) = a(z)b(z), where we will denote the elements of matrices or polynomial coefficients with
two or one subscripts respectively, such that

N3+N2-N-1 N-1N-1
_ i _ i+jN
c(z) = g ciz', a(z) = E E aiyinz I,
=0 i=0 j=0
N-1N-1
_ N(N—1—i+jN
b(z) = Z Z bN—1-i4jn 2 Ny,
=0 j=0

with Qij = Qi+jN bm‘ = bN—l—’i—‘y—jNv Cij = CN2_N4i+jN2 and integers ¢ and j such that
0<1,7<N.

This imposes a lower bound n > N3 + N2 — N — 1 on the needed maximum degree n of
the modular function f(z) = 1 + 2", in order to store the result of a matrix multiplication of
size N x N within the cryptosystem. Possible applications of this encrypted matrix multiplication
algorithms for signal processing comprise, among others, linear codes and computing N encrypted
linear transforms of N different signals of size /V through a single polynomial product.

Operations with the scaling variable d: The necessary lattice size for encrypting Yagle’s ma-
trix product in an encrypted algorithm can be very large, so the method can become computation-
ally too expensive even for matrices of moderate sizes. Yagle’s approach uses a scaling variable
(denoted s in [133]) to lower the number of coefficients of the proposed polynomials, reducing
also the dimension of the considered lattice. This comes at the cost of imposing certain conditions
on the magnitude of the elements of the result.
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Assuming a plaintext from a ring R;[z] = Z;[z]/ f(z) with f(z) = 1 + 2™ and n power of 2,
we can reduce the degree of the polynomial of the modular function and still get the desired result.
For this, we need to do a change of variable z = dw and a change of the modular function by
f(w) =1+w!, 1 <1 < n,being [ the desired new degree (due to the cryptosystem requirements,
! must be a power of two). Therefore, if all the elements of the resulting matrix C' are less than
d’, they can be recovered from the result with a base-d decomposition of all the coefficients. For
more details on using the scaling variable d we refer the reader to [135].

This approach can be adapted to the operations described in this chapter in order to achieve a
size reduction of the polynomials. Nevertheless, its use makes it difficult to perform subsequent
encrypted homomorphic operations.

4.6.3. Encrypted CRC (Cyclic Redundancy Check)

Given a generator polynomial g(z) of maximum degree n — k, and a message m(z) of maxi-
mum degree k — 1, CCCs (Cyclic Convolution Codes) encode the signal m(z) as the polynomial
product m(z)g(z). After encrypting signals g(z) and m(z), their polynomial product can be ho-
momorphically performed if the result fits in the length allowed by the ring R;[z], i.e., it does not
wrap around.

Consequently, these types of codes seem to perfectly adapt to the structure of RLWE cryp-
tosystems, enabling the application of new encrypted operations, such as encrypted CRC checks
of the encrypted message. Some specific types of cyclic convolution codes, such as BCH or Reed-
Solomon, require the use of the NTT and INTT for encoding the messages. The calculation of
the encrypted NTT and INTT has been addressed in Section Below, we include an example
of the use of cyclic codes for the reduction of the cipher expansion in RLWE or m-RLWE based
cryptosystems.

Cyclic codes for better cipher expansion: In [[114]], the authors show that in practical situations,
if the least significant bits of the encrypted coefficients are discarded, the decryption error rate
does not increase significantly. This line of thought can also be found in other recent works [85]]
showing how discarding the least significant bits does not increase too much the ciphertext noise
in a scale-invariant cryptosystem.

Therefore, a possible improvement would be the homomorphic application of a cyclic code
to the encrypted values, in such a way that we could discard more bits and protect against the
quantization errors without decoding first. Of course, there exists a trade-off between the increase
of the polynomial size (due to the introduced redundancy in the message) and the number of
discarded bits in the polynomial coefficients.

Fortunately, when the messages have a size k smaller than n we can apply the cyclic encoding
without increasing the polynomial size of the ciphertexts, therefore achieving a reduction in the
cipher expansion. Regarding the increase of computational cost at decryption, the key owner only
has to apply the corresponding cyclic decoding after the decryption of the encoded message.

4.6.4. Generic Linear Transforms for encrypted vectors

We can implement any kind of linear transform by relying on the method presented in Sec-
tion 4.5.2] to perform the element-wise multiplication between a ciphertext and a cleartext. In
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matrix form, the element-wise multiplication can be seen as a multiplication between the cipher-
text components and a diagonal matrix whose diagonal is composed of the cleartext coefficients.
We briefly introduce a generalization of the previously considered diagonal matrix to a general
square matrix. With this approach, we can perform any linear transform of an encrypted signal,
provided that the matrix considered for the linear transform is available in cleartext.

For completeness, we show below the process for calculating the product between the pub-
lic matrix and the encrypted vector. Additionally, we also exemplify its use for a typical signal
processing application: interleaving.

Implementation of the Linear Transform for an encrypted vector

We follow an analogous process to Section First, we consider the ciphertext ¢ = (co, ¢1),
whose decryption circuit is cg + ¢; s, and the linear transform represented by the square matrix L
of size n x n. If we denote the polynomial ¢ as the result of the multiplication Ley, the decryption
circuit in matrix form will be c6 + LCis.

Additionally, the product LCs can be expressed equivalently in polynomial form as
Z?:_ol ()(2)s;, being ¢\9)(2) the polynomial whose coefficients are the j-th column of the matrix
product LC. Consequently, the new decryption circuit has the form ¢{(z) + Z;‘L;ol c9)(2)s;.

Finally, considering n key homomorphisms hg‘j ) with i = 0,...,[log;q] — 1 and j =
0,...,n—1, in which hl(] ) has the coefficient s; “encrypted” under the key s, we can do a unique
©)
i

relinearization by concatenating all the h\’’ and the corresponding polynomials ¢(7) (2).

Regarding the computational cost, the only difference with respect to the element-wise multi-
plication between a ciphertext and a cleartext shown in Section [4.5.2]is the following: instead of
multiplying the coefficients of the ciphertext with a diagonal matrix, here we use a general square
matrix; that is, if we have N/n ciphertexts (where N > n), then we perform: (a) O(NN) products
between coefficients for the element-wise case, and (b) O(Nn) products with the naive matrix
multiplication algorithm between a square matrix and a vector (we are computing N/n matrix
multiplications among vectors and matrices with size n and n X n respectively).

In any case, the part of the algorithm that determines the total computation time is the execu-
tion of N/n relinearization steps with 2n[log, ¢| polynomial products each; i.e., approximately
O(Nn(logy n)2) products between coefficients. As the relinearization process is the same for both
cases, the computational cost for the general (known) linear transform of an encrypted vector is
approximately the same as the suggested method for element-wise product between a ciphertext
and a cleartext shown in Section

Interleaving

The interleaving process can be represented as a matrix product with a concatenation of per-
mutation matrices, which conform one “interleaving matrix”; therefore, we can implement the
interleaving of the encrypted signal as a linear transform. As an example, this can be useful when
performing an encrypted matrix multiplication (see Section[4.6.2)), because by changing some rows
of the interleaving matrices for other rows which contain all zeros, we can relocate the coefficients
of the result and zero those coefficients which are not needed.

Hence, the computational cost for the relinearization processes involved in our interleaving
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is the same as for the case of linear transforms discussed in Section 4.6.4] Additionally, the
remaining cost of encrypted interleaving is smaller than the cost of an encrypted linear transform,
as the interleaving prior to relinearization is much faster than a matrix product.

4.7. Conclusions

This chapter presents a novel way of using Number Theoretic Transforms paired with lattice-
based cryptosystems to take advantage of the polynomial structure of typical signal processing
applications and enable a wide range of unattended secure signal processing primitives for nonin-
teractive privacy-preserving processing of sensitive signals.

On the one hand, we show a parameterization of RLWE-based cryptosystems to fully op-
timize the use of underlying NTTs to speed up polynomial products; additionally we show
how to perform cyclic, negacyclic and generalized convolutions in the encrypted domain, en-
crypted component-wise products, and efficient encrypted NTT, either by applying pre- and post-
processing operations, or in a fully unattended manner through the use of relinearization primi-
tives.

We illustrate the use of our proposed approaches in several composable signal processing
blocks, ranging from generalized convolutions to error correcting codes and matrix-based oper-
ations. Therefore, this chapter opens up a wide variety of novel secure signal processing prim-
itives over fully encrypted signals in a non-interactive way, working either with polynomial or
component-wise operations, and efficiently batching SIMD processes.






Chapter 5

Revisiting Multivariate Lattices

This chapter is adapted with permission from ACM: Alberto Pedrouzo-Ulloa, Juan Ramon
Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. Revisiting Multivariate Lattices for En-
crypted Signal Processing. Tth ACM Workshop on Information Hiding and Multimedia Security
(IH&MMSec), July 2019.

5.1. Introduction

We have seen in Chapter [ that cryptosystems based on RLWE (Ring Learning with Errors)
present a clear advantage when dealing with signals, as its underlying polynomial structure allows
for very efficient filtering and convolution operations [29]; hence, most of the applications involv-
ing correlations and filtering can benefit from recent RLWE-based schemes, which keep constantly
evolving 30} 31} 32].

Nevertheless, applications working with images or higher dimensional signals are much more
demanding. One example is multimedia forensics, which deals with high volumes of signals
with an inherent multidimensional structure [136]. For this scenario, several solutions have
been proposed to adapt the structure of RLWE cryptosystems for efficiently dealing with this
multi-dimensionality [4, 46, 5]. These works propose a generalization of RLWE called multi-
variate RLWE (m-RLWE), and their results show improved efficiency/space tradeoffs. Actually,
the authors of [3]] show the flexibility of these structures and their advantages in several con-
ventional signal processing operations, such as block-processing and multidimensional convolu-
tions/transforms. These schemes have been used in even more complex applications inside the
field of multimedia forensics, namely camera attribution in the encrypted domain [[137]].

In Chapters[2)and 3| (see also Appendix[A)) we introduced the multivariate RLWE problem and
discussed in depth its peculariaties for cryptographic primitives. With this in mind, our objective
in this chapter is a little bit different and we focus more on its consequences for secure signal
processing.

Recently, Bootland et al. [44] introduced an attack that reduces the security of schemes based
on m-RLWE (see Chapter[2). This attack has important consequences on the validity of the results
presented in [4} 46, |5]] and a careful analysis is needed to correctly reevaluate the security of these
schemes.

This chapter carries out this analysis and recalculates the correct security estimates for m-
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RLWE applications in light of this new attack. Additionally, we introduce a novel pre-/post-
coding paradigm for RLWE cryptosystems, which we denote “packed”-RLWE, that preserves all
the security properties of works based on m-RLWE, but now basing their security directly on
RLWE, which is not affected by Bootland’s attack.

We also provide an extensive comparison between a conventional use of an RLWE cryptosys-
tem (baseline RLWE), an m-RLWE cryptosystem and an RLWE cryptosystem equipped with our
proposed pre-/post-coding. For the sake of clarity and space, we focus on applications based on
multidimensional filtering, but all the solutions previously presented for m-RLWE can be adapted
to our new packed-RLWE. Finally, we analyze the optimal combination of the three approaches,
baseline RLWE, m-RLWE and packed-RLWE, depending on the efficiency/space trade-offs re-
quired by the target application.

Main Contributions: This chapter features the following contributions:

= We revisit the security analysis of previous m-RLWE cryptosystems in light of the recent
attack introduced in [44].

= We survey the best existing algorithms to homomorphically evaluate multidimensional con-
volutions with an RLWE cryptosystem (denoted as baseline RLWE), noting that some of
the best solutions in one dimension (as the use of FFT algorithms) result in a much worse
performance in a multidimensional setting, due to the increase of the circuit depth.

= We propose a new pre-/post-coding paradigm over RLWE cryptosystems (we denote it
packed-RLWE), that directly “emulates” multidimensional convolutions over the encrypted
signals, and comprises very efficient element-wise products and FFT operations on the
plaintext ring.

= We show how previous solutions based on m-RLWE can be adapted to our packed-RLWE
version, hence getting all the advantages of these structures while still preserving the high
security of a lattice with dimension equal to the full length of the involved signals.

= We provide an extensive comparison between a baseline RLWE, an m-RLWE based solu-
tion (with non-“coprime” modular functions, which is a “worst-case” for security) and our
packed-RLWE proposal. Our results show that m-RLWE and packed-RLWE still outper-
form those results of baseline RLWE.

= We briefly discuss how the three approaches can be combined to fit the specific requirements
of a real application, optimizing the space/efficiency trade-offs. Additionally, we describe
several practical applications which can greatly benefit from the use of these tools.

Structure: The rest of the chapter is organized as follows: in Section we briefly revisit
the used RLWE-based cryptosystems, their security and the use of NTT/INTT transforms. Sec-
tion[5.3]includes a description of the different approaches for both baseline and multivariate RLWE
solutions. We introduce the main contribution of this chapter in Section comprising our new
pre-/post-coding blocks for packed-RLWE. Section[5.5]includes an extensive comparison between
the different proposed approaches in terms of security, efficiency and cipher expansion. Finally,
we discuss a set of example encrypted applications that greatly benefit from our solutions in Sec-
tion
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5.2. Preliminaries

In this section, we revisit the RLWE problem and RLWE-based cryptosystems, together with
their multivariate RLWE counterparts. We also summarize the recent attack [44]] to multivariate
RLWE and detail its effects on the choice of security parameters. Finally, we briefly revisit the use
of Number Theoretic Transforms (NTTs).

5.2.1. Multivariate RLWE problem

Firstly, for completeness, we include an informal definition of the multivariate RLWE problem
as is stated in Chapter[2] We focus on the most widespread case where the modular functions are
cyclotomic polynomials of power-of-two order, i.e., fi(z;) = ®op,(2;) = 2" + 1 with n; a
power-of-two. Additionally, this general definition allows us to also cover the RLWE problem as
a particular case when the number of dimensions is one (i.e. [ = 1).

Definition (multivariate RLWE problem [4] (5| 22]], adapted Definition [[|from Chapter[2). Given a
polynomial ring Ry(z1, ..., 2] = Zy[z1,...,21)/ (21" + 1,..., 2" + 1) and an error distribution
X|#1, ..., 2] € Rylz1,. .., 2] that generates small-norm random polynomials in Ry(z1, ..., z],
m-RLWE relies upon the computational indistinguishability between samples (a;,b; = a;s + €;)
and (a;, u;), where a;, u; < Ry [21,..., 2] are chosen uniformly at random, whereas s,e;
X|z1, - - ., 21| are drawn from the error distribution.

A remark on RLWE: For cyclotomic modular functions {®;,,(21),...,®m,(2)} where
ged (ma, ..., my) = 1, m-RLWE is isomorphic to RLWE with modular function @7 ,,, (2) [45]].
Unfortunately, this is not the case for the version stated in Definition (1} and the security of m-
RLWE is highly dependent on the form of the different modular functions (see Section[5.2.3).

5.2.2. An (m—)RLWE based Cryptosystem

We instantiate univariate and multivariate versions of the FV cryptosystem [86] as examples
for our proposed schemes (see Sections and [5.4) and our performance comparisons (see Sec-
tion[5.5), but the results are generalizable to other cryptosystems such as BGV and CKKS [50, 31].
Due to space constraints, we do not include here a description of all the cryptosystem primitives
(we refer to [86] for a detailed description). Instead, we summarize the cryptosystems’ properties
relevant to our analysis.

The plaintext elements belong to the ring R¢[z1, .. ., 2, and ciphertexts are composed of (at
least) two polynomial elements belonging to R,[z1,. .., 2;]. The security of the scheme relies on
the indistinguishability assumption of the m-RLWE problem (see Definition [I)), which reduces to
RLWE when [ = 1.

Cipher expansion

In FV, we can use the following noise bound (Theorem 1 in [86]) when evaluating an arithmetic
circuit of multiplicative depth L

465 (55 + 1.25)L70 41 < [ J (5.1)

4
B
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where 6r = ][, n; is the ring expansion ratio, ¢ is the modulo of the ciphertext ring Ry, ¢ is the
modulo of the plaintext ring Ry, and ||x|| < B, that is, x is a B-bounded distribution of variance

o2

RLWE in secure signal processing

The use of an RLWE-based cryptosystem brings about two main advantages in secure signal
processing: (a) its security is highly dependent on the length of the involved polynomials, which
directly impacts the cipher expansion if the input data cannot be fully packed; practical signals are
usually long sequences, such that they can be encrypted in only one encryption; this helps in in-
creasing the security of the underlying RLWE-based cryptosystem without significantly increasing
its expansion; (b) homomorphic properties of the cryptosystem translate into addition and multi-
plication of plaintext polynomials, which represent signal addition and convolution (filtering), the
basic blocks required in any signal processing application.

5.2.3. Security of multivariate RLWE

The original formulation of multivariate RLWE [4], 5] assumes that the m-RLWE problem
(Deﬁnition in dimension n = Hi:l n; 1s as hard as the RLWE problem in dimension n. How-
ever, in [44] Bootland et al. introduce an attack on m-RLWE; this attack exploits the fact that
some of the modular functions enable repeated “low-norm” roots in the multivariate ring. As a
result, when common roots exist, this attack is able to factor the m-RLWE samples into RLWE
samples of smaller dimension, hence reducing the security of these m-RLWE samples to that of
solving a set of independent RLWE samples of the maximum individual degree max;{n;}.

This attack is specially relevant for m-RLWE samples (a;, b; = a;s + te;) chosen as in Defi-
nition (1}, where all the modular functions introduce common rootsﬂ For a detailed explanation of
the Bootland er al.’s attack we refer the reader to Section [2.2] from Chapter 2

5.2.4. Number Theoretic Transforms

Consider a ring Z;,, where p = Hle pé", an NTT of size IV can be defined if the introduced
properties in Chapter .2.3] hold. Instead of dealing with the Equations @.4) for the forward
and inverse transform, we work with an alternative representation which is more convenient to
showcase the results of this chapter.

We can see NTT/INTT transforms as matrix multiplications
=Wz, and =W 'z, (5.2)
where

&= (&0],...,z[N —1))", @ = (z[0],...,z[N —1])7,

'As an example, consider the functions f(z) = 2™ + 1 and g(y) = y*>™ + 1. It is easy to verify that the square of
the roots of g(y) are also roots of f(z).
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and
1 1 1 1
1 o a? alV-1
W = .
1 oVN-1 Q2(N-1) Q(N=D(N-1)

5.3. An analysis of Previous Schemes

In this section, we survey the available algorithms to homomorphically evaluate a multidimen-
sional convolution operation with both an RLWE and an m-RLWE based cryptosystem. We give
approximations for computational cost, cipher expansion and security with relative expressions
between the different algorithms (we refer the reader to Appendices[5.A]and [5.B] for more details
on the derivation of these expressions).

5.3.1. Our Setup

We set the following parameters to enable a fair comparison:

» The used FV cryptosystem (see Section [5.2)) is based on either RLWE or m-RLWE (see
Definition|5.2.1) with power-of-two modular functions (f;(2;) = z"* 4+ 1). The noise distri-
bution of a fresh ciphertext has variance o and its noise coefficients are upper-bounded by
B.

= We use RLWE with n = n; and m-RLWE with n = Hi’:l n;. Hence, the ring expansion

ratio 0 = ny for RLWE, and dp = Hizl n; for m-RLWE.

» The computational cost is measured in terms of polynomial coefficient multiplications, with-
out explicitly taking the cost of each coefficient multiplication into account. In Section [5.5]
we introduce this additional factor to have a fair comparison between the analyzed schemes.

» The elemental ring operations are polynomial multiplications and additions in R[z] (RLWE)
or R[z1,..., 2] (m-RLWE). By means of FFT algorithms, the computational cost of poly-
nomial products is n; log n; for RLWE and n; . ..n;log (n; . ..n;) for m-RLWE.

» Bit security is measured relative to Bit Security(o?,n), which represents the bit security
of an RLWE instance with error distribution of variance o2 and polynomial degree n. In
Section[5.5] we give concrete bit security estimations for the different solutions.

We work with [-dimensional signals and filters whose length per dimension is, respectively,
N; and F; < N, for i = 1,...,l, and consider two main scenarios: (a) a linear (non-cyclic)
convolution where we reserve enough space inside the ciphertexts to store the result (i.e. n; =
N;+ F;—1), and (b) a cyclic convolution, enabled by means of the pre-/post-processing from [29]
on top of the homomorphic negacyclic ring operation (i.e. n; = IV;).

In the next sections, we introduce two RLWE-based approaches for performing a multivariate
convolution, and the natural m-RLWE approach, and compare them in terms of computation cost,
ciphertext noise and relative bit security, before presenting our proposed scheme.
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5.3.2. Multidimensional convolutions in baseline RLWE

Convolution, correlation and filtering can all be expressed as a linear convolution between

two [-dimensional signals y[ui,...,w] = xui,...,w] * hlui, ..., w] (where u; € N). With a
polynomial representation, this reduces to a polynomial product y(z1,...,2;) = x(21,...,21) -
h(Zl, e ,Zl).

As discussed in [4], implementing a multidimensional convolution with an RLWE-based
cryptosystem can be achieved by internally encoding only one of the dimensions (u; or 2; in
this case), and externally evaluating the whole convolution on the remaining [ — 1 dimensions.
This means that the two [-dimensional signals are represented with (I — 1)-dimensional elements
o'[ug, ..., w—1] and A'uy, ..., u;_1], where each element belongs to R[z;]. The resulting op-
eration is y'[u1, ..., u;_1] = @'[u1, ..., u_1] * h'[uy, ..., u;_1] with z = 0 (resp. h = 0) for
elements outside of the interval 0 < u; < N; (resp. 0 < u; < Fy).

This external convolution operation can be realized by leveraging the circular convolution
property of DFT transforms and using FFT algorithms. However, the implementation of the FFT
introduces a multiplicative depth equal to log (Hﬁ; N;), where N; is the number of samples in
dimension ¢; the complexity of RLWE-based cryptosystems strongly depends on the number of
levels, due to the increase in the size of the ciphertext coefficients (¢ depends exponentially on the
number of levels in Eq. (5.1))); hence, as noted in [129], it turns out that more basic approaches with
a multiplicative depth of one perform better, even if they feature a higher (quadratic) computational
cost in terms of coefficient multiplications. Hence, we rule out the "fast" algorithms and we detail
the two main direct approaches in the following, to enable a fair comparison of computational
complexity with fixed q.

NTT matrix Convolution

Let P be the total number of elements in the convolution signal (P = Hi;} N; for the cyclic
convolution scenario, and P = Hi;}(l\fZ + F; — 1) for the linear one). The NTT can be im-
plemented by using its matrix formulation, Eq. (5.2). This results in a total of P? multiplica-
tions between ciphertexts and clear-text scalar values (and roughly P? ciphertext additions). As
these operations can be much faster than the P ciphertext multiplications corresponding to the
Hadamard product in the NTT domain, we do not take into account the runtime corresponding to
the NTT/INTTs matrix computations, but we do consider its effects in the noise of the ciphertext.
Table shows the computational cost, ciphertext’s noise and bit security for this method,
particularized for the two scenarios presented in Section (linear and cyclic convolution).

Direct Convolution

The second approach is to directly realize the convolution equation in polynomial form, which
has a computational cost of roughly the product of the lengths of the involved signals in the con-
volution. While this solution has a higher computational cost than the previous one, it can be
seen that the NTT matrix product incurs in a higher noise than the polynomial version; further-
more, for the case where the length of the filter signal is much smaller than that of the signal
(ie. Hl F, <« Hl N;), the direct convolution approach can be much more efficient than the NTT
matrix convolution, due to a smaller cipher expansion (caused by a much more reduced noise in-
crease). Table [5.1(b)] summarizes the computational cost, ciphertext’s noise and bit security for
this method.
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5.3.3. Multivariate RLWE

RLWE-based cryptosystems lack support for seamlessly encrypting a multidimensional signal
in one ciphertext, whereas m-RLWE enables a more compact representation achieving one en-
cryption per signal. By considering the polynomial representation of the signals y(z1,...,2;) =
x(z1,...,21) - h(z1,...,2), m-RLWE can homomorphically evaluate the multidimensional con-
volution operation with only one ciphertext multiplication [4} 5], which can be realized leveraging
efficient FFT algorithms with no penalty on the required ciphertext size, which is a clear advantage
with respect to baseline RLWE. Nevertheless, due to the recent attack presented in [44], the secu-
rity of m-RLWE cannot be based on the product dimension of the multidimensional polynomial
(n = Hﬁzl n;), but instead on the highest degree of the univariate rings (that is, max; {n;}). Ta-
ble summarizes the computational cost, ciphertext’s noise and bit security for the m-RLWE
multidimensional convolution.

5.3.4. Comparison between RLWE and m-RLWE

In light of the results shown in Tables [5.1(a), [5.1(b), and [5.1(c)} it is clear that m-RLWE
is much more efficient than RLWE when implementing multidimensional convolutions, but the
increase in ciphertext size is not paired with an analogous increase in the bit security of m-RLWE,
in general. Actually, depending on the chosen modular functions, m-RLWE can be isomorphic
to RLWE when the modular functions {®,,, (21),..., P, (1)} satisfy ged (mq,...,m;) =1
(see Section [5.2.1). Hence, it is possible to preserve some of the advantages of m-RLWE while
still keeping the security reduction to a lattice of dimension equal to the product of the degrees
of each univariate ring, by resorting to "uneven" non-power-of-two (coprime) univariate modular
functions (we discuss this possibility in detail in Chapter [2).

As an example, Cheon and Kim [56] initially proposed using m-RLWE with modulo power-
of-two cyclotomic polynomials, and updated their application to use “coprime” cyclotomic poly-
nomials [S7] after the publication of Bootland e al. attack [44]].

In the next section we focus on the “worst-case” scenario, where the security of m-RLWE
reduces to only the highest of the univariate degrees. Even after this reduction on security, we show
that m-RLWE can outperform the use of a simpler RLWE instance, due to two key advantages: (1)
working with power-of-two univariate modular functions 1 + 2™ which enable faster algorithms
for product and reduction computations, and (2) more flexibility on the choice of the encrypted
“lengths”.

However, we want to remark that the results presented here can be analogously applied to more
general RLWE instances with other cyclotomic polynomial modular functions.

5.4. Proposed Scheme

This section describes the main contribution of this chapter. We introduce a new pre-/post-
coding block which, when applied before/after RLWE-based encryption/decryption, transforms
the polynomial multiplication (1D negacyclic convolution) of RLWE samples with power-of-two
modular function (I = 1 in Definition[I) into an /-dimensional cyclic convolution operation. This
enables the efficient realization of multivariate convolutions under the RLWE problem without a
loss in security; i.e., the bit security is that of the whole lattice dimension n = Hézl n;. Therefore,
we can encrypt the whole multidimensional signal in just one RLWE encryption with a security
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based on RLWE and not affected by Bootland’s attack, while preserving all the properties of m-
RLWE claimed in [4),15].

We start by defining multivariate NTT/INTTs, as one of the main building blocks of our pro-
posed scheme, and then we present our proposed framework for pre-/post-coding.

5.4.1. Multivariate Number Theoretic Transforms

Consider a length-N NTT transform over Z,, as defined in equations (5.2)) by a matrix multi-
plication with W (and W ! for the INTT).

If x represents a "flattened" vecto with the samples of an [-dimensional signal x, we can
define an /-dimensional NTT/INTT as the Kronecker product of the NTT matrices for the [ dimen-

sions as follows:
l l
%= <® WW) z, @= <® (W<Z”>‘1> . (53)
i=1
N——

=1

v (vt

where each W (%) (resp. (W(zi))fl) is the NTT (resp. INTT) of length N; for the i-th di-
mension (z;) of x. Equivalently in signal representation, the i-th NTT matrix is applied to
x[u, ..., ug, ..., uasavector of N; (I—1)-dimensional samples indexed by u; =0, ..., N;—1,
foreach i = 1,..., 1. Hence, the matrices V() (resp. (V(l))fl) represent the [-dimensional NTT
(resp. I-dimensional INTT). Additionally, the conditions in Section [5.2.4 must be satisfied, so for
each matrix W (%) there must exist an N;-th root of unity in Lp.

The [-dimensional NTT/INTT satisfies a multivariate circular convolution property that we
exploit in our proposed scheme

VWy = (vVUz)o (VOR), (5.4)
where y, , h are the "flattened" vectors corresponding to the signals y[ui, ..., ], x[u1, ..., ],
hlui,...,w], and y[uy, ..., ] is the I-dimensional circular convolution between z[u1, ..., u;]

and h[ul, ce ,ul].

Analogously to their univariate counterparts, multidimensional NTT/INTTs can be efficiently
implemented with FFT algorithms.

5.4.2. ‘“Packed”-RLWE and its underlying Multivariate Structure

Once we have introduced the formulation for multivariate NTTs/INTTs applied to flattened
vectors, we can present the pre-/post-processing adapted from [29, |54] which allows to transform
the negacyclic convolutions of the rings from Definition [1]|into cyclic convolutions.

Consider two length-N signals z[;] and h[j], with polynomial representations x(z), h(z)

N-1 ' N—-1 '
z(z) = Z z[i]z* and  h(z) = Z S

2A “flattened” @ vector is a reshape of the multdimensional signal z into a column vector.
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We want to calculate their circular convolution y(z) = x(2)h(z) mod 1 — 2%, but the ring
operation enabled as a homomorphic product is a polynomial product modulo 1 + 2% (negacyclic
convolutions).

Assume that there exists a 2N-th root of unity 5 in Z, (that is, § = (—1)% mod p), the
pre-/post-processing [29, [54] consists of the following steps (we term it Murakami pre-/post-
processing, see Chapter [)):

= The input signals are pre-processed with component-wise products

2l ==l F (-1)F, j=0,.. N1,
W) = R ™ (-D)F, J= 0, N1
» Then, 3/(z) can be calculated with a negacyclic convolution as y'(2) = z/(z)h/(z) mod
1+ 2V,

= The output signal is post-processed with component-wise products

Equipped with the Murakami pre-/post-processing, we can emulate the operation from a ring
with a circular convolution property. The last step is to find a way of transforming the unidi-
mensional circular convolution into a multidimensional one. To this aim, we combine both a
unidimensional NTT/INTT (see Section and a multidimensional NTT/INTT.

Let y be the flattened [-dimensional circular convolution of & and h. By the convolution
property of the NTTs, we have

(W laye (W h) =W (2 o b)),

where @’ = Vx and ¥ = VOh. If we make use of the convolution property of the I-
dimensional NTT, Eq (5:4) with N = []'_, N;, we have

W vUz) @ (W VOh) = Wl <(V(l)w) ° (V(l)h))
= WV (y).

This represents a chain of matrix transformations that relates the unidimensional circular and
I-dimensional circular convolutions

Hence, the resulting structure of our proposed pre-/post-coding, detailed in Figure [5.1]is as
follows:

= A pre-coding is applied to the input signals

g’ =YW 'Vv0Uz and B =YW 'V
» y(2) is calculated as 2" (2)h"(z) mod 1 + 2V,
» A post-coding is applied to 3" (z)

y = (V(l))_lwrfly//.
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Figure 5.1: Block diagram of the proposed scheme for “packed”-RLWE.

The matrices Y and _T_l are diagonal matrices containing the elements of the Murakami
pre-/post-processing (1)%(—1)% and (1)%(—1)_7] forj=0,...,N — 1

Table includes a summary with the computational cost, ciphertext’s noise and bit se-
curity for the execution of a multidimensional convolution with the proposed method. This table
includes the cost of the actual convolution without the pre-/post-coding, which would be executed
at the client-side in a homomorphic processing scenario, and is evaluated as part of the encryp-
tion/decryption in Section [5.5] In any case, this pre-/post-coding only comprises element-wise
multiplications and a chain of two FFT computations on the plaintext ring, so the computational
cost of both encryption and decryption with the FV cryptosystem is higher than this processing
chain.

5.5. Security and Performance Evaluation

This section includes a comparison of RLWE, m-RLWE and the proposed packed-RLWE in
terms of security, computational cost and cipher expansion. We start by describing the procedure
followed to analyze the security of the different schemes. Afterwards, we analyze and compare
the expressions reported in Tables [5.1(a)} [5.1(b)] [5.1(c)|and [5.1(d)} and we highlight the tradeoffs
for each scenario. Finally, we also include execution runtimes for the case of image and 3D-signal
filtering.

5.5.1. Evaluation for Encrypted Processing of Multidimensional Signals

In [4) 5] we compared several encrypted multidimensional operations implemented with an
RLWE or an m-RLWE based scheme. We concluded that the m-RLWE implementation enabled
a much higher security with faster runtimes.

However, after the attack presented in [44]], we know that the security estimations with m-
RLWE are no longer valid. Nevertheless, the packed-RLWE solution we have introduced in this
chapter can preserve all the claimed security and efficiency results in [4, [5]].

In this chapter, instead of using a slack variable as in [4]} 5], we follow a different approach,
and we compare baseline RLWE, m-RLWE (see Section[5.3) and our packed-RLWE solution (see
Section[5.4)) by fixing the minimum level of security in terms of the lattice dimension for baseline

3While we focus on NTT transforms, similar results could be considered with chains of CRT matrices (see [43]).
This would enable the encoding of different multidimensional signals in any instance of RLWE with a general cyclo-
tomic modular function.
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RLWE. This dimension is kept constant for each univariate ring of m-RLWE and packed-RLWE,
even though the security obtained with the two latter will be higher, and hence, the comparison on
efficiency represents a worst-case scenario for m-RLWE and an unfavorable case for our packed-
RLWE. We show that even in this pessimistic scenario, both m-RLWE and packed-RLWE can
outperform baseline RLWE both in terms of efficiency and security.

For simplicity, we make the following set of assumptions (we refer the reader to Appen-
dices[5.A]and [5.B] for further details):

Al We work with “hyper-cubic” [-dimensional signals with the same length N in each dimen-
sion (length-F' in case of filters) and we assume n; to be equal to the value required to store
the result of the linear or cyclic convolution.

A2 We define F' = C' - N where C is a constant satisfying 0 < C' < 1, so that we can express
the results in terms of N to compare the behavior of both linear and cyclic convolutions
under the same formulation.

A3 For estimating the cost of each coefficient multiplication in Z,, we assume the use of
Schonhage-Strassen algorithm with a cost of O(w(log w)(loglog w)), with w = O(log, q).
For the asymptotic analysis, we simplify the cost to O(logs q).

Comparison of Computational Cost and Cipher Expansion

A summary with the computational cost and ciphertexts’ noise for each of the analyzed ap-
proaches, particularized for assumptions A1-A3, is included in Tables [5.2(a)| [5.2(b)| and [5.2(c)l
We refer the reader to Appendices[5.A]and for the detailed derivation of the approximate costs
and noise bounds. We first compare the asymptotic cost ratios for increasing N between the four
approaches, and then move on to a more precise analysis of the effect of each parameter for a
given V.

Asymptotic computational cost ratios: By neglecting the effect of some logarithmic factors in
the computational cost, we can provide some approximate asymptotic comparisons between the
different schemes, in order to highlight the most significant effects. In particular, we consider
N > F, so we approximate N + F' — 1 ~ (1 + C)N and neglect the effect of (1 + C) and its
powers with respect to powers of IN. This allows us to cover both linear and cyclic convolutions
with the same computational cost expressions (we refer the reader to Appendices and [5.B]for
more details on the simplifications).

If we neglect the effect of additions and consider only products as the operation driving the
complexity, we obtain the following ratios

Cost,g ~ N Costyr N Costyy- ~1 Costyy- N 3
Cost,r, " Costyp, " Costy,, 2’

Cost,p, ’
where the costs {Cost,,, Cost,q, Costy,, Costy,} correspond, respectively, to
{Baseline RLWE (NTT matrix comp.), Baseline RLWE (Dir. Conv.), m-RLWE, and
packed-RLWE}.

We can see that Cost,, is approximately / times lower than Cost,,,, and Cost,,, but it has also
a lower bit security, which grows with [ for packed RLWE.
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Figure 5.2: Computational cost of encrypted image linear filtering for different relative filter sizes C' =
{0.01,0.1,1}.

If we factor in additions by assuming a cost of O(log, q) for each coefficient addition (linear
in the size of the coefficients), the asymptotic ratios become

Cost,.g Costy,r  llogy N Costy,  llogy N
Cost" ~ logy N, N 1 — R~ T
ost;, Cost.,, N Cost.,, N

where Cost’,, represents the cost of the NTT/INTT matrix computation in baseline RLWE. Con-
sequently, we see that m-RLWE and packed-RLWE are not only more secure, but also asymptoti-
cally more efficient than baseline RLWE for a wide set of scenarios.

Precise computational cost: While the previous asymptotic analysis is useful to extract the
relative behavior of the schemes for very large [V, it neglects the effects of some parameters. Now,
we calculate the exact costs of the different methods by using the Schonhage-Strassen algorithm
for coefficient multiplication, considering log, ¢ for the cost of coefficient additions and without
removing any non-significant factors.

We choose two filtering scenarios with 2- and 3-dimensional signals. In all figures we represent
the cost (in terms of V) of a convolution between a “hyper-cubic” 2D or 3D signal with length
N per dimension and a filter with length ' = {0.01N,0.1N, N} per dimensionﬂ Figure
(resp. Figure represents the cost for a linear (resp. cyclic) convolution of 2D images, while
Figure [5.4] (resp. Figure [5.5)) represents the cost for a linear (resp. cyclic) convolution of 3D
signals. All of them plot the relative cost of RLWE with NTT matrix and direct convolution,
m-RLWE, and packed-RLWE, as a function of the per-bit elementary operation cost for growing
signal size; the ciphertext size q is taken as the minimum value that enables the operation with no
decryption errors for a constant noise power; therefore, security is also increased together with NV
(see Section [5.5.2)). Hence, we are accounting for the raw growth in complexity produced by a
change in the signal dimensions.

We can see that changes in the relative filter size C' have a higher impact when the dimen-
sionality of the signals increases, and in particular, the expansion in baseline RLWE with direct
convolution is strongly influenced by small C values, which explains why it can be better when
working with very small filters. In this case, if baseline RLWE gives enough security, it can be
the best option, because both m-RLWE/packed-RLWE would require to further increase each of
the n; to store the results. In general, there is a minimum value of C' for which packed-RLWE
and m-RLWE start outperforming baseline RLWE, and this value decreases when increasing the

*The cost plotted in Figures andconsiders n; &~ N orn; =~ N + F — 1, but it is worth noting that
in practice each n; will be rounded up to a power of two (see Definition[5.2.T), so performance will show a step-wise
behavior for growing IV instead of the smooth figures we show.
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Figure 5.3: Computational cost of encrypted image cyclic filtering for different relative filter sizes C' =
{0.01,0.1,1}.
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Figure 5.4: Computational cost of encrypted 3D-signal linear filtering for different relative filter sizes C' =
{0.01,0.1,1}.
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Figure 5.5: Computational cost of encrypted 3D-signal cyclic filtering for different relative filter sizes
C ={0.01,0.1,1}.
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dimensionality, showing that packed-RLWE and m-RLWE perform better with high-dimensional
signals and/or with filters of moderate or big size.

It is worth noting that none of the approaches is universally better than the others, and a
combination of all of them may produce the best efficiency/security trade-offs. As an example, if
the used filter has one particularly small dimension, it could be worth to encode this dimension as
external to the encryption scheme. Conversely, if the security of the largest dimension is enough,
the structure of m-RLWE could be preferable, as it can be more easily parallelizable than packed-
RLWE and also avoids the pre-/post-coding stage at the client. Nevertheless, packed-RLWE is
shown to outperform baseline RLWE and m-RLWE both in efficiency and security in a wide
range of parameterizations.

5.5.2. Security evaluation

Tables [5.1(a)] [5.1(b)l [5.1(c)] and [5.1(d)| express the security of the schemes relative to
BitSecurity(o?,n) (see Sections and [5.4). This function grows when increasing o2 or

n (it is much more sensitive to n).

In order to give concrete values for Bit Security(c?,n), we make use of the LWE security
estimator developed by Albrecht et al. [80, 81]E] by calling the function est imate_lwe(n,q,q,
secret_ distribution = “normal”, reduction_cost_model = BKZ.sieve), where 0 = \;’%. The
results for the analyzed cases are shown in Tables [5.3] and [5.4] which are discussed in the next
subsection in the context of the achieved security-efficiency tradeoffs.

5.5.3. Implementation and execution times

We have implemented the methods from Sections [5.3] and [5.4| making use of the RNS variant
of the FV cryptosystem [95]], in order to have concrete runtimes, instantiating the complexity
measures introduced in the previous section. Execution runtimes were measured on an Intel Xeon
E5-2667v3 at 3.2 GHz using one core (no parallelization).

We remark that we have not included results using the Paillier cryptosystem [14] in our per-
formance comparison, but its runtimes and bit security can be easily extrapolated from [4} |3
and [112]] respectively. In any case, Paillier cannot address the operations with encrypted signals
and filters, and even with clear-text filters it is much slower than any RLWE-based scheme for this
type of operations.

Tables and report runtimes for, respectively, encrypted 2D-image linear filtering and
encrypted 3D-signal cyclic filtering for the same signal length per dimension. We have used
n; = N; + F; — 1 and n; = N; (lattice dimensions equal to the signal dimensions) to show
the maximum achievable efficiency for each scheme. In both scenarios, packed-RLWE provides
similar runtimes to multivariate RLWE and faster runtimes than both baseline RLWE solutions,
while also having a much higher bit security. Actually, with previous approaches we can only
guarantee a very reduced security for the chosen polynomial degree, which is clearly below the
current recommended bit security estimations (> 128 and > 256 for quantum-resistance), and
means that their computational complexity for the same acceptable security level as packed-RLWE
would be substantially worse.

3 Available online at https://bitbucket.org/malb/lwe-estimator.
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5.6. A Discussion: Multidimensional Structures and their Applica-
tions

This chapter introduces a new pre-/post-coding block which enables significant efficiency ad-
vantages with respect to regular RLWE when processing multidimensional signals, bringing the
benefits of m-RLWE while avoiding the recent attack by Bootland et al. [44]] by basing the security
only on that of RLWE.

While we focus on multidimensional filtering and correlation scenarios with encrypted signals,
the proposed multivariate structures can be leveraged in a much wider set of applications. These
range from block-processing (where we could apply homomorphic transforms between different
block structures), better encrypted packing, multi-scale approaches such as pyramids and wavelet
transforms, and even block-DCTs (see Appendix [B). These solutions could also be combined
with conventional signal processing approaches such as overlap-save and overlap-add algorithms
(see [137]]) and used to enhance encrypted matrix operations [S7]]. Hence, multivariate structures
can produce notable efficiency improvements in many applications, when combining the solutions
proposed in this chapter to optimize the security-efficiency trade-offs.

The use of packed-RLWE could also provide clear improvements in more complex applica-
tions such as forensic analysis and, in particular, camera attribution in the encrypted domain (see
Chapters [7] and [8)), where we can already find some works such as [137, [136) [138]. The last two
make use of the BGN (Boneh-Goh-Nissim) cryptosystem to implement an homomorphic corre-
lation operation between images. By the use of our proposed method, their runtimes could be
greatly improved with no impact (or with an increase) on security.

5.7. Conclusions

This chapter proposes a novel framework for secure outsourced processing of encrypted multi-
dimensional signals. As a fundamental block in our framework, we present a new pre-/post-coding
block which enables multivariate structures directly on RLWE-based cryptosystems without com-
promising the security of the RLWE problem. We have also reevaluated the security of previous
solutions based on multivariate RLWE by taking into account a recent attack which exploits the
use of modular functions by introducing repeated roots in the ring. We have included an exten-
sive comparison in terms of security and performance between the different approaches, showing
the advantages of our scheme with respect to the previous solutions in terms of both faster run-
times and higher security; and also analyzing the possibility of adapting a combination of different
methods to the needs of the specific scenario. Consequently, this chapter opens up a broad set of
encrypted processing applications which deal with multidimensional signals and shows the via-
bility of somewhat homomorphic encryption for the privacy-preserving processing of this type of
signals.

5.A. Cipher Expansion Analysis

In order to calculate the bounds on ¢ (see Section [5.2)) depending on the chosen scheme, we
rely on Lemma 3 from [86], which relates noise growth in the FV cryptosystem after each addition
and multiplication. We include here a slightly modified version of the lemma:
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Lemma 1 (Lemma 3 from [86]). Let ct; for i = 1,2 be two ciphertexts with [ct;(s)], = A -

m; + v; where A = ij, and ||vi|| < E < % Set ctyqq = FV.SH.Add(cty, cty) and ctype =
FV.SH.Mul(cty, cto, rlk) then

[Ctadd(s)]q =A- [m1 + mQ]t + Vadd,
[Ctmul(s)]q =A- [ml : mQ]t + Ul

with ||Vaqd|| < 2E + t and ||vpmul|] < Etog(0r + 1.25) + ERelin.

Taking into account Lemma [l and the approximation for the noise in a fresh ciphertext, £ =
20rB (see [86l), the noise after L levels of multiplication is approximately QBééLJrltL . This
expression can be directly used to estimate the size of ¢ (hence the cipher expansion) for both the
multivariate and “packed” RLWE schemes.

However, when working with baseline RLWE for a multidimensional convolution, the effect
of additions cannot be neglected, as their number is of the order of (or even higher than) d, so we
explicitly take them into account in the size of ¢. After one addition, ||vqq4|| < 2E+t = 20 B+,
where we neglect ¢ because in our scheme dr B dominates the right hand term. Murakami pre-
/post-processing (see [29}154]]) needs a ¢ higher than the lattice dimension, so we choose a slightly
higher ¢, that is ¢ ~ max; {N; + F; — 1} for all schemes but for packed-RLWE, for which ¢ ~
[I(N;: + F; = 1).

The effect of these additions into the size of the noise is equivalent to a multiplicative factor
Agqqd, yielding a noise of A- wdd 2352L+1 after L multiplication levels.

The expressions for A,4q for baseline RLWE are

s NTT matrix Convolution:

-1
A((llsgear) = H N;(N; + F; — 1), acdydclzc) H N2
=1

= Direct Convolution:

-1
lznear (eyclic) :
Aqia HFu Agai =1 F:

=1

If we now assume V; = N and F; = C'N; with 0 < C' < 1, we have the following noise size
approximations after a linear convolution in each scheme

= baseline RLWE (NTT matrix Convolution):

% 2B(1 + )M~ N2LA-) 2Ly

NQB(l + C)Ll+L+1N2Ll+1tL.

s baseline RLWE (Direct Convolution):

é %2BCL(l_1)NL(l_1)(S?%L+1tL

2
~2BCHID (1 4 )N PRI FLE
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= multivariate and “packed” RLWE:
A 2L+1,L QLI+ Ar2LI4-, L
5%2B6R t"~2B(1+C) N .

We know that 0 < 1 + C' < 2 < N and its exponent is not higher than the exponent of N, so in
the following we will ignore powers of (1+ C'). This allows us to use the same expression for both
linear and cyclic convolutions (see Table[5.5) in the asymptotic cost ratio analysis in Section[5.5.1]

5.B. Computational Cost analysis

An integer multiplication in Z, using a Schonhage-Strassen algorithm has a cost of O(log, q -
(logy logsy q) - (logs log,y logs q)). We can compare the computational cost of all the schemes by
considering the number of coefficient multiplications and the cost of each coefficient multiplica-
tion. For simplicity, we only keep the log, ¢ term in the cost of the Schonhage-Strassen algorithm

= baseline RLWE (NTT matrix Convolution, ¢t = N):

Cost, ~ LN'logy N - (2L1+ L+ 1)logy N .

Num. Coeff. Mult z18g2 q

baseline RLWE (Direct Convolution, t ~ IV):

Num. Coeff. Mult ~log, q
——
Cost,g ~ LN?"llog, N -((L(14+1)+ L +1)logy N
+ (L(I — 1)) logy C).

<0

= multivariate RLWE (t = N):

CoSty, =~ LIN'logy N -(2L1+1+ L)logy N .

Num. C(;reff. Mult ~log; q
= “packed” RLWE (t = N b

Costyr ~ LIN'logy N -(3LI+1)logy N.
Num. Coeff. Mult ~log, g

By ignoring the effect of the logarithmic terms and considering that £ is not a very small filter,
this gives the following approximate ratios:

Cost,.g ~ N! Cost,,; ~1 Costyy- ~1 Costyy

)

3
Cost,r, Cost,,  Costy, = Costyy 2

Hence, we can see that the baseline RLWE algorithm still gives a reduction factor in cost linear
in the number of dimensions with respect to m-RLWE and packed-RLWE. However, it must be
noted that the bit security of both m-RLWE and, especially, packed-RLWE is higher than baseline
RLWE; in fact, this security also increases with [ (see Tables[5.1(a)l [5.1(b)} [5.1(c)|and [5.1(d)).
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5.B.1. Some additional considerations

There are some considerations on the effect of the performed approximations in the computed
costs Cost,,, to Costy,.. Cost,q can be much smaller than the obtained approximation when the
filter is very small (i.e., C' very close to zero). As we discuss in Section [5.5] for a small enough
filter, the factor log, ¢ can become so small that it compensates the higher number of coefficient
multiplications of baseline RLWE compared to the other methods.

The main difference between Cost,,, and Cost,, relies on the need of a higher ¢ with packed-
RLWE. This imposes more costly coefficient multiplications due to the higher ciphertext noise.
Additionally, the obtained cost measures do not take into account the pre-/post-coding stage in-
troduced by packed-RLWE before/after encryption/decryption, which is not needed in m-RLWE,
but this step is negligible when compared to the encryption/decryption complexity.

The cost of the baseline RLWE scheme (Cost,.,,) can be much higher when coefficient addition
is not fast enough, as the previous expressions do not take into account the cost of ciphertext
additions required for the NTT/INTT matrix computations. Hence, we introduce now this factor.
The number of ciphertext additions required in baseline RLWE (with NTT matrix computation) is
roughly 3 times N2(=1) per level (2 NTTs of [ — 1 dimensions and 1 INTT of [ — 1 dimensions).
It has an order higher than the maximum exponent in Cost,,, and Cost,,; depending on the cost of
ciphertext addition, this dependency can make the baseline algorithm slower than m-RLWE and
packed-RLWE. In fact, assuming that the cost of addition per coefficient is roughly O(log, q), we
can see that the asymptotic cost of multivariate and “packed” RLWE is smaller, even for a higher
security level than that of baseline RLWE. We have

Cost*, ~ L(1+C)* N1 (LI + L+ 1)logy N
Num. Coeff. Adds. ~logs q
~ LN?=1 (LI + L+ 1)log, N,

where Cost),, represents the cost that the ciphertext additions in the NTT/INTT transforms incur
on for baseline RLWE with NTT matrix computation, that adds up to the previous Cost,.,, to obtain
the total cost.

Again, taking the most significant factors into account, and considering that F’ is not a very
small filter, we obtain the following approximate ratios

Cost,.q ~ log. N Costyy N llogy N Costy, N llogy N
Cost’, 827 Cost’, = NI=1 7 Cost;, N1




Table 5.1: Figures for (a) baseline RLWE with NTT matrix Convolution (¢ = n;), (b) baseline RLWE with
Direct Convolution (¢ & n;), (¢) multivariate RLWE (¢ ~ max {n1, ..

(t~ Hi:l n:)-

(a) baseline RLWE with NTT matrix Convolution
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(cyclic) Bitsecurity(a?, Ny)

(c) multivariate RLWE

Computational Cost

Costinear = L - O( é:l(Ni +F; —1)log (Hli:l N; + F; — 1)) coeff. mult.
Costeyclic = L (9((]_[2:1 N;) log (H§:1 N;)) coeff. mult.

Ciphertext’s noise (upper bound on %)

ILFT
. l
(lmear)% ~ 2tL( izl (N + Fy — 1)?
) 2L+
(cyhc)% ~ 2t <H§:1 Ni)

Bit Security

(linear) BitSecurity(a? [I'ZH(N; + F; — 1), Ny + F; — 1)
(cylic) BitSecurity(o? Hi;i N;, Np)

(d) packed RLWE

Computational Cost

Costiinear = L - O(ITi_; (N; + F; — 1) log (TT'_; Ni + F; — 1)) coeff. mult.

X2
Cost, =L- O((Hfbv:1 N;) log (Hi’:l N;)) coeff. mult.

cyclic

Ciphertext’s noise (upper bound on %)

ILFT
(linear) 5 ~ QtL( Ny + Fy — 1)?

i 20+
(cyhc)2A ~ 2t <Hé=1 Ni>

Bit Security

(linear) BitSecurity(o?, [T\ (N; + F; — 1)
. . . l
(cylic) Bitsecurity(o?, [Ti—; Ni)

.,n;}) and (d) our packed RLWE




Table 5.2: Cost and noise bounds for (a) baseline RLWE with NTT matrix Convolution (t ~ n;, N; =
N, F; = C - N), (b) baseline RLWE with Direct Convolution (t ~ n;, N; = N, F; = C - N), (¢) m-RLWE
(t ~ max {nq,...,n;}) and packed-RLWE (¢ ~ Hi:l n;, Ny = N,F; =C - N).

(a) baseline RLWE with NTT matrix Convolution

Computational Cost
Costjipear = L - O((1 + C)' N'log ((1 + C)N)) coeff. mult.
+L-O(((1 + C)N)2~1) coeff. add.
Costeyclic = L O(N'log N) coeff. mult.
+L - O(N?—1) coeff. add.
Ciphertext’s noise (upper bound on %)
(linear)% ~ 2(1 + C)FUADHTLL N2L(I+1)+1
(cyclic) £ =~ 2tL N2L(HD+1

(b) baseline RLWE with Direct Convolution

Computational Cost
Costjjpear = L - O((1 + C)C'=INZ=1log (1 + C)N))
Costeyclic = L - O(C'7! N~ log N)
Ciphertext’s noise (upper bound on %)
(linear)% ~ 20511 4 ©)2 L+ L NLOI+2)+1
(cyclic)% ~ 20 LU L NL(I+2)+1

(¢) m-RLWE and packed-RLWE

Computational Cost
Costfinear = L - O((1 + C)' Nllog (1 + C)N))
Costeyelic = L - O(IN' log N)
Ciphertext’s noise (upper bound on %)
(linear)% A 2(1 4 C)2 L N2Li+
(cylic) % ~ 2tL N2LU+HL




Table 5.3: Runtimes and security for encrypted 2D Linear Filtering (L = 1, 0 = 8, B = 60, 2 limbs for ¢,

F=11).
N x N 118 x 118 246 x 246
baseline RLWE (NTT matrix Convolution)
n 128 256
Enc. (image + filter) size (bits) | 4.09-10°  16.32-10°
Bit security ~ 31 ~ 33
Encryption time (ms) 2.4 5.8
Decryption time (ms) 1.4 3.7
Convolution time (ms) 433 142.4

Baseline RLWE (Direct Convolution

n 128 256
Enc. (image + filter) size (bits) 4.09 - 108 16.32 - 106

Bit security ~ 31 ~ 33
Encryption time (ms) 24 5.8
Decryption time (ms) 1.4 3.7

Convolution time (ms) 272.5 812.6

Multivariate RLWE
16384 (128) 65536 (256)

n (effective n)

Enc. (image + filter) size (bits) | 8.13-10%  32.51 - 106

Bit security ~ 32 ~ 33
Encryption time (ims) 1.6 8.6
Decryption time (ms) 1.3 7.8
Convolution time (ms) 28.2 127.5

Packed RLWE
n 16384 65536
Enc. (image + filter) size (bits) 8.13- 106 32.51-10°
Bit security > 128 > 128
Encryption time (ms) 3.1 12.6
Decryption time (ms) 2.8 11.8
Convolution time (ms) 28.2 127.5




Table 5.4: Runtimes and security for encrypted 3D Cyclic Filtering (L = 1, 0 = 8, B = 60, 2 limbs for ¢,

F =5).
N X N x N 16 x 16 x 16 32 x 32 x 32
baseline RLWE (NTT matrix Convolution)
n 16 32
Enc. (image + filter) size (bits) 1.12- 10 8.32- 106
Bit security < 30 < 30
Encryption time (ms) 2.9 5.6
Decryption time (ms) 0.3 2.6
Convolution time (ms) 6.0 58.1
Baseline RLWE (Direct Convolution
n 16 32
Enc. (image + filter) size (bits) 1.12-108 8.32 106
Bit security < 30 < 30
Encryption time (ms) 2.9 5.6
Decryption time (ms) 0.3 2.6
Convolution time (ms) 150.1 1452.8
Multivariate RLWE
n (effective n) 4096 (16) 32768 (32)
Enc. (image + filter) size (bits) 2.03 - 108 16.25 - 108
Bit security < 30 < 30
Encryption time (ms) 0.6 3.7
Decryption time (ms) 0.4 3.0
Convolution time (ms) 6.4 53.3
Packed RLWE
n 4096 32768
Enc. (image + filter) size (bits) 2.03 - 10° 16.25 - 106
Bit security > 128 > 128
Encryption time (ms) 0.8 6.0
Decryption time (ms) 0.7 54
Convolution time (ms) 6.4 53.3

Table 5.5: Ciphertext noise bounds for all schemes (IV; = N, F; = C - N, ignoring (1 + C) factor).

Ciphertext noise (upper bound on %)
(baseline RLWE, NTT matrix), (linear, cyclic) % ~ 2BN2Li+1L
(baseline RLWE, Dir. Conv.), (linear, cyclic) % ~ 2BCLU=1) NLU+D)+14L
(m-/packed RLWE), (linear, cyclic) & ~ 2BN 2L+l
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Chapter 6

Genomic Susceptibility Testing

This chapter is adapted with permission from IEEE: Juan Ramon Troncoso-Pastoriza, Alberto
Pedrouzo-Ulloa, and Fernando Pérez-Gonzdlez. Secure Genomic Susceptibility Testing based on
Lattice Encryption. The 42nd IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP17), March 2017.

6.1. Introduction

Genomic research has experienced a considerable growth in the last years due to the advances
in Next Generation Sequencing (NGS), which enable potentially better analyses, tests, diagnos-
tics and treatments based on genomic data. The growing volume of genomic data available to be
processed, cannot be managed by current facilities at hospitals and laboratories. The need for out-
sourced genomic processing is urgent, but it entails severe privacy risks [139]] comprising, among
others, re-identification threats (it is not possible to entirely anonymize genomic data), phenotype
inference (sharing aggregate genomic data, even pseudonymized, enables kin privacy breaches),
and other threats (anonymous paternity breaches, legal and forensic inferences), affecting not only
the individual but also his/her ancestors and descendants.

Several proposals of privacy-preserving mechanisms have arisen to cope with these threats
in two main fields: research studies like Genome-Wide Association Studies (GWAS), and per-
sonalized health-care. While the former has been recently tackled through differentially-private
mechanisms [140! [141]], dealing with person-level genome sequence records prevents the use
of generalization techniques or differentially-private mechanisms, and the solution must involve
cryptographic primitives, which are generally costlier than other approaches.

One of the most recent privacy-preserving mechanisms for disease susceptibility outsourced
processing was proposed by Ayday et al. [142], which introduce an untrustworthy Storage and
Processing Unit (SPU) to deal with the outsourced encrypted processing, and devise a protocol
based on additive homomorphic encryption and proxy decryption to enable the calculation of
simple susceptibility tests on a set of Single Nucleotide Polymorphisms (SNPs) of one patient;
this encrypted test is eventually handled by the medical center due to the limitations of the used
homomorphism. Subsequently, Namazi et al. [143]] proposed the use of lattice-based somewhat
homomorphic encryption (SHE) to move the computation complexity to the SPU, but they did not
evaluate it nor addressed the shortcomings introduced when dealing with SHE, namely increased
cipher expansion, higher bandwidth requirements and much higher storage needs for the encrypted
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sequences.

Contributions: In this chapter, we propose an efficient protocol to deal with encrypted genomic
susceptibility tests based on Ring Learning with Errors (RLWE) cryptosystems, and introduce
optimizations which lead to a considerable improvement in terms of computation, bandwidth and
storage with respect to both the original protocol by Ayday et al. and Namazi et al..

Notation and structure: Uppercase letters denote matrices and lowercase letters denote ele-
ments from a vector space. ag, denotes the result of the encryption of a with the key belonging
to P. The rest of the chapter is organized as follows: Section [6.2]briefly introduces the used cryp-
tosystem and its primitives. Section revisits the scheme by Namazi et al. [143]]. Section [6.4]
describes our proposed protocol and the introduced optimizations. Section[6.5|evaluates the secure
protocol in terms of ciphertext size, run times and communication, and compares it to the prior
works.

6.2. RLWE-based SHE

We choose Lauter et al.’s [/9] as our cryptosystem, due to its simplicity, efficiency and secu-
rity, but any other RLWE cryptosystem (as FV [86]] or BGV [50]) can be used as well. Table @
(see Chapter .2)) summarizes its parameters and primitives.

Furthermore, by means of a relinearization matrix B it is possible to transform three-
component encryptions after a homomorphic product back into two-component fresh-like encryp-
tions. This matrix can also be used as a proxy reencryption in order to perform the key change
needed at the end of the protocol (see Section [6.3)). In this case, the relinearization process of a
multiplied ciphertext (vector of 3 components in Ry) cp, = {c1,c2,c3} under P;’s key into P»’s
key can be expressed as a matrix product cp, = {c1,c2} + €3 pase—t - B, where ¢3 pase—t is a
[log, ¢|-length row vector with the base-¢ decomposition of the polynomial c3, and matrix B has
size [log, ¢ x 2 (see Section of Chapter for further details).

The equivalent bit-security of this cryptosystem can be lower-bounded [110] by t 5 (0) (see
Eq. (.3)), where 0 is the Root Hermite Factor of the used polynomial lattice.

6.3. Encrypted Susceptibility Tests

The genomic sequence of each individual presents variations with respect to the reference se-
quence which fully identify the individual. The most common and relevant variants are called
SNPs (Single Nucleotide Polymorphisms), which are particularly suitable for running suscep-
tibility tests of certain diseases. Weighted averaging [144] is the simplest way to measure the
susceptibility of a patient P to a disease x:

ST =N " e pri[L — SNPP] + pr{[SNPP]}. (6.1)
1€Qy

The symbols used in Eq. (6.1) are defined in Table[6.1] As this test involves a bounded number
of additions and products, an SHE scheme allows to execute it with all the inputs encrypted. We
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Table 6.1: Used Notation.

rr Set of positions of real SNPs of patient P

¥ Set of positions of potential SNPs of patient P

SNP'** | i-th SNP for patient P. SNP** equals 0 when it belongs to 7%,
and 1 when the patient presents a variant (it belongs to I'T’)

Q, Set of relevant positions of SNPs which are related to disease x.
pry" | Pr(z| SNPP = b), with b € 0,1. Probability of developing
disease x conditioned on the value of the i-th SNP

o Normalized contribution of SN PP to the susceptibility to x.
Shz Predicted susceptibility of patient P to disease x

briefly revisit the protocol by Namazi et al. [143] to calculate Eq. (6.1) homomorphically, with the
following parties: a patient P owns a biological sample; a medical center M C has the knowledge
of the parameters (pr, c) for calculating the susceptibility to disease x; the certified institution
C1 is a trusted party that sequences the patient’s DNA and generates all the used cryptographic
keys; the Storage and Processing Unit SPU is an untrustworthy party with computational power
to execute the encrypted test. The patient does not trust the M C' to share all his/her genomic data,
and both M C and P distrust SPU with respect to the analysis parameters and the patient’s data.
All parties are considered to be semi-honest.

The protocol works as follows (see Figure[6.1):

el) Encrypted SNPs and enc. locations 3) Runs the test
B
H 1 changes result key
(1)

Certified Institution (Cl)

Storage and Processing Unit (SPU)

. 4
ok
| \P\I,E\O
el; BF. c eV < 1) Enc 1) Enc
el 0 1) . 4) Enc.
e1) Sample enc. 0 N ot I :
location \OgL\" contributions test result
Lo U

14;.1 - 1) Relevant locations for x @ 5) Decrypts result
Patient (P) Medical Center (MC)

Figure 6.1: Encrypted susceptibility testing protocol.

Step s1: The C'I generates and distributes the needed keys: P and M C' have one SHE key-
pair each, while P and C'I share a symmetric key skp cr; the CI also produces a relinearization
matrix B to change encryptions from P’s key into M C' key, and sends it to the SPU.

Sequencing and generation of input encryptions

Step el: After P sends the biological sample to CI, the latter sequences it, builds a Bloom
Filter representing the positions for which the patient presents SNPs, and sends it to P; CI en-
crypts these positions {/;, Ep.c , } and a “zero position” [y, Epc; With skpcr, and the values of all
SNPs SNP with P’s SHE key, and sends all these encryptions to the SPU.
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Encrypted susceptibility test

Step 1: The M C marks the location of SNPs in €2, and sends them to P. Additionally, it
sends the contributions of these SNPs to the disease x encrypted under P’s SHE key to SPU.:

{lpry" - €' Bp Yoef0,1},ic0. -

Step 2: P runs the Bloom filter for these positions; for those in the filter (present variants), P
encrypts the corresponding location l; g, ., and sends it to S PU; otherwise, P sends the encryp-
tion lo g ¢y -

Step 3: The SPU computes the susceptibility Eq. on patient’s encrypted SNPs and
M C’s encrypted susceptibility parameters for = by using the homomorphic properties of the SHE
.. . Px >
scheme, obtaining the encryption of S g, under P’s key.

Step 4: The S PU uses the relinearization matrix to switch the result into M C”s key, and sends
itto MC.

Step 5: The M C decrypts the clear-text test result S% of patient P for the disease x using
its own SHE secret key.

This protocol succeeds in moving all homomorphic computation to the S PU and keeping the
locations and values of P’s SNPs concealed from the SPU and the M C, and the test parameters
concealed from the SPU. Conversely, its high cipher expansion makes it much more demanding
in terms of storage and bandwidth compared to the Paillier based scheme by Ayday et al., as we
show in Section

6.4. Proposed Approach

As can be seen from the protocol description in Section[6.3] the only elements which have to
be encrypted with a homomorphic encryption are the patient SNPs, and the susceptibility parame-
ters; Ayday et al. [142] encrypted only the patient SNPs, as the computation was done at the M C,
who already knows the clear-text susceptibility contributions. Blindly applying lattice encryptions
to the protocol produces a huge growth in the cipher expansion: SNPs are binary values (either
present 1 or absent 0), which get encrypted into several thousand bits in Paillier, and several hun-
dred thousand bits with an RLWE cryptosystem. Hence, even when the lattice-based operations
are more efficient than their Paillier-based counterparts, the large cipher expansion becomes a se-
rious drawback when coping with 4 million SNPs per patient. Figure [6.2] presents a high-level
view of our proposed approach for dealing with the encrypted calculation of the susceptibility.
We present four main contributions described in the following paragraphs: a clever choice of the
cryptosystem parameters to optimize the performance and maximize the security of the protocol;
an input packing strategy to minimize storage and bandwidth; a pre-processing mechanism based
on transformed coefficients to enable the homomorphic calculation of component-wise products
between vectors of susceptibility coefficients and SNPs, and a homomorphic blinding strategy to
enable the seamless calculation of the addition of all the components in one vector while avoiding
costly unpacking/repacking operations at the SPU.

6.4.1. Parameter choice

RLWE cryptosystems work with polynomials in R,; i.e., the ring product is a polynomial
product (convolution). In order to speed up products, it is more convenient to work in a trans-
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Figure 6.2: Diagram of the encrypted susceptibility computation.

formed domain with the convolution property, where convolutions become much more efficient
component-wise products. As these cryptosystems work in finite rings, we stick to Number The-
oretic Transforms (NTTs) instead of Discrete Fourier Transforms (DFTs), which would introduce
undesirable rounding errors [29]. For an n-th root of unity « in the ring, the NTT has a similar
form to the DFT (see Chapter [4):

n—1 n—1
NTT{z} => afi]-o’*, INTT{X} =n""- Y X[k]-a .
=0 k=0

Therefore, we parameterize the cryptosystem to enable component-wise operations in the NTT
domain. We choose n = 2* (polynomial degree in R,) as a power of 2, and ¢ and ¢ as Proth
primes (c - 2% 4 1) [29]; this choice guarantees that an n-th root of unity exists in Z4 (ciphertext
coefficients) and in Z; (plaintext coefficients), in such a way that NTTs of size n exist both in Z,
and Z;. All the used polynomials (random polynomials, input plaintexts and keys) undergo an
NTT prior to encryption, all ciphertexts are always expressed in the NTT domain, and decryptions
are followed by an INTT of the resulting polynomialEl Hence, all the intermediate operations are
considerably faster (component-wise), and encryption and decryption suffer from a slight overhead
for calculating the NTT/INTT with fast algorithms (O(n log(n))).

6.4.2. Input Packing

Due to the polynomial structure of RLWE cryptosystems, the cipher expansion can be reduced
by packing the inputs in vectors of n elements (as many as the degree of the polynomials in R,

'In order to perform cyclic convolutions inside a negacyclic ring (modz™ + 1), signals must be pre- and post-
processed with a component-wise product with a vector of powers of a root of —1 in Z, (see Chapter . This
operation is already accounted for in all the measured run times.
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Table 6.2: Evaluation runtimes, bandwidth and storage for 4M SNPs and a 10-marker test (|$2,| = 10).

Run time [ms] / transferred size CI SPU
Ayday et al.[142] Encrypt per SNP Recrypt Proxy recrypt
2048 bit modulus, 112 bit sec. 33,2ms /4,1 GB 304,3ms/10,2kB | 30,3 ms/1,02kB
Encrypt per SNP Homomorphic calc. Relinearization
RLWE n = 4096 Unpacked | 0,45 ms/262,1 GB 2,17 ms/— 2,32 ms /65,5 kB
364 bit sec. (6 = 1.002) Packed 0,00011 ms / 64 MB 0,1-2,17ms/— 2,32 ms/65,5kB
RLWE n = 2048 Unpacked | 0,22ms/131,1 GB 1,08 ms/— 1,1 ms/32,8 kB
127 bit sec. (§ = 1.005) Packed 0,00011 ms /64 MB | 0,05-1,08 ms/— 1,1 ms/32,8kB
Run time [ms] / transferred size MC
Ayday et al.[142] Homomorphic calc. Paillier decrypt
2048 bit modulus, 112 bit sec. 39,3 ms/1,02kB 30,3 ms/ —
Encrypt params RLWE Decrypt
RLWE n = 4096 Unpacked 9,1 ms/ 1,31 MB 0,96 ms / —
364 bit sec. (6 = 1.002) Packed 0,45-9,1 ms /0,131 - 1,31 MB 0,96 ms / —
RLWE n = 2048 Unpacked 4,5 ms /655 kB 0,46 ms / —
127 bit sec. (6 = 1.005) Packed 0,22 -4,5 ms /65,5 - 655 kB 0,46 ms/ —

see Table 4.T)) instead of encrypting one scalar value per ciphertext. For the devised susceptibility
test protocol, the C'I can encrypt the SNPs of the patient in blocks of n SNPs per ciphertext, which
divides the storage overhead by a factor of n. This creates a two-level indexing of the SNPs (i, j),
where ¢ indexes the block where the SNP was encrypted, and j indexes the polynomial coefficient
(j € {0,n — 1}) where the SNP was packed inside the block. The mapping between the SNP
location and the indices (7, j) can be freely chosen by the C'I, and must be known by the M C.
This alters steps 1 and 2 of the protocol: In step 1, the M C' encrypts the contributions of a SNP
indexed by (i, 7) in the j-th coefficient of the polynomial, and zeros in the other coefficients. If
several relevant SNPs belong to the same block, their contributions are packed together in the
same encryption. In step 2, after running the Bloom Filter, P sends to the SPU the encrypted
location l; g, ., indexing the chunks of SNPs where the relevant positions belong, and sends no
information about j.

6.4.3. Packed operations: pre-processing

Once the inputs are packed, the calculation of the Eq. requires the homomorphic execu-
tion of component-wise products of SNP contributions and SNP values. This is not possible if we
encrypt the input blocks of SNPs directly, as the cryptosystem only allows for homomorphic con-
volutions. Hence, the C'I (resp. M C') first applies an INTT to the polynomial of SNP values (resp.
contributions), and then encrypts the transformed values. Then, due to the convolution property of
the NTT, the homomorphic operations become:

These transforms are enabled by our choice of ¢ and n, that guarantees that the n-size INTTs
exist for coefficients in Z;. Therefore, the SPU can seamlessly obtain the encrypted component-
wise products contributing to the susceptibility.
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6.4.4. Obtaining the test result

After the previous process, the SPU ends up with an encrypted vector holding the INTT
coefficients of the component-wise products, but the cryptosystem homomorphism does not allow
to add them together without decrypting and unpacking them first. To overcome this limitation,
we leverage the structure of the NTT, by realizing that the first coefficient of the INTT is just the
sum of all the signal coefficients in the time domain, multiplied by the modular inverse of n in Z;.
Hence, the SPU generates a random vector v € Z!'* to blind the remaining INTT coefficients,
and homomorphically adds it to the packed susceptibility encryption (at the end of step 3). Then,
after performing the relinearization and sending back the resulting encryption to M C' (step 4),
the latter can decrypt the result and obtain a vector which holds the susceptibility result S©¢ in
the first coefficient (multiplied by n~! mod ¢) and random values in the remaining coefficients.
Hence, we also avoid that the M C has to execute an NTT to revert the INTT that was applied to
the inputs.

6.5. Implementation and Evaluation

We implemented the full protocol in C++ with and without packing, using the NFLIib [94] li-
brary, and Ayday’s Paillier-based version with GMP [[124]]. According to Section[6.4.T, we choose
t = 65537, as it is enough to deal with all the input values with a precision of 10~ for a test of up
to 65 markers; due to efficiency reasons, we fix ¢ to 62 bits, such that it fits in a limb (8 bytes) and
all operations on polynomial coefficients are performed in just one machine cycle; additionally,
this choice of ¢ and ¢ allows for the correct computation of one encrypted polynomial product
between two fresh encryptions, which is enough to homomorphically calculate Eq. (6.1).

We choose medium-term security for Paillier, with 2048-bit modulus (112 bits of security),
and two levels of security for our lattice-based protocol: n = 2048, which produces an equivalent
security of 127 bits (§ = 1.005, see Section[6.2)), and n = 4096, with 364 bits of security (§ =
1.002). Table shows the run times for each party on an Intel Core i5-2500 processor at 3.3
GHz running Linux, and the sizes of the transferred encryptions at each step for 4 million SNPs
per patient and a test with 10 relevant SNPs (markers) in €2,.

The RLWE-based protocols greatly outperform the Paillier-based Ayday et al. protocol in
terms of efficiency (two orders of magnitude for SPU and C'1, and one order of magnitude for the
M ('), while keeping all the homomorphic computation at the S PU instead of the M C'. As for the
bandwidth, the unpacked solution suffers from the big cipher expansion of the RLWE encryptions,
producing a huge set of encrypted SNPs at the CI. The proposed strategies greatly reduce this
overhead, limiting the stream of the 4 million encrypted SNPs to just 64 MB, notably lower than
the 4 GB needed for the Paillier encryptions, improving on storage needs. The improvement
achieved on homomorphic computation depends on the number of blocks spanned by the positions
of the relevant SNPs, analogously to the bandwidth needed between SPU and C'I. Both can be
optimized by configuring the (public) ordering of the SNPs (mapping of the indices (¢, 7)) so that
most of the SNPs relevant for the same diseases be together in the same block.

It must be noted that the performed packing, the used SNP indexing and the blinding of the
resulting vector leak no information either to the SPU or to the M C, in such a way that the same
security properties and privacy guarantees of the unpacked Paillier-based protocol are preserved
here.
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6.6. Conclusions

This chapter proposes a privacy-preserving genomic susceptibility protocol based on a Ring
Learning with Errors SHE cryptosystem which outperforms previous protocols in terms of ef-
ficiency, bandwidth and storage needs. We introduce a choice of cryptosystem parameters to
optimize the performance and the security of the protocol, and propose a transformed input pack-
ing strategy to minimize storage and bandwidth, and enable the homomorphic calculation of the
susceptibility function while avoiding costly unpacking/repacking operations.



Chapter 7

Image Denoising

This chapter is adapted with permission from IEEE: Alberto Pedrouzo-Ulloa, Juan Ramon
Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. Image Denoising in the Encrypted Domain.
The 8th IEEE International Workshop on Information Forensics and Security (WIFS16), December
2016.

7.1. Introduction

The problem of image (or signal) denoising is ubiquitous in signal processing and has a broad
set of applications. It appears in any possible scenario looking for the best possible estimate of
a signal from a noisy version. Nowadays, outsourced services are increasingly used, so it is not
hard to imagine a situation where someone wants to obtain an enhanced version of a noisy signal
by relying on a third party to perform the task, therefore incurring in a threat for the privacy of
the involved sensitive information. The approaches presented in [4] to deal with images are not
enough to tackle the problem non-interactively, requiring interactive secure protocols to obtain a
feasible solution. Some current proposals for encrypted domain processing target unattended pro-
cessing, without resorting to interactive secure protocols [29], but they are limited to polynomial
operations.

We can find some recent works dealing with privacy-preserving denoising: Hu et al. [145]
propose an scheme for performing nonlocal means (NLM) denoising of encrypted images, and
Saghaian et al. [[146] propose a scheme for wavelet denoising resorting to secret sharing. However,
the former does not deal with wavelet denoising algorithms (it performs a filtering operation and
leaks pixel distances) and the latter is based on interactive protocols (secret sharing).

This chapter proposes a new solution to the problem of denoising of an image (or a more gen-
eral multidimensional signal) in the encrypted domain in a fully unattended way. For this purpose,
we solve the problem of homomorphically computing both filtering and threshold operations in a
sole round without resorting to the intervention of the secret key owner.

Main Contributions: We briefly summarize the main ideas and contributions of this chapter:
= We introduce a practical scheme for homomorphically denoising images in the encrypted

domain. The results can be easily adapted to work with either uni- or multi-dimensional
signals.
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= The main advantage of our scheme is that it avoids interactive protocols. Therefore, the
secret key owner does not need to participate in the middle of the encrypted computation to
complete the denoising process.

= We show how to adapt the structure of modern lattice-based cryptosystems to efficiently
compute a wavelet transform.

= In the same round, we show how to homomorphically perform the threshold of encrypted
values without the need of intermediate decryption or interaction with the secret key owner.

Structure: The rest of the chapter is organized as follows: Section revisits some relevant
concepts related to the used 2-RLWE (Ring Learning with Errors) based cryptosytem and a brief
overview of the image denoising problem. Section introduces the main contributions of this
chapter, including the description of the proposed scheme for encrypted image denoising. Section
discusses some practical aspects aimed towards an efficient implementation of the proposed
scheme, and evaluates its security and efficiency.

7.2. Preliminaries

This section revises the lattice-based cryptosystem chosen to exemplify our schemes, together
with its main parameters and primitives. It also includes a brief explanation of the image denoising
problem.

7.2.1. 2-RLWE based Cryptosystem

Firstly, we revisit a slightly adapted definition of the m-RLWE problem [22, 4] particularized
to our bivariate case. For a general discussion of the m-RLWE problem with power-of-two mod-
ular functions, we refer the reader to Chapters [2]and [5] Here we particularize the Definition [T| of
m-RLWE to 2-RLWE.

Definition 13 (2-RLWE problem [22| |4], Definition 1| particularized to bivariate rings). Given a
polynomial ring Ry[x,y] = (Zq[x,y]/(z™ + 1)) /(y™ + 1) and an error distribution x|z, y] €
R, [z, y| that generates small-norm random polynomials in Ry[z,y], 2-RLWE relies upon the com-
putational indistinguishability between samples (a;,b; = a;s +t - €;) and (a;,u;), where a;, u;
— Rylx,y] are chosen uniformly at random from the ring Rq[x,y], while s,e; < x[z,y] are
drawn from the error distribution, and t is relatively prime to q.

The primitives and parameters of the 2-RLWE cryptosystem are described in Table [B.1| from
Appendix B} being the only difference that in this chapter we consider bivariate rings. Its cipher-
texts are composed of at least 2 polynomial elements from the ring R,[x, y]; the cryptosystem
allows for additions (the smallest ciphertext is previously zero-padded) and multiplications on
these tuples of polynomials, whose size increases after each multiplication. They can be brought
back to the original size by resorting to a relinearization operation.

The security of the cryptosystem is based on the hardness of the 2-RLWE problem with power-
of-two modular functions. In [46] it was assumed that its hardness was equivalent to that of
reducing n-dimensional lattices (n = n,n,) generated by the secret key. However, we know
from Chapter [5] that due to the Bootland er al.’s attack [44] its security is in fact based on a
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max {n,, n, }-dimensional lattice. In Section [7.4.1 we update the security estimates initially
presented in [46] and discuss some possibilities to increase the security. Further details about
possible attacks are discussed in Section[7.4]

We choose this cryptosystem as it enables us to encrypt 2-dimensional messages in only one
ciphertext, instead of encrypting each coefficient in a different ciphertext. It also enables efficient
bivariate negacyclic linear convolutions with only one ciphertext multiplication at the cost of a
small overhead (we refer the reader to [4] for a more detailed comparison between homomorphic
cryptosystems when dealing with images). This overhead is caused by the use of the ring Z, for
the polynomial coefficients of the ciphertexts instead of Z;, where ¢ > ¢. In order to correctly
compute D consecutive products and A sums over the same ciphertext, the needed ¢ for correct
decryption is lower-bounded by

q > 4(2to> frgng) P (2n.n, ) P12V A, (7.1)

where we adapt the bound from Equation to our bivariate case with n = n;n,,.

Our proposed approach involves a multiplication tree with a determined number of levels to
achieve a logarithmic complexity. Therefore, we work with a scale-invariant version [86] of the
2-RLWE cryptosystem, where D in eq. (7.1)) represents the number of levels of the multiplication
tree.

7.2.2. Basic Structure of an Image Denoising Scenario

This section briefly introduces the general scheme of the nonlinear image denoising method
which we later perform in the encrypted domain (see Section[7.3).

There are several methods to perform the denoising of one image [[147]; we resort here to
the use of a wavelet transform to compact the energy of the image in a few values [148]. As
the wavelet transform is an orthonormal transformation, the noise distribution is invariant after
computing it, and therefore, we have two main components in the transformed domain: (a) the
signal component, with most of its energy compacted in a few values, and (b) the noise distribution
component, typically considered Gaussian noise, which is invariant after the transformation.

Hence, in order to separate the two components, a thresholding operation in the transformed
domain can preserve the signal information while discarding most of the noise. Afterwards, we
can compute the inverse wavelet transform to recover the estimated image. Figure depicts a
basic scheme of the clear-text image denoising process.

Image Denoising

Figure 7.1: Basic structure of the image denoising method.

Figure [/.1| shows the different components of an image denoising method based on wavelet
transform. Both direct and inverse wavelet transforms are typically implemented by means of filter
banks where a/s and v/h stand respectively for analysis/synthesis and vertical/horizontal filters;
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and |2 (12) represents downsampling (upsampling) by a factor of two. The threshold operation
performs the element-wise threshold of the different transformed coefficients.

7.3. Proposed Scheme

This section introduces the proposed scheme for encrypted image denoising and details its
main blocks. First, we show the general structure of the scheme and the purpose of each com-
ponent. Afterwards, we focus on the two main parts of the scheme: (a) the encrypted wavelet
transform (both direct and inverse transforms), and (b) the encrypted thresholding in the wavelet
domain. We reiterate that we exemplify the scheme with images, but the results can be seamlessly
adapted to work with higher dimensional signals [4] (see Appendix [B)).

7.3.1. General Overview

We exemplify the denoising operation with a typical nonlinear scheme that leverages the prop-
erties of the wavelet transform to compact the energy of the signal in a few values while keeping
the energy of the noise spread through all the coefficients. This allows for separating noise and sig-
nal through a thresholding operation in the wavelet transformed domain. Currently, this problem
can only be tackled efficiently in a privacy-preserving manner by resorting to interactive proto-
cols. Our main focus is on an unattended solution which completely avoids interaction, therefore
overcoming the need of intervention of the secret key owner during the process.

This paradigm introduces many challenges on the different parts of the process, the hardest
one comprising the combination of both polynomial and thresholding operations in the encrypted
domain without the help of the secrey key owner at each step.

Figure depicts the general structure of our proposed solution for encryped image denois-
ing. First, we rely on the cryptosystem presented in [4] to work with encrypted images, and we
apply a light-weight pre-/post-processing [29] to enable a homomorphism with the cyclic convo-
lution when multiplying two ciphertexts (see Section [7.3.2)). The remaining blocks correspond
to the homomorphic computation of the bivariate (direct and inverse) wavelet transform and the
homomorphic threshold of each coefficient in the transformed domain. The following sections
explain the details of these blocks.
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Figure 7.2: Structure of the proposed encrypted image denoising method.



Chapter 7. Image Denoising 131

7.3.2. Homomorphic Wavelet Transform by means of filter banks

This section describes the homomorphic execution of the first and last blocks from Figure
(direct and inverse wavelet transforms). For the sake of efficiency, we resort to the filter bank
implementation of the wavelet transform, which uses a matrix transformation for the ¢-th stage of
the bivariate case as follows

() 4 () (1) 4 )

DA DA

i ”i(z) ® ”i(y) - [ DZ(I) 41(1@ ® Dl(y) 4l(iy) ] ’
i hi i hi

(2)

where matrix D;”" downsamples the input vectors of the i-th stage by a factor of two in the
dimension z, and Al(iz), A(Zi) represent the circulant matrices which correspond, respectively, to
the low-pass and high-pass analysis filters of the first stage in dimension z.

K3 (2

-1 -1
Analogously, we can define the inverse transform as W[l = (W-(z)> ® (W-(y)>

-1 T
where (Wi(z)> = { Sl(iZ)UZ-(z) S,S’?Ui(z) ] with UZ-(Z) = (D(z)> and the circulant matri-

(2
ces Sl(f), S,(Lj) are, respectively, the synthesis low-pass and high-pass filters of the i-th stage for

perfect reconstruction (i.e., VV[1VVi = Iy with N () = 4“55\%’ ).

Finally, this process is recursively applied for the four outputs at each stage of the filter bank.

In light of this structure, the main needed homomorphic operations under encryption are (a)
block-circulant matrix operations (multivariate cyclic convolutions), and (b) changes on the sam-
pling rate. The following sections detail the process to achieve these operations by preserving the
multivariate structure of the images.

Homomorphic Bivariate Cyclic Convolutions

The filter bank implementation of the (direct or inverse) wavelet transform for images involves
a total of 4° filtering operations in the i-th stage. In general, when working with m-dimensional
signals, the i-th stage will need a total of 2™ filtering operations. In order to securely and effi-
ciently compute these operations we combine two contributions:

= We resort to the multivariate cryptosystem in [4] to encrypt each image in only one ci-
phertext and to enable encrypted multidimensional linear and negacylic convolutions (see

Section[7.2).

= We adapt the techniques from [29]] for our multivariate case, in such a way that with a
lightweight pre-/post-processing (negligible with respect to the encryption and decryption
primitives) of the images before (after) encryption (decryption), we can homomorphically
perform multivariate cyclic convolutions (see Chapters @ and[5] and Appendix [B).

Pre-/Post-processing: In [29], the authors enable homomorphic cyclic convolutions between
two one-dimensional signals of length N by performing an element-wise multiplication of both
signals with (—1)1/ N'forl = {0, ..., N —1} before encryption. The clear-text output of the cyclic
convolution can be recovered by multiplying the pre-processed encryptions, decrypting the result
and applying an element-wise multiplication with (—1)_l/ Nforl = {0,..., N — 1}. It is worth
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noting that, in order for this scheme to be valid, (—1)1/ N has to be an element of Z;, that is, we
must be able to find a 2N -th root of unity in Z;.

We present a modified version of this pre-/post-processing that transforms the homomorphism
on bivariate negacylic convolutions into bivariate cyclic convolutions. Therefore, if we consider
two 2-dimensional signals w([l,,l,] and h[l;,l,] of length N, and N, in each dimension (both
powers of two), our method works as follows:

= First, we assume the existence of 2/N,-th and 2N,-th roots of unity in Z;, denoted «, and
oy, (they can be efficiently found).

= We pre-process the signals before encrypting them:

W lla, 1] = wlle, ] (o @ ayt)
Wllas1y) = hlle, 1] (ol @ 0yt
where [, =0,...,N, —landl, =0,..., N, — 1.

= Analogously, as described in Chapter 4} we can compute v'(z,y) under encryption with
only one ciphertext product modulo the two functions 2= + 1 and y™Vv + 1:

v'(z,y) = (' (2,y)W (z,y) mod z™* + 1) mod y™v + 1.
= Finally, the decrypted signal v'[l,, [,/] is post-processed:
ollas ) = 0'lla ] (07" @ 0" )

This approach can be easily extended to the multivariate case. Therefore, considering m-
dimensional signals (i.e., h[l1,...,l,] where [; = 0,...,N; — 1) with a length of N; (all of
them powers of two) in each dimension, let a; be 2N;-roots of unity for ¢ = 1,...,m; the pre-

processing and post-processing vectors are (®:’i1 aﬁ") and (®:Z1 a;li) respectively.

Homomorphic Downsampling and Upsampling

This section addresses the implementation of downsampling/upsampling steps in the filter
bank. For simplicity, we employ here univariate polynomials of n coefficients; we could extend
this change of rate to the bivariate case by resorting to the Kronecker product, as done in previous
sections. The structure of the filter bank (see Figure requires a change in the sampling rate at
each filter: (a) one downsampling by a factor of two after each analysis filter (DZ(Z)), and (b) one

upsampling by a factor of two before each synthesis filter (Ui(z)).

The required upsampling operation of a signal x(z) mod 2™ + 1 represented as a polynomial
can be seen as a scaling of the independent variable, z(2?) mod 22" + 1; conversely, the down-
sampling operation yields a:(z%) mod z2 + 1 by discarding the coefficients of the non integer
exponents of z.

Hence, for a ciphertext ¢ = (c¢g, ¢1) with the corresponding ((co 4 ¢15) mod ¢) mod ¢ decryp-
tion primitive, where s denotes the secret key, the new decryption circuit for the downsampling of
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(co(=2) + "™ (2)s(") (2)
+zc§0dd)(z)s(0dd)(z)) mod ¢) mod t,

where c¢g( z%) denotes the downsampling by a factor of two, and the upperscript denotes the phase
(even or odd) of the polynomials.

Therefore, downsampling reduces the number of coefficients of the involved polynomials,
but it also increases the number of polynomials of the ciphertexts. We reduce this expansion
on the number of polynomial elements after each downsampling by resorting to a relinearization
primitive (see Chapter 4| and Appendix [B).

Interestingly, if our target were to reduce the cipher expansion of the ciphertexts (compressing
the signal instead of denoising it), we could skip the relinearization primitive and leverage the
encrypted wavelet transform to just discard the detail coefficients, approximating the signal with
the (encrypted) approximation coefficients: we would have 37" coefficients modulo ¢ instead of
the 2n coefficients of a fresh ciphertext, hence reducing the expansion by a factor of %.

7.3.3. Homomorphic Threshold

After homomorphically computing the wavelet transform, the denoising scheme involves
thresholding the encrypted transformed output. Previous approaches [6] to encrypted thresholding
resort to the use of Paillier encryptions [14] and an interactive protocol between the secret key
owner and the third party, as there is no efficient method proposed so far to deal with homomor-
phic thresholding and additions/multiplications at the same time. Conversely, our main objective
is to reach an unattended solution without intervention of the secret key owner during the process.

Paillier cryptosystem cannot support additions and multiplications between two encrypted
messages at the same time. This drawback is severe for our scenario, as our approach to the
homomorphic computation of the threshold requires to homomorphically compute both encrypted
additions and multiplications. Therefore, an m-RLWE based cryptosystem [4]] also allows us to
tackle this challenge, at the cost of additional issues derived from its peculiar polynomial structure,
which we address in Section [7.3.3]

Our approach to a homomorphic thresholding block is the following: let f(x) be a function,
and consider that we have a set of different points {x, ..., z;} and their corresponding outputs
{f(z0),..., f(x;)}. Now, let us compute the smallest-degree polynomial p(x) = Zi:o a; !
which satisfies p(z;) = f(x;) fori = 0,...,[, that is, we find the interpolating polynomial of
f(zx) for a given set of [ + 1 different points (we refer the reader to [149] for more details on
polynomial interpolation).

The solution for polynomial coefficients a; can be expressed in matrix form as:

1 =z m% e 936 agp f (o)
[ U ap f(z1)
. . . . - . )
1 J;l2 xE arf aj f (@)

X

where all the operations are carried out modulo-¢ (the plaintext domain); it can be easily seen that
considering a prime ¢, X is a nonsingular Vandermonde matrix, whose determinant det(V) =
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H1§j<z‘§l($i — xj) mod t where

1 2 22 -+ o}

1 o 2 ... o
v=| P

1 le x%

and the matrix V' is clearly nonsingular because as all the z; are different and ¢ is prime (this
implies that there are no zero divisors in Z;), the determinant det(X) is not zero. Therefore,
the linear system has a unique solution for the coefficients a;. This interpolating polynomial is
typically computed resorting to its Lagrange form:

l

p(z) = Zf(:nz)Ll(x) mod ¢, (7.2)

=0
where Lj(z) =[], (z — 2:) (2 — ;)" mod t.

We leverage this interpolating polynomial p(z) for a threshold computation as follows: (a) we
consider a function f(z) which encodes the desired threshold function for z € Z;, and (b) we
obtain the interpolating polynomial p(x) for the required inputs.

The polynomial p(z) describes one arithmetic circuit with several layers of additions and
products over the same input z; thus, we can homomorphically compute the threshold if the chosen
cryptosystem can perform both the addition and multiplication of two encrypted messages up to
the depth of such circuit.

It is important to note that the proposed procedure is not limited to threshold functions; in
fact, it can be analogously applied to general functions described by any f(x). Additionally, the
particular shape of f(x) or the value of the corresponding threshold do not affect our contribution.
Therefore, we assume that either the threshold or f(x) are pre-defined in the clear, and we focus
on how to homomorphically apply the threshold function as a circuit in the encrypted values.

Element-wise threshold

We resort to the use of the m-RLWE based cryptosystem [4] which, as explained in previous
sections, allows us to efficiently perform the wavelet transform and to encrypt multidimensional
signals. Its main advantage is enabling encrypted cyclic convolutions with only one ciphertext
multiplication.

However, the threshold circuit has to be independently computed for each coefficient, so we
need element-wise operations, which are not supported by the homomorphism. Consequently,
the advantage of having the signal encoded with a polynomial structure becomes a problem for
applying the threshold. To address this problem, we introduce an unattended homomorphic NTT
(Number Theoretic Transform) [29]] of the encrypted signal. The NTT has a convolution property
(similar to that of the Fourier Transform), such that the convolutions in the transformed domain
get translated into component-wise products in the original domain. We proceed as follows:

= Compute the homomorphic NTT of the encrypted signal.
= The encryped NTT of the signal is the input to the arithmetic threshold circuit.

= After the threshold circuit, we perform a homomorphic INTT.
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As each ciphertext addition performs the addition of two NTTs and the ciphertext multiplica-
tion is equivalent to the cyclic convolution between two NTTs, we are homomorphically perform-
ing the element-wise multiplication between the values of the encrypted signal. Hence, when we
consider the NTT of the encrypted signal as the input of the threshold circuit (see Eq. (7.2))), we
are actually homomorphically computing the threshold for all the signal values.

Optimization for square images: In our proposed scheme, we perform a bidimensional NTT
of the image. As the NTT is a separable transform, this can be easily realized by concatenating
two homomorphic univariate NTTs (horizontal and vertical). For this purpose, a direct application
of the methods proposed in [29] is not the optimal procedure, as they would be considering more
relinearization matrices than needed. Therefore, we propose an optimization on the additional in-
formation required to perform the bivariate NTT for a square image (or in general, the multivariate
NTT of any multidimensional signal with the same length in each dimension).

The general algorithm presented in [29] for performing our two NTTs (one for each dimension)
would need one relinearization matrix for each NTT. However, when working with square images,
it can be seen that one of the matrices can be replaced by a basic relinearization (see Chapter [
and Appendix [B), hence reducing in half the additional information with respect to the direct
application of the original method in [29].

Our optimization reuses the relinearization matrix of one of the NTTs by performing two
changes of variables x — y and y — z. This procedure allows to apply the homomorphic NTT
to the second variable, but it also introduces a change on the considered secret key, which now
has its variables reversed. This problem can be solved with a basic relinearization for performing
the switching key (see Chapter ] and Appendix [B) which has a size negligible compared to the
original relinearization matrix.

Efficient computation of the threshold circuit

This section evaluates the computational cost of the threshold circuit and proposes methods
for efficiently computing it in the encrypted domain.

In the worst case scenario, the maximum number of different points that our threshold cir-
cuit can have as input is ¢, which is the modulo considered for the plaintext (see Section [7.2).
Therefore, we can find an interpolating polynomial whose maximum possible degree is ¢t — 1.

It is also known that there exist algorithms for computing general polynomials of degree t — 1
with as many multiplications as the degree of the polynomial [150], for example, resorting to
Horner’s rule [151]] we can easily compute a polynomial of degree ¢t — 1 with ¢ — 1 multiplications.
However, dealing with a homomorphic cryptosystem brings about two important points:

= Horner’s rule considers that all the multiplications have the same cost; hence, it does not
take into account our special case dealing with a homomorphic cryptosystem, where multi-
plications between a ciphertext and a known scalar value are negligible with respect to the
product between two encrypted values.

= Horner’s rule does not take into account that a somewhat homomorphic cryptosystem

TP L)

bounds the number of allowed multiplications over the same encryped value “x” (in our
case it is bounded by D; see Section [7.2).
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Hence, in order to deal with these constraints, we resort to the algorithms for polynomial eval-
uation proposed by Paterson and Stockmeyer [152]], which only count non-scalar multiplications,
i.e., those multiplications involving the variable of the polynomial on both sides. Therefore, if we
adapt their algorithms for bounding the number of multiplications over the same encrypted value,
we can compute an arithmetic circuit of an /-degree polynomial with an order of O(\ﬁ ) non-scalar
multiplications (ciphertext multiplications).

The smallest number of multiplications can be achieved with the algorithm C' from [152],
which has a computional cost equivalent to v/2] + log, I + O(1) ciphertext multiplications:

» It assumes [ = k2™~ 1. If this is not the case, we decompose | in smaller pieces
of length k2'~!, evaluate them separately and subsequently join them using the powers

{22k ... , x2kMlog, %] }. This implies an additional cost of log, [ /k multiplications.

Compute the powers {x2,23,... 2"},

—1
Compute the powers {22¥, 2% ... 22"k}

After computing these powers, we can evaluate the polynomial with a total of /2] + logy [+

O(1) nonscalar multiplications if we consider k ~ \/g .

7.4. Security and Performance Evaluation

This section evaluates both the performance and security of our proposed scheme. First, we
briefly revisit and discuss some important concepts regarding the security of lattice-based cryp-
tosystems. Afterwards, we show which are the changes that we can apply to the scheme so as to
improve its efficiency when working in practical applications. Finally, we present the achieved
runtimes together with the corresponding security parameters.

7.4.1. Security of Lattice Cryptosystems

All the proposed methods are noninteractive, and their security is entirely based on the se-
mantic security of the used cryptosystem and the hardness assumptions on which it is grounded
(m-RLWE problem). We can analyze the security of lattice-based cryptosystems by following
the same procedures of prior works [4, 29, (79]. Hence, we focus on distinguishing attacks [[109],
which aim at breaking the indistinguishability assumption resorting to basis reduction algorithms.

In [46] we do not specifically deal with decoding attacks, which are aimed at obtaining the
secret key, but we considered minimum values for n = n;n, similar to those used in [79], this
apparently gave us protection against the decoding attacks described in [110]. However, as we
discussed in Chapter[5} when working with 2-RLWE with power-of-two cyclotomic modular func-
tions the effective n is equal to max {n,,n,}. This implies a considerable reduction on the bit
security estimates initially claimed in [46]]. With this in mind, in this section we update those bit
security estimates and briefly discuss some possible alternatives to avoid this decrease on security.

Distinguishing attacks: The best attacks against lattice-based cryptosystems rely on basis re-
duction algorithms, being BKZ [111]] one of the most efficient ones. The parameter which estab-
lishes the complexity of reduction atacks on the lattice is the root Hermite factor 4 > 1, such that
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for a constant k the runtime of an attack is approximately proportional to ¢¥/1°29 (see Chapter @
for more details on how ¢ is obtained). So as to calculate the corresponding bit security (and be
able to compare our chosen cryptosystem with other “traditional” cryptosystems), we resort to the
accepted pessimistic lower bound estimate ¢ g z(9) of [110] (see Eq. @.3)).

7.4.2. Performance Evaluation

This section discusses some additional implementation challenges that can appear when real-
izing our proposed scheme in a practical scenario. We also bring about some approaches which
can help to considerably improve the efficiency and cipher expansion of the proposed solutions for
these practical situations. Additionally, we also include different runtimes together with the cor-
responding bit security (Eq. (4.3)) for several image sizes when performing our image denoising
in the encrypted domain.

Practical considerations

Carefully looking at all the stages of our proposed encrypted image denoising process, it can
be seen that the most costly operation is the element-wise threshold circuit, whose worst-case
degree is highly dependent on the input cardinality.

For practical input images, their pixel values vary in range, therefore determining the degree
of the threshold circuit, together with the corresponding computational cost for its execution.

In order to alleviate the computational cost of the threshold circuit, we can reduce the maxi-
mum value that the image coefficients can achieve as a result of the homomorphic wavelet trans-
form.

Hence, for a practical implementation of our encrypted image denoising, we resort to the use
of the Haar wavelet. Its use allows to easily analyze how the encrypted image coefficients increase
after each stage, yielding a factor of 4% after k stages. So, for a practical range for images like
[0, 255], by mapping [0, 255] — [—127, 128] before encryption, we have that the output of the k-
stage belongs to the possible interval 4¥[—127, 128] = [—27+2F 4 22k 27+2K] for the coefficients.
Now, we can take the number of values of this interval minus one as the considered maximum
degree for the threshold circuit (in practical cases the degree of the interpolating polynomial would
be much lower), therefore obtaining a clear improvement comparing with the case of using ¢ — 1
as the maximum degree. Additionally, the structure of the Haar wavelet allows us to express the
computational cost of the wavelet transform as very efficient additions among shifted polynomials.

Implementation and execution times

We have implemented the 2-RLWE cryptosystem in C++ using the GMPEI MPFRE| and NFLIib
[94] libraries. Table compares the performance for encrypted image denoising for a range of
four different sizes of images and for the two lower bounds on the bit security originally claimed
in [46] (above 128 and above 256 bits of security), when running on an Intel Core-i5 2500 at 3.3
GHz using only one core (but the code is very amenable to parallelization). For all the cases,
we consider a Haar wavelet and two stages for the filter-bank implementation. Additionally, the
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range of values for the pixels is [0, 255], mapped to [—127, 128] before pre-processing the input
images. The possible interval for the values of the (clear-text) coefficients at the input of the
threshold circuit is [—2032, 2048]; hence, for preserving correctness in decryption, we consider
D = [log,4081] = 12 for obtaining the bound on ¢ (see Eq. (7.1))). This value for D yields a
conservative pessimistic g, as the optimizations of [29] allow to consider ciphertext multiplications
with polynomials of less than n coefficients. In any case, we take into account this fact for the
estimation of § and the calculation of the equivalent bit security. We report here the achieved
performance when denoising is used as a standalone block, but it is possible to perform further
homomorphic operations supported by the cryptosystem before or after the denoising, being the
only requirement to increase D to account for the rest of the processes in the chain.

We include the corresponding runtimes for each of the operations in the pipeline: the pre-
/post-processing together with encryption/decryption, and the homomorphic image denoising.
Additionally, we have included the root Hermite factor J, the bit security (see eq. (.3))) for each
scenario and the ratio in bits between the size of the encrypted image and the size of the image in
clear (cipher expansion). For the given § and bit-security we have included the updated estimates
working with max {n,,n,} (see Chapter|5), which in this scenario means n equal to 128 and 256
for the, respectively, “mid-term” and “long-term” security. We also include the original estimates
from [46] where we assume that there is no decrease in the lattice dimension, hence considering

n = ngn, in Equations (4.2) and 4.3)).

Table 7.1: Performance of Image Denoising (D = 12, A = 1, t = 65537, 0 = 1, 2 stages).

2-RLWE cryptosystem (claimed bit security > 128 in [46])

Image size [ 128 x 128 256 x 256 512 x 512 1024 x 1024
Cipher Exp. (ratio) 101.25 107.5 113.75 120
& (assuming n = ngny) 1.0043 1.0045 1.0048 1.0051
Bit security (Eq.@]), assuming n. = ngzny) ~ 182 ~ 165 =~ 150 ~ 136
6 (n = max{ngz,ny}) 1.7283 1.7878 1.8494 1.9131
Bit security (Eq.@&3), n = max {nz,ny}) ~ —108 ~ —108 ~ —108 ~ —109
Encrypt. 4+ Pre-proc. (ms) 9 41 199 939
Decrypt. + Post-proc. (ms) 10 42 211 1428
Enc. Denoising (min) 1.46 6.06 25.74 106.77
2-RLWE cryptosystem (claimed bit security > 256 in [46])
Image size 128 x 128 256 x 256 512 x 512 1024 x 1024
Cipher Exp. (ratio) 104.25 110.5 116.75 123
& (assuming n = ngNy) 1.0022 1.0023 1.0025 1.0026
Bit security (Eq.@3), assuming n = nzny) ~ 456 ~ 424 ~ 396 ~ 370
6 (n = max {ngz,ny}) 1.3258 1.3485 1.3715 1.3949
Bit security (Eq.@3), n = max {nz,ny}) ~ —106 ~ —106 ~ —107 ~ —107
Encrypt. 4 Pre-proc. (ms) 19 97 417 1973
Decrypt. + Post-proc. (ms) 20 101 441 2998
Enc. Denoising (min) 4.26 17.85 76.49 316.69

Improvements on Security: It is clear in Table [/.1|that due to the Bootland et al.’s attack [44]]
the parameterization of 2-RLWE with power-of-two cyclotomic modular functions is not secure
for the presented scenario. However, we can consider a set of modifications to increase the bit-
security:

= We can add a slack variable h to increase the dimension of the underlying RLWE insta-
tiation. To hold the bit-security estimates from [46], this slack variable must be at least
h = 128. As a result, the basic polynomial operations increase roughly by a multiplicative
factor of h(1 + log, h) = 1024.
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= We can adapt the 2-RLWE problem to those instantiations which do not suffer a decrease
in its effective dimension. We explain in detail these solutions in Chapters [2] and [3] By
using these secure m-RLWE instantiations, we do not need to incorporate a slack variable
to guarantee a minimum level of security, and hence we can preserve the performance shown
in Table

The performance of the proposed methods shown in Table proves the practicality of the
scheme, requiring a few minutes (using just one core) to process an entire image of moderate
size with a bit-security over 128 bits (mid-term security) if we consider a secure instantiation of
2-RLWE (see Chapter[2), and few milliseconds for encryption/decryption. The denoising runtime
shows a quasi-linear behavior in terms of the image size, which is basically caused by the compu-
tational cost of the polynomial operations. This is much more efficient than using a comparison
protocol with Paillier; e.g., [4] shows that for a basic filtering operation of a 1024 x 1024 im-
age size, an RLWE-based solution provides runtimes 3 orders of magnitude faster than Paillier.
Even a fully interactive secret sharing solution like [[146]] (which claims to be more efficient than
a garbled-circuit based solution) needs over 16 minutes for a two-level denoising of a 128 x 128
image; considering a very favourable case with a communication cost of a LAN. For this case, our
solution, besides not requiring any interaction, performs one order of magnitude faster.

7.5. Conclusions

This chapter proposes non-interactive methods based on 2-RLWE (Ring Learning with Errors)
that overcome the limitations of previous Signal Processing in the Encrypted Domain solutions to
efficiently perform encrypted image denoising. We have shown how to combine homomorphic
polynomial operations and thresholding without involving decryption or interaction, therefore en-
abling fully unattended encrypted image denoising.

The performance of our proposed methods proves their practicality, improving on the usage
of interactive comparison protocols with Paillier, and also comparing favorably with respect to
fully interactive secret sharing solutions, even when we do not require any interaction. However,
the proposed method is severely affected by the Bootland et al.’s attack, which has important
consequences on its effective bit security. In this chapter we have briefly enumerated some possible
solutions which enable to hold the originally claimed bit-security estimates (mid-term with 128
and long-term with more than 256 bits) without an impact of the efficiency. In Chapters [2 and [3]
we propose and explain in detail how to deal with secure instantiations.






Chapter 8

Camera Attribution Forensic Analyzer

This chapter is adapted with permission from IEEE: Alberto Pedrouzo-Ulloa, Miguel Mas-
ciopinto, Juan Ramon Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. Camera Attribution
Forensic Analyzer in the Encrypted Domain. The 10th IEEE International Workshop on Informa-
tion Forensics and Security (WIFS18), December 2018.

8.1. Introduction

Digital media forensics is rapidly evolving as an answer to societal demands. Besides lively
research topic, several commercial applications already exist that are able to (semi-) automatically
detect forgeries and tampering, or identify and/or cluster acquisition devices. Although most of
these tools have relatively low computational complexity, they must be run on very large and ever
increasing databases, with efficiency thus becoming a major concern. On the other hand, the still
growing popularity of content-sharing websites such as YouTube, Instagram or Facebook, and the
Dark Web [[153]], leads to rapidly obsolescent forensic analysis platforms, especially in times of
budget shortfalls, and quite conspicuously so in the case of law enforcement. An increasingly
appealing solution is to buy computing power and database storage as needed, by running soft-
ware and keeping data on outsourced platforms such as Amazon Web Services, Microsoft Azure
or Google Cloud. This approach cuts down maintenance costs and dynamically scales with com-
puting needs. However, outsourcing faces the problem of guaranteeing confidentiality and privacy
at the server end, much more so considering that forensic data is highly sensitive.

One salient instance of extremely sensitive data is related to child pornography. Some of the
existing tools for camera attribution or device clustering [3} [154, [155} [156] find an immediate
application in fighting against crimes involving depictions of minors [[157, [158, [159]. To get an
estimate of the sheer size of this problem, researchers looked during a one-year period (2010-
2011) at two of the then most common peer-to-peer networks, to find more than 2,500,000 peers
worldwide sharing child pornography [160]. Obviously, processing this type of files outside of
law enforcement’s own infrastructure is currently out of the question; encryption alone is not a
solution either, because contents must be opened at the server end in order to analyze them. This,
of course, extends to storage: even camera fingerprints should be encrypted at all times as they
may leak information that compromise an investigation.

Opportunely, recent advances in the field of Secure Signal Processing (SSP) [6] hint at a po-
tential solution to cloudify forensic analysis software and forensic data storage in such a privacy-

141
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conscious way with zero information leakage. This means that the server does not even learn the
outcome of a binary forensic test. Recently, some works have introduced new solutions based on
lattice cryptography which are especially adapted to efficiently work with images, covering en-
crypted operations that range from image filtering [4]] and image denoising [46l] to more general
image processing operations [3] (we have covered them in detail in Chapters[5|and[7] and also in

Appendix [B).

Most camera-attribution methods rely on the so-called Photoresponse Non-Uniformity
(PRNU). The PRNU is a specific noise pattern inherent to digital imaging sensors which rep-
resents the difference in response of the sensor array to a uniform light source [161]. It is caused
by random imperfections in the manufacturing process and it, due to its random nature, can be used
as a fingerprint of the camera device, serving to determine whether a given test image was taken
by a certain camera, by matching a residual obtained from the test image with the fingerprint. Due
to its great potential for image forensics, many works have studied the use and properties of the
PRNU, from the peculiarities of its mathematical modeling [[162} [163]] to a wide range of possi-
ble applications, including source attribution [164], source-based clustering [[155]], and tampering
detection [[165]].

This chapter proposes a new framework for the secure outsourcing of PRNU-based source
attribution (including secure PRNU extraction, detection and storage) in a fully unattended way,
that is, without the intervention of the secret key owner during the process. To this end, since
denoising is one of the main building blocks, we improve on the efficiency of the state-of-the-art
in secure, unattended solutions for image denoising (namely, the solution introduced in Chapter[7)),
and we show how filtering, polynomial, denoising and pixel-wise operations (e.g. element-wise
division) can be homomorphically performed in a single round without the need of an interactive
protocol.

Main Contributions: To the best of our knowledge this is the first work in the literature that
proposes a secure implementation of a forensic analyzer. The framework is here epitomized by
a PRNU-based extractor/detector, but it embraces many other existing forensic tools. Other main
contributions of this chapter are:

= Rooting in the secure wavelet-based denoising primitive presented in [46], we improve the
results therein by means of a new threshold function. Our new procedure enables a con-
siderable reduction in both the depth of the evaluated circuit and the number of effective
ciphertext multiplications.

= We discuss the application of our novel homomorphic wavelet-based denoising primitive
within a complex use case: PRNU extraction/detection for camera attribution.

= As such application requires many calls to the homomorphic wavelet denoising primitive,
we show how to optimize its implementation. The resulting method is able to evaluate
the full extraction/detection processes while avoiding execution-time interactions between
client and server.

Structure: The rest of the chapter is organized as follows: Section briefly revises the used
lattice-based cryptosystems and the PRNU matching scenario. Section [8.3] introduces the main

"Thanks to the anonymous reviewers of WIFS2018, we were made aware of a related work by Mohanty et al. [136]
138]). It requires the use of a trusted environment (ARM TrustZone), while our approach can be fully implemented on
a general purpose architecture.
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scheme for secure PRNU extraction and detection, and Section@evaluates it in terms of security,
efficiency and performance.

8.2. Preliminaries

This section summarizes the main operations performed in a PRNU-based extractor/detector
and revisits the lattice-based cryptosystem used in our proposed scheme, highlighting its conve-
nience for this scenario.

8.2.1. Basic structure of PRNU extraction/detection

The sensor output model can be approximated by the first two terms of its Taylor series [163]],
as
Y=1+K)o X+ N, 8.1

where Y is the output matrix of the imaging sensor, K is the PRNU signal, 1 is a matrix filled
with ones, X is the incident light intensity and IN represents other noise sources.

It is worth noting that X is unknown in practice, but an estimate X can be obtained with a
denoising operation over Y.

PRNU fingerprint extraction: Let {Y(Z)}lj‘i 1 be a set of M images taken with the same camera
device of N} pixels at native resolution. The PRNU can be estimated by using the maximum
likelihood estimator (MLE) derived in [[158]]:

M M ) o—1
K- <Z W oxm) o (Z (X0 ) , (8.2)
=1 =1

where W) = Y — X1 ig the denoising residue of the image Y (), and A°~! (resp. A°2)
stands for the Hadamard inverse (resp. square) of matrix A.

PRNU detection: Given a test image Y; with residue W; =Y; — Xt and a PRNU estimate K ,
the following hypothesis testing problem can be formulated:

Hy: W, and K correspond to different PRNUs.

Hy: Wy and K correspond to the same PRNU.

As a computationally simpler alternative to the use of the Peak to Correlation Energy (PCE)
statistic [3]], here we consider

u=W; K, (8.3)

for which an estimate of the variance is

o0 = (K K) (Wi Wy); (8.4)
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then, for a given probability of false alarm, the test becomes [[158]

u Hi

— 2 A, (8.5)

Ou Hy
where ) is a fixed threshold that changes depending on the desired false positive probability.
In (8.3) we assume that the signals W; and K are aligned; otherwise, the maximum of the cross-
correlation for every possible lag must be chosen as u in [154].

8.2.2. A 2-RLWE based Cryptosystem

We use univariate and bivariate versions of the FV cryptosystem [86] as the underlying block
for our secure forensic analyzer. Due to space constraints, we do not include here a description of
all the cryptosystem primitives (we refer the reader to [86] for a detailed description). The plaintext
elements belong to the ring R;[x, y| and ciphertexts are composed of two elements belonging to
R,[x,y]. When we work with bivariate polynomials instead of the usual univariate ones, security
relies on the indistinguishability assumption of the 2-RLWE problem (see Definition [13]).

The bivariate cryptosystem can encrypt images in only one ciphertext, instead of encrypting
each pixel in a different ciphertext. It also enables efficient pixel-wise additions with one ciphertext
addition and bivariate linear/cyclic convolutions with only one ciphertext multiplication at the cost
of a small overhead (operations are performed over Z, instead of Z; with ¢ > t). We refer the
reader to [86, 4| 46] for further details on these homomorphic operations.

To evaluate an arithmetic circuit of multiplicative depth L, we can consider the following
condition to have correct decryption (Theorem 1 in [86])

anl(n + 1.25)FH4L-1 < L%J , (8.6)

where n = nyn, and ||x|| < B, thatis, x is a B-bounded distribution.

Some comments on the security of bivariate polynomials: Analogously to the case addressed
in Chapter[7, when using rings with power-of-two cyclotomic modular functions, we have a reduc-
tion on the effective lattice dimension. If the security provided by the maximum univariate poly-
nomial degree is not enough for the application, several modifications can be considered which
enable to preserve the security. We elaborate more on the possible fixes in Section [8.4]

8.3. Proposed Scheme

This section describes the proposed scheme for securely evaluating the PRNU extrac-
tor/detector. First, we give a general overview of its structure with a brief description of each
block. Afterwards, we focus on the secure image denoising block due to its importance for the
PRNU extractor/detector. Finally, the two main tasks (PRNU extraction/detection) which form
part of the scheme are discussed in more depth.

8.3.1. General Overview

We establish the following two working hypotheses for the proposed secure solution:
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Figure 8.1: Secure scheme for the PRNU extractor/detector.

= The adversary model is based on a semi-honest setting, where the party who evaluates the
encrypted PRNU extractor/detector tries to gather as much information of the content of the
input images as possible, but does not deviate from the protocol.

= We require an unattended solution where the secret key owner does not have to participate
in the middle of the process.

Taking into account these constraints, Figure [8.1] sketches the proposed scheme, which in-
volves the two main attribution stages: (1) The extraction of the PRNU fingerprint given a training
set of images from the same camera, and (2) the detection of the PRNU in an input image taking
the previously extracted PRNU fingerprint as a template to be matched (see Section [8.2.1).

Our solution uses the RLWE and 2-RLWE versions [4] of the FV cryptosystem [[86]] as a means
to perform encrypted arithmetic operations. We also make use of some of the techniques described
in [46], such as (a) a lightweight pre-/post-processing (for homomorphic cyclic convolutions when
multiplying two ciphertexts) and (b) the use of homomorphic NTT/INTTs (Direct/Inverse Num-
ber Theoretic Transforms) from [29] (for element-wise additions and multiplications between en-
crypted vectors).

Whereas the two main stages securely implement two different processes (represented by,
respectively, (8.2) and (8:3))), both make use of an encrypted image denoising block. In fact, due
to the high number of denoising operations, optimizing this common block is especially important
for the efficiency of the whole pipeline.

In the following sections we explain in more detail the two main stages in Figure[8.1] includ-
ing our optimizations over the state-of-the-art encrypted denoising block proposed in [46] (see
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Figure 8.2: Encrypted Wavelet-based Denosing.

Chapter [7).

8.3.2. Encrypted Image Denoising

We consider as baseline the method for image denoising introduced in [46]E]Which comprises
three elements: (1) homomorphic direct/inverse wavelet transform, (2) homomorphic NTT/INTT,
and 3) threshold circuit. We considerably improve on the performance of this method by modify-
ing the second and third elements.

Firstly, our solution moves the homomorphic NTT/INTT to the pre-/post-processing stage,
avoiding its costly homomorphic computation and performing most of the operations in this
batched setting. Figure details the new structure of this primitive after substituting the ho-
momorphic NTT/INTT block.

Regarding the last element, instead of directly applying a threshold function, we consider a
quantization function which, in practice, works similarly to the hard threshold function from [46].
The advantage of this quantization is that it can be implemented by means of the “lowest digit
removal” polynomials defined in [166} 30]. Their use allows for a smaller depth on the threshold
circuit, hence considerably reducing the runtime of the primitive.

Homomorphic Wavelet Transform

We consider a filter-bank implementation for computing both the homomorphic direct and
inverse wavelet transforms of the denoising algorithm. In [46] the authors introduce a light pre-
/post-processing which enables the efficient application of low-/high-pass wavelets with cyclic
convolutions by means of only one multiplication between a ciphertext and a plaintext encoding
the corresponding wavelets.

After each homomorphic filtering operation, a downsampling or upsampling by a factor of 2
has to be applied depending on whether we work with the direct or the inverse transform. This
downsampling/upsampling operation is very efficient, but it has to be followed by a costly relin-
earization.

In this chapter, we avoid these downsampling/upsampling steps (together with the relineariza-
tion) by previously dividing and separately encrypting the original image into as many polyphase
components as required in the last level of the homomorphic wavelet transform (see [29]). Re-
stricting the wavelet transform to Haar wavelets, their particular structure enables to express the

This choice is mainly motivated by the widespread use of Wavelet denoising and its good tradeoff between cost
and performance.
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transform as very efficient additions among the polyphase components

Homomorphic Threshold

The approach considered in [46] for the homomorphic threshold (see Figure 8.2) directly in-
terpolates the desired function (together with a normalization factor corresponding to the wavelet
transform) over the plaintext. However, as the plaintext cardinality increases after each stage of the
filter bankf_f] the complexity of the threshold circuit also increases. Hence, the results from [46] do
not scale well when working with a high number of stages (in [46]] the authors evaluate a denoising
algorithm with only 2 stages).

This section introduces our quantization method to homomorphically evaluate both the nor-
malization and the threshold. By choosing the plaintext modulo ¢ as a prime power p? (where p is
roughly equal to the number of possible input values for the images, e.g., p = 257), we can evalu-
ate the quantization step with a polynomial whose maximum degree is equal to the cardinality of
the plaintext before applying the wavelet transform, which considerably improves its performance
with respect to the solution of Chapter|[7}

This technique is based on the use of the “lowest digit removal” polynomials recently in-
troduced in [166} [30] as a means to enhance the performance of bootstrapping for FHE (Fully
Homomorphic Encryption) schemes. Here we leverage their properties for a different purpose:
the homomorphic quantization of the plaintext.

We first present these polynomials (Lemma 3 from [30]]) and how to construct them for our
particular scenario:

Lemma 2 ([30]). Let p be a prime and e > 1. Then there exists a polynomial f of degree at most
(e — 1)(p — 1) + 1 such that for every integer 0 < x < p°,

f(x) = (z — (x mod p)) mod p°, (8.7)
where |z mod p| < % when p is odd.

Fore =2, f(z) = —z(x —1)...(z —p + 1) (Example 4 in [30]).

In our case, the quantization function which we want to evaluate is | 5 | for positive z and [ 5 ]

for negative z. To have this functionality, and considering e = 2, we can define f(z) = —(z +
%) (x4 Da(x—1)... (z— %), which implements the desired function for a quantization
f(=) e—1

step @ = p. Once we have f(x) mod p® we can directly divide by p to have e mod p
When working with the FV cryptosystem (see Section [8.2.2)), after homomorphically evaluating
f(z), this division can be done for free, only introducing a slight increase in the ciphertext’s noise
(see [30]).

8.3.3. Homomorphic Cross-correlation Test

To securely perform the detection test, we have to homomorphically evaluate (8.3) (the general
flow is depicted in Figure[8.1)). After the encrypted denoising block (see Section[8.3.2)), computing

3A total of i4° ciphertext additions for i levels, where each ciphertext encrypts a polynomial of size 1= and n is the
size of the original image.
“For example, considering a Haar wavelet the range of plaintext values is increased by a factor of 4 after each stage.
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the residuals is straightforward by means of a homomorphic subtraction. Afterwards, as the test
image may have been cropped, depending on whether it is aligned or not with the PRNU estimate
(see Section [8.2.1)), an encrypted scalar product or an encrypted cross-correlation operation is
required.

Aligned case: To calculate the scalar product, we take advantage of the fact that the first coef-
ficient of the NTT is the addition of all the coefficients in the time domain. Therefore, the server
divides the encrypted PRNU into blocks and obtains the homomorphic NTT transform of each
block, multiplies each PRNU block with the corresponding encrypted polyphase component of
the residual, and finally adds all the encrypted polyphase components. This method encodes the
scalar product in the first coefficient of the encrypted result. E]

Non-aligned case: Here we want to calculate the full cross-correlation between the encrypted
residuals and the reference PRNU. To do this, the client applies a pre-/post-processing over the
plaintexts before/after encryption/decryption, and works with a cryptosystem based on the 2-
RLWE problem. Then, the server can exploit the cyclic convolution property of the bivariate
homomorphic INTT from [46] with the purpose of obtaining the time domain representation of
the encrypted polyphase components (we refer the reader to [46] and Chapter [7|for details on this
operation).

Once this is done, as the test image is encrypted in different blocks with a cyclic convolution
property, the server can resort to the traditional “overlap-save” method [167] for calculating the
linear convolution between the PRNU template and the encrypted polyphase components of the
test image.

It must be noted that overlap-save discards part of the computed values, so the server has
to generate enough space inside the ciphertexts. To achieve it, the server breaks the content of
each encrypted polyphase component into four new ciphertexts before applying the homomor-
phic INTT, where each one has a quarter of the original polyphase component (for simplicity we
consider that we are working with square images) and the rest are zero values. This increases
the number of ciphertexts by a factor of 4, yielding a total of 4°*! when working with an i-level
wavelet denoising. The computational cost of the mentioned operation is equivalent to applying
4**1 times an overlap-save algorithm over a filter encoded in the ciphertext and a PRNU 4’ times
smaller.

Variance normalization: The statistic presented in (8.3) is normalized by o,0+y/N; where
N;o2 = W, - Wy and Nyop = K - K (N; and N, are the number of elements in W; and K
respectively). For efficiency reasons, the server calculates the desired A and returns the encrypted
result of the scalar product or cross-correlation together with an encryption of A scaled by this
normalizing factor. The server could also homomorphically evaluate the division as we describe
next for the PRNU extraction.

To compute these normalizing factors, the server can homomorphically evaluate the square of
the residuals and PRNU, and add for both the polyphase components of their results. The desired
values are stored in the first coefficient of the NTTs (see Chapter |[6).

SFor this scalar product we do not take advantage of the bivariate structure of the image, so we could consider an
RLWE based-cryptosystem.
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8.3.4. Secure PRNU extraction

The secure PRNU extraction involves the computation of in an encrypted way. The
encrypted denoising block for the input images and the pixel-wise operations on the encrypted
image and residuals are analogous to those in (8.2), which are explained in Section[8.3.2] so we
do not repeat them again here.

Finally, several strategies can be considered to implement the encrypted division needed to
fully realize (8.2) under encryption; we briefly describe them here.

Approximate division: We can consider the methods for encrypted division used in [168], 31,
56, with which we can approximate the result of the division with a predefined bit precision.

For example, the server can approximate the inverse of a number b with 2" bits of precision
with the expression:

r—1
—or 29 2 P 3p
— here = < < —. .
o TL (07 + (0= 1)) where § < bl < (3.8)
7=0
This approximation can be applied by adding an adequate value to the denoised images in (8.2))
(for both numerator and denominator), such that all the pixels lie in the right range for convergence
(for example, if p = 257 and pixel values are in the interval [—128, 128], the server could add 256).

The server can also use a gradient descent algorithm (previously shifting the negative values
to the positive side) as the Newton’s root finding algorithm proposed in [168]], where the inverse
of a number b can be calculated through an iteration of the form

ajp1 = az’(2/)2i — ba;), (8.9

with b € [0, 2] scaled by p*~ " (that is, (p2"~' /b)), and being j the number of iterations, ag = 1
and p = 2F1,

8.4. Security and Performance Evaluation

This section provides a complete evaluation of the proposed scheme, in terms of security,
efficiency and performance.

For such evaluation, and due to space constraints, we assume that the client has control over
the content of the images. This scenario could arise when the police have seized the camera of a
suspect and wants to verify whether a certain image was taken from that camera, but due to legal
constraints it cannot be directly outsourced in the clear. In this setting, we can safely assume that
the client can gather a set of non-sensitive training images from the same camera (e.g., flatfield
images); we can then perform the extraction in the clear. Once the PRNU has been extracted, we
do consider that the test images may have a very high sensitive content, which requires the client
to encrypt them before outsourcing.

Alternatives for PRNU extraction: As can be seen in (8.2), the extraction is more costly than
detection due to its high number of denoising operations. However, we can consider other ap-
proaches more amenable to the allowed encrypted operations. For example, instead of separately
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denoising each image from the training set, we could previously add them and apply (8.2) to
the resulting image. This computation is very similar to the PRNU detection, and the homo-
morphic addition of all the images can be done very efficiently with the used cryptosystem (see

Section[8.2.2)).

8.4.1. Security of the Proposed Scheme

The security of the proposed scheme is based on the semantic security of the used cryptosys-
tem, which relies on the indistinguishability of the RLWE and 2-RLWE distributions (see Defini-
tion [I3). In this chapter, we consider again distinguishing attacks [[L09] (although the considered
values of n also resist the decoding attacks described in [110]]), aimed at breaking the indistin-
guishability assumption through basis reduction algorithms (such as BKZ [[111]]). The runtime of
basis reduction attacks is parameterized by the root Hermite factor § > 1 (for details on how to
calculate 0 see [[79} 29]) as approximately eF/1°89 with a constant k; hence, a lower & gives higher
attack runtimes. To estimate the bit security, we use the lower bound estimatelﬂ for BKZ tpxz(9)

given in [110] (see Equations (4.2) and (4.3)).

Bit security estimates (together with execution times) for our proposed scheme are included
in Tables [8.1] and [8.2] As the encrypted image denoising algorithms from Table [8.1] are imple-
mented by means of an RLWE-based cryptosystem, there is no decrease on the effective lattice
dimension. Hence, this chapter shows how the denoising from Chapter[7|can be improved in terms
of efficiency and security by only moving the NTT/INTT blocks and removing the need of a bi-
variate convolution. The same applies for the aligned detection in Table [§.2] However, for the
non-aligned detection we make use of a 2-RLWE based cryptosystem for the homomorphic bi-
variate cross-correlation operation. We can see how the originally claimed security in [4] is much
higher than the real obtained due to the Bootland et al.’s attack [44]]. To solve this issue, we can
consider several approaches:

= The proposed “packed”-RLWE in Chapter [5]allows to work with a bivariate convolution on
RLWE.

= A slack variable / could be considered to fix a minimum level of security (see Chapter [7)).

= We can adapt the results to secure multivariate RLWE instantiations as those discussed in
Chapters[2)and[3] This solution allows to preserve roughly the same performance while not
having a reduction on security.

8.4.2. Implementation and execution times

We have implemented our scheme making use of the RNS variant of the FV cryptosys-
tem [95][] Table compares the runtimes of our proposed encrypted denoising (with the new
threshold circuit) and the original algorithm from [46l], which we already optimized by applying
the NTT/INTT before/after the pre-/post-processing, to fairly compare the raw performance of the
denoising primitive.

The runtimes substantially improve those from [46] (the improvement would be even more
significant if we did not include our optimized NTT/INTT in our implementation of [46]]). First,

®This estimate is more pessimistic than the security estimator recently developed by Albrecht et al. [80].
"Execution times were measured on an Intel Xeon E5-2667v3 at 3.2 GHz using one core for the non-parallelized
option.
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Figure 8.3: True Acceptance Rate (TAR) vs. False Alarm Rate (FAR) for 4 different target camera de-
vices. PCE represents the result obtained with the denoising in [2] and the PCE statistic [3], SPCE is the
simplified detector in (8:3) applying the denoising in 2], ED-PCE is the PCE statistic using the encrypted
image denoising described in Section [8:3:2] and ED-SPCE stands for the simplified detector discussed in

Section @

we avoid the heavy homomorphic INTT/NTT computation. Secondly, the use of a new threshold
function considerably reduces the ciphertext size and the depth of the evaluated circuit, resulting
in a much faster computation.

Table [8.2] reports the runtimes for the detection scenario of our proposed scheme for PRNU
extraction/detection. For efficiency reasons we separately compute the detection statistic v and
the normalizing factor in two different ciphertexts (avoiding the costly encrypted division, which
can be computed by the client as post-processing). The additional process of division does not
add an important overhead to the secret key owner (see Table 8.2). Moreover, due to the highly
parallelizable structure of the operations (they can be seamlessly parallelized even with a factor of
256), we include the runtimes considering different levels of parallelization.
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8.4. Security and Performance Evaluation

Table 8.1: Performance of Encrypted Image Denoising (o = 8).

Encrypted Denoising with RLWE cryptosystem (bit security > 110)

Denoising with 2 stages

Optimized from [46]

Our denoising

N (size image N X N)

1024 2048

1024 2048

t
Cipher Exp. (ratio)
é
Bit security (Eq.(@3))
L (multiplicative depth)
Encrypt. 4 Pre-proc. (ms)
Decrypt. 4 Post-proc. (ms)

Enc. Denoising (min)

65537 65537
200.6250  210.0000
1.00561 1.00294

~ 112 ~ 315
12 12
308.5 1333.4
591.4 2518.2
17.42 74.21

2572 2572
134.6250  134.6250
1.00374 1.00374

~ 223 ~ 223
8 8
211.2 844.9
392.0 1568.2
2.79 11.19

Denoising with 3 stages

Optimized from [46]

Our denoising

N (size image N X N)

1024 2048

1024 2048

t
Cipher Exp. (ratio)
é
Bit security (Eq.@3))

L (multipplicative depth)
Encrypt. + Pre-proc. (1m.s)
Decrypt. + Post-proc. (ms)

Enc. Denoising (min)

65537 65537
652.0000  326.0000
1.00342 1.00342

~ 255 =~ 255
14 14
797.2 1594.4
2311.7 4623.5
98.12 196.25

2577 2572
179.5000  179.5000
1.00374 1.00374

~ 223 ~ 223
8 8
211.2 844.9
588.1 2352.3
2.80 11.20

Table 8.2: Performance of Encrypted PRNU detection (2048 x 2048 image, PRNU of 16 Mpixels, L = 11,

t = 257°, 0 = 8, denoising with 2 stages).

Aligned detection with RLWE cryptosystem (bit security > 128)

Parallelization [ 1 8 16 20
Cipher Exp. (ratio) 379.95
4 1.00396
Bit security (Eq.(@3)) ~ 205
Encrypt. 4 Pre-proc. (ms) 3642.62
Decrypt. + Post-proc. (ms) 26.87
Enc. Detection (rmin) 128.33 16.05 8.03 6.53
Non-aligned detection with 2-RLWE cryptosystem (bit security > 128)
Parallelization 1 8 16 20
Cipher Exp. (ratio) 113.13
& (assuming n = ngny) 1.00396
Bit security (Eq.(@3), assuming an effective n = nzn,) ~ 205
4 (assuming n = max {ng, ny}) 1.65960
Bit security (Eq.@3), effective n = max {ng, ny}) ~ —108
Encrypt. 4 Pre-proc. (ms) 3642.62
Decrypt. + Post-proc. (m.s) 6878.50

Enc. Detection (min)

1140.10 142.50 71.30 57.90

8.4.3. Performance of the PRNU extraction/detection

In order to evaluate the feasibility of the proposed scheme in terms of detection probabilities,
we securely perform the PRNU detection test proposed in Sect. as described in Sect.
To do so, we employed images from a database containing 2639 TIFF images from 16 digital

single lens reflex camera devices [[169, 170].

For a given target camera device, the fingerprint is extracted from M = 50 randomly chosen
TIFF images, while crops of the JPEG-compressed version of the TIFF images with size 1536 x
1536 and quality factor 95 are considered for detection purposes. To test the 1 hypothesis, after
discarding the M images used for extraction, 20 different crops per image with random origins
are considered on the images from the target camera, while Hy hypothesis is tested by considering
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one crop per image for all images from each remaining camera device.

Figure [8.3] compares the performance of the detector in (8.3) with the Peak to Correlation
Energy (PCE) state of the art detector [3]], both when the widely used image denoising in [2] and
when the proposed encrypted denoising filter with 2 stages (see Section[8.3)) are used to obtain the
residue of the test images. Notice that the denoising procedure from [2] is used for extraction (K
estimation) in all experiments, since the fingerprint is estimated in the clear.

The performance loss in the encrypted domain is mainly due to: (1) The simpler encrypted
denoising algorithm, and (2) the simpler variance estimation on the detector in (8.3).

In spite of this slight loss in performance, the source attribution problem based on PRNU
detection is feasible in the encrypted domain, achieving high true detection rates with low false
alarm rates on JPEG test images, as shown in Fig.[8.3]

8.5. Conclusions

This chapter proposes a novel framework for secure outsourced camera attribution in a fully
unattended way. As a fundamental block for both PRNU extraction and detection, we also present
a new image denoising algorithm which improves the efficiency of the state of the art. Our so-
Iutions focus on unattended processing, where no interaction with the client is needed during the
outsourced computation. We show that suboptimal choices can be more adequate for homomor-
phic operations. Finally, we also evaluate our proposed scheme in terms of security, efficiency and
performance, showing the feasibility of secure camera attribution in the encrypted domain.






Chapter 9

A Discussion: Conclusions and Future
Work

In this chapter we summarize the main contributions proposed in the thesis. To introduce our
results we have followed a bottom-up strategy, starting from both the main definitions and the
descriptions of the basic blocks, and ending up with a full list of examples of practical signal
processing applications.

With this in mind, here we briefly discuss the implications of our solutions for privacy-
preserving processing, paying special attention to the existing interdependences between the ini-
tially established high-level objectives and the most technical contributions of the thesis. Finally,
we sketch out some of the possible future research lines which can be followed from now on.

From a high-level point of view, the main contribution is twofold: (1) we propose methods to
securely process multidimensional signals, and (2) we present a general set of secure signal pro-
cessing primitives which allow for unattended secure processing. We also show how to combine
these two contributions so as to securely implement more complex multimedia applications in an
unattended way.

In order to fulfill these two general points, we have studied in detail the particularities of secure
signal processing primitives, mainly working on three different layers:

= multivariate RLWE problem: We have studied the grounds of lattice-based homomorphic
cryptography with the purpose of adapting this building blocks to the specific requirements
of signal processing applications. As a result, we proposed a hard problem called multi-
variate RLWE which fits to multidimensional signals better than its univariate counterpart.
Interestingly, this hard problem is not only useful for signal processing, but also to improve
the efficiency of fundamental primitives in homomorphic cryptography (e.g., polynomial
operations, automorphisms, homomorphic slot manipulation, etc.).

During the development of this thesis, an attack was presented which severely affects the
security of multivariate RLWE. Consequently, we have reevaluated the security of this prob-
lem, and studied in detail how to parameterize it to have secure instantiations. These secure
instantiations maintain the efficiency properties originally claimed for multivariate RLWE,
while also avoiding a reduction on the effective lattice dimension.

= A secure toolbox for unattended signal processing: We have taken advantage of the poly-
nomial structure of RLWE-based cryptosystems to implement very efficient basic signal pro-
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cessing operations (e.g., generalized convolutions, linear transforms and matrix operations,
among others). Our focus is on unattended processing, where we avoid the intervention of
the secret key owner in the middle of the computation.

To do this, we have proposed novel uses of NTTs (Number Theoretic Transforms) and relin-
earization techniques combined with very efficient pre-/post-coding operations before/after
encryption/decryption. It is worth noting that although these methods were originally pro-
posed for our secure toolbox, they can also be applied in the low-level cryptographic blocks
to enhance the efficiency and define new operations. This fact clearly showcases the inter-
dependence between the different technical contributions and layers.

We have also proposed an alternative solution to our secure parameterization of multivari-
ate RLWE. This solution mainly consists of a new pre-/post-coding operation which en-
ables to transform homomorphic univariate into multivariate polynomial operations. Hence,
allowing us to work with multidimensional signals while working with univariate RLWE-
based cryptosystems.

= Signal processing applications: We exemplify the proposed secure tools in several prac-
tical signal processing applications. The set of possible applications is very wide, ranging
from genomics to multimedia forensics. It is worth noting that during the development of
this thesis, we have worked with more scenarios (e.g., some financial scenarios) than those
exemplified here, but due to space restrictions we have decided to omit them. In any case,
they are briefly mentioned in Chapter [I]

Additionally, the described scenarios introduce additional difficulties due to the nature of
the involved signals. Consequently, instead of directly applying our previous general solu-
tions, we take advantage of the signals’ particular structure in each application to improve
the results with respect to the standalone solution. We briefly enumerate the exemplified
applications: (1) we propose a secure genomic susceptibility testing protocol to a particular
disease, (2) we propose block-processing operations and several transformations which al-
low for converting signals with different structures, (3) we propose a framework for secure
and unattended image denoising, and finally, (4) we propose a camera forensic analyzer in
the encrypted domain.

Some of the solutions working with multidimensional signals were originally proposed in
insecure multivariate RLWE instantiations (by insecure we mean that the effective lattice
dimension is equal to the maximum of the univariate polynomial degrees). We also discuss
how to readapt those results to preserve both the efficiency and security originally claimed.

9.1. Future Lines of Research

Even though the field of secure signal processing has rapidly evolved in the last years, it
is still a very young discipline and there are many open problems. Many of them relate to the
improvement of the underlying MPC techniques. In this thesis, where we focus on unattended
secure processing between two parties, it is of fundamental importance the efficiency improvement
of the underlying cryptograhic primitives like e.g. bootstrapping, which is a key block to have
truly practical FHE. Additionally, from the point of view of secure signal processing, little work
has been done on considering more realistic threat models in addition to passive security.

Next, we discuss these ones and more possible follow-up works which can be derived from
the results obtained in this thesis.
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Signal Processing Applications: Two of the main issues restricting the implementation of prac-
tical secure signal processing are those related to (1) the plaintext blow-up problem, (2) con-
versions of plaintext representation, and (3) the growth on cipher expansion (the ratio between
ciphertext and cleartext size).

Many improvements have appeared regarding the two first problems, but they are still two
of the most important obstacles to implement practical secure signal processing in an unattended
way.

Blow-up problem: For the former, one easy solution is to resort to interactive protocols as a
means to normalize the plaintext (we decrypt, normalize and reencrypt). However, this process
introduces an additional communication overhead which was not our initial objective.

Plaintext representation: Efficient conversions between plaintext representation are especially
important: we can choose either very efficient arithmetic operations or operations (efficient com-
parisons, maximum, minimum, etc.) more amenable to a a binary plaintext representation. We
know how to very efficiently perform both but no with the same representation. Advances in this
matter would greatly benefit encrypted computation.

Cipher expansion: In spite of the previous disadvantages, lattice-based cryptosytems (partic-
ularly those based on RLWE) already provide very efficient homomorphic operations, and con-
sidering most of the proposed optimizations in the literature they can be used for many practical
scenarios. However, they can present a huge growth in cipher expansion. This introduces a high
communication and storage overhead when working with them. As we have seen in some of the
exemplified applications, with an adequate packing strategy this shortcoming can be considerably
improved, but in general it is still very high. If the evaluated circuits do not have a high depth,
the growth is not that important, but when increasing the depth of the evaluated circuits this defect
starts to be a serious limitation.

A concrete example - Camera Attribution: Chapter [§] showcases how to implement a secure
forensic analyzer based on exploiting the properties of the PRNU fingerprint. In this thesis, we
have assumed that for training, the client can gather a set of non-sensitive images. We plan to
extend these results, providing a complete evaluation of the PRNU extraction phase.

Another concrete example - Genomic Susceptibility Testing: For the genomic susceptibility
testing protocol we assume a passive security threat model, where the SPU does not deviate from
the protocol. A possible follow-up work could consider to extend these results to deal with mali-
cious adversaries.

Cryptographic Building blocks: Some follow-up paths are also related to the different low-
level cryptographic primitives of this thesis. We briefly summarize some options next.

Extending our results to secure multivariate RLWE instantiations: It is worth highlighting
that some of the exemplified solutions are sketched out with negacyclic rings (mainly those from
Section[3.3]in Chapter [3|and Chapters[7]and [8] and also Appendix [B). Although we have briefly
explained how this extension can be realized, a much more detailed analysis is required and we
plan to extend these results to the more general multivariate rings showcased in Chapter 2|

Signal conversions and pre-/post-coding with any number field: In this thesis we have only
exemplified the use of signal conversions and pre-/post-coding with power-of-two cyclotomics,
but more general instances of multivariate RLWE could be greatly benefited of its use.

Joining the pieces: Although we have studied many of our contributions as independent pieces,
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most of them are perfectly compatible. The next step must be to study the combination of all of
them.

Updates on the Threat Model: Finally, some possible lines of future work can focus on dealing
with more realistic threat models:

Verifiable computation: In our two-party scenario composed of client and server, we can have
passive security and even input privacy for a malicious server. However, there is no guarantee on
the output correctness and hence we do not have active security. If both parties know the function
to evaluate, a possible follow-up work is to use verifiable computation of encrypted data [[171} 1172}
173]].

Circuit privacy: Our solutions do not provide circuit privacy; that is, when applying a function
to an input, the evaluated ciphertext has to hide every information relative to the function except
the output itself. This is an interesting property for those situations where the service provider
may want to hide its propietary algorithm.

Conventional lattice-based homomorphic cryptosystems do not provide this property by de-
fault, as the homomorphic circuit is also applied to the additive ciphertexts’ noise. Hence, at
decryption, the noise presents some traces of the evaluated circuit.

There are several solutions in the literature: (1) Using bootstrapping (either by assuming cir-
cular security with the conventional approach which homomorphically evaluates the decryption
circuit or by means of Garbled Circuits). (2) Adding superpolynomial noise (noise flooding)
which hides the circuit information of the ciphertexts’ noise. Finally, (3) some solutions are based
on the GSW cryptosystem [174,[175]. An interesting follow-up work is to study the use of these
techniques in several practical scenarios.
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Appendix A

A Security Reduction to Multivariate
RLWE

This appendix is adapted with permission from ArXiv: Alberto Pedrouzo-Ulloa, Juan Ramon
Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. On Ring Learning with Errors over the Tensor
Product of Number Fields. ArXiv e-prints, CoRR abs/1607.05244v3, February 2018.

A.1. Introduction

This appendix formalizes a generalization of RLWE to the tensor product of number fields,
denoted m-RLWE (multivariate Ring Learning With Errors). Indeed, the interest on a multivariate
version of RLWE emerges when working with multidimensional structures, such as videos or
images [4, 46]. In this scenario, the use of a tensorial decomposition in “coprime” cyclotomic
rings (see [45} 41} 140]) is not valid, as these applications require that the modular functions have
the same form (e.g., 1 + 2™). This is the context where m-RLWE [4] was originally introduced as
a means to easily deal with encrypted multidimensional structures.

Contributions: The main contribution of this appendix is the formalization of the multivariate
Ring Learning With Errors problem, also providing an extended reduction of the original proof
by Lyubashevsky er al. [40, 41]]. Unfortunately, as we can see in Chapters 2] and [ for some pa-
rameterizations the multivariate RLWE problem is reduced from an easier problem than expected
at a first glance; which implies a decrease in the effective dimension of the underlying lattices.
Even so, the problem still introduces efficiency improvements in many practical signal processing
applications (see Chapters [5] [7] and [8] and Appendix [B]). In Chapters [2] and [5| we study in depth
how to securely parameterize the multivariate RLWE problem.

Structure: The rest of the appendix is organized as follows: Section introduces some al-
gebraic number theory notions needed for the security reduction of m-RLWE. The m-RLWE
problem and its reduction is introduced in Section[A.3] Finally, Section [A.4] discusses the main
contributions and draws some conclusions.
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A.2. Background

This section presents the fundamental concepts of lattices and algebraic number theory and
extends them to the more general case of a tensor of number fields on which m-RLWE is based.

A.2.1. Some Concepts of Lattices and Algebraic Number Theory

Here we include the most relevant concepts required to work with multivariate RLWE such as
it was introduced in [4, 22]]. To focus interest on the main difference with respect to the univariate
counterpart, we omit many of the existing details. We refer to Appendix [A.A]for a deep review of
the required concepts of lattices and algebraic number theory.

Number fields

A number field is defined as a field extension K = Q(<) where the element ¢ is incorporated to
the field of rationals. This element ¢ satisfies f(¢) = 0 for an irreducible polynomial f(x) € Q[z]
called minimal polynomial of ¢. The degree n of a number field is the degree of its minimal
polynomial.

We can also see the number field K as an n-dimensional vector space over (Q where
{1,6,...,6" 1} is called the power basis of the field K. Of course, we have an isomorphism
between K and Q [z] / f(x).

In this Appendix, we have a special interest on cyclotomic fields, which are those fields where
S = G, (for some natural number m) is an m-th primitive root of unity and the minimal polynomial
of G, is the m-th cyclotomic polynomial ®r, () = [[;cz. (z — wt,) € Z|x], where wy, € Cis
any primitive m-th complex root of unity (for example w,,, = e2mV =1/ ™). It is important to note
that the different powers w?, of ®,,(x) are the m-th roots of unity in C and that the degree of
®,,(z) is n = ¢(m), where ¢(m) is the Euler’s totient function.

In general, there is no bound to the number of elements that can be added, so we could have
K = Q(Sm,, - - -, Sm, ), that is isomorphic to the cyclotomic field Q(sm) = @)y Qsm,) when
m = Hz‘e[l} m; has a prime-power decomposition and each ¢, is a m;-th primitive root of unity
(See [45]).

Tensor product of number fields

Throughout the Appendix, we consider a tensor of number fields K () = ®z‘e[l] K;, where
each Kj; is a number field, not necessarily being all of them different. We also consider the ring R
as the tensor of the corresponding ring of integers O, that is, R = ®ie[l] Ok, and an integer
modulus ¢ > 2. Unless otherwise specified, we in general restrict ourselves to the case where
each K is a cyclotomic field of order m; > 2 and degree n; = ¢(m;), so elements of K (T)
(resp. of R) can be equivalently described as multivariate polynomials in Q[x1, ..., z;] (resp.
Zlx1,...,x;)) modulo ®,,, (21),..., P, (x;). The total degree of the field tensor polynomials is
therefore n = []'_, ni.
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Embeddings and Geometry

A number field K = Q(s) of degree n has exactly n embeddings o; : K — C, where each
of these embeddings maps ¢ to a different complex root of its minimal polynomial f. The number
of real embeddings is denoted by s; and the number of pairs of complex embeddings by s2, so we
have n = s1 + 2s9 (the pair (s1, s2) is called the signature of the number field).

The canonical embedding is defined as ¢ : K — RS x C2?%2, where o(z) =
(o1(x),... ,an(x))T. Let {o;} withi = 1,..., s1 be the real embeddings and o5, 45,4+ = Ts,+
with j =0, ..., s2 — 1 be the complex embeddings (c; denotes the complex conjugate of o).

In the cyclotomic case of order m > 2, ®,,(x) has only complex roots, so s; is always equal
to zero, and 2s; = ¢(m) (being ¢(-) the Euler’s totient function). For our purposes, it is useful to
redefine the embedding of ®i€[l] K; as in [45] with a particular ordering of the o;(x), that improve

the handling of automorphisms. For each i € [I] and j € [n;], we denote by (w; 1, ...,w;n,) the
n; = 2s; roots of ®,,. (), assembled in an order such that w; ; = w; jts, forall j € [s;]. We
also fix the following alphabetical ordering between [ni] x --- x [n;] and [n], where the tuple
(41, - .-, 1) is sequentially numbered as:
F=1+> Gi—=1) [] nar (A1)
i€(l] deli]

With this definition in mind, we extend the canonical embeddings of each number field to
an explicit tensor embedding o from ®z‘e[l] K; to C", where o(P) is the vector of evaluations
(01(P),...,on(P)) where 0;(P) = P(wj,,...,w;,) using the above indexing. This is a ring
homomorphism where multiplication and additions are element-wise.

Note also that because each complex root always appears with its conjugate, and the evaluated
polynomial is rational, half of the positions of the tensor embedding are just conjugates of the
other positions, hence the output tensor embedding lives in a vector subspace of C™ of dimension
n. We denote this space H r) in the rest of the Appendix.

The trace is extended over the tensor and this can be defined as the sum of the embeddings:
Trace(P) = >_7_, 0;j(P), its output is always rational.

Similarly, for a prime number ¢ such that ¢ = 1 modulo each m1, ..., m;, we define the tensor
embedding modulo g the same way, from R/qR to (Z/qZ)"™ by taking the roots of ®,,,. (x) modulo
q instead of the complex roots.

Multivariate Ideals: An (integer) ideal J is a subgroup of R such that R - J C J, and a
Jfractional ideal T is a subgroup of K 1y where there is an element d € R such that d-Z is an ideal
of R.

The dual of Z, noted Z" is by definition {a € Ks.tVb € I, Trace(ab) € Z}. IV is a
fractional ideal of K ().

We denote J, for 7 /qJ, where J is a fractional ideal in K (7). Let R" be the dual fractional
ideal of Rand T = K (7 r/R"]]

'K () p is defined as K (1) @ R.
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Lattice background

Ideal Lattices: The image o(Z), also noted £(Z), of any fractional ideal by the tensor embed-
ding is a discrete subgroup of H (7, which we denote as multivariate ideal lattice. The ideal T is
full-rank when the dimension of £(Z), as an R-vector space, is n. Note that unlike in the univari-
ate case, being non-trivial is not a sufficient condition for an ideal to be full rank: for instance, the
bi-variate ideal generated by 2 —  modulo z? 4 1, y? 4 1 has dimension 2 instead of 4.

When £(Z) is full rank, the dual ideal lattice £(Z") is the dual lattice of of £(Z).

Gaussian Measures: We consider the Gaussian function p, : H(p) — (0,1] with » > 0 as
pr(x) = exp(—nl|z|[>/r2) (see Sectionfrom Chapter. A continuous Gaussian probability
distribution can be obtained by normalizing the previous function, hence obtaining D, with a
density function r~"p,(x). Extending it to the non-spherical Gaussian case, we consider the
vector r = ®i€[l} r; where r = (r1,...,r,) € (RT)" or also each 7; = (r;1,...,7in,) €
(R*)™ and whose components satisfy Tijt+si+ss = Tij+s - Finally, a sample from D, is given
by Zie[n] x;h;, where r; = Hie[l] l’gj) and each x; is drawn independently from the Gaussian
distribution D, over R; r; is equal to Hie[l] 7;,5;- We are using the mapping between {;} [, and

{ji}jie[ni]:ie[l] in Eq. (A.1).

Due to space constraints, we refer the reader to Appendix [A.A]for the definition of the smooth-
ing parameter 7 (A) for a lattice A, and for some of the underlying lemmas required at some steps
of the proofs[]

Definition 14 (Bounded Distance Decoding problem in ¢,-norm). For a full-rank lattice A, and a
bounded decoding radius rp, < [|A1(X\)/2||p, given a targett = v+e, wherev € A and ||e]|, < 1,
recover v and e.

Definition 15 (Discrete Gaussian Sampling problem). Given a lattice A and a parameter s >
ne(A), the goal is to output samples generated from Dy .

A.2.2. Automorphisms and Linear Representation Theory

In order to justify the structure and behavior of the new automorphisms in the tensor case, we
resort to the theory of Linear Representations [176]. First, we introduce the main concepts needed
from this theory and afterwards, we detail the different automorphisms that can be found.

In general, we consider V' as a vector space of dimension d over C, and we define GL(V) as
the group composed of all the isomorphisms of V' onto itself. An element a belonging to GL(V)
can be seen as a linear mapping from V' to V, and we denote its inverse as a~'. Analogously, we
could think of each linear mapping as an invertible square matrix A of size d x d whose coefficients
are complex numbers. Hence, we can see that GL(V') is composed of all the different invertible
square matrices of order d.

Let G be a finite group, we define a linear representation of G in V' as a homomorphism p
from G to GL(V'). Provided that the group G has the composition operation (r,s) — rs for
r,s € G, we have that p(rs) = p(r)p(s), where p(r)p(s) represents the matrix multiplication op-
eration between the two matrices associated with r and s, respectively. When 1 € G, this implies
p(1) = 1and p(s—') = p(s)~*. Commonly, we consider V as a representation space (or simply

These additional details can also be consulted in the Appendix
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a representation) of G. Now, we can particularize the previous results to our specific case, for
W = Q(sm,;) C C. Let G = Zj, , and define the composition operation as the product operation
between units of Z,,,; we have the following linear representation p; : Z, — GL(Q(sp,)), where
pi(Zy,,) € GL(Q(Gm,)) is composed of the different automorphisms 13, = p;(k) for k € Zj,, such
that Ty, (Gm,) = <, . Hence, we have Q(q;,,) as a representation of Zj, . It is worth noting that
the effect of 5 over the embedding is a rotation of the coordinates of the subspace H;, that is,

0i(Ttk(Sm;)) = oit(Sm, ), being i € Zy, .

Outer tensor product of Linear Representations: Consider two groups (G1,-) and (Ga,
and consider the direct product G; x Gg with the following “-” operation: (s1,s2) - (1, t2)
(81 - 89,11 - tg) where (81, 52), (tl, tz) c Gl X GQ.

)

If we define p' : G; — GL(V1) and p? : G2 — GL(V%) as linear representations of
G1 and G3, we have a linear representation p' ® p? : Gy x Gy — GL(V; ® V») by setting
(P! @ p?) (s1,52) = p'(s51) @ p*(s2).

This way of dealing with the tensor of different linear representations allows us to define the
different automorphisms of the field tensor K7y = ®i€[l] K; in terms of the automorphisms of
each K;. Then, we have the corresponding homomorphism for K(r) with the tensor of linear
representations

i€l

i€(l] i€(l]

where each p; satisfies p;(k;) = T](;) , with k; € Zy, and being T](;)

automorphisms of the K; number field.

; the corresponding ¢(m;)
Finally, in order to map the set of [ [, #(m;) automorphisms &), TSZ,) with only one index

we can consider the mapping in Eq. (A.I), in such a way that k; € Zy, = g9 ([p(m;)]) and

. - -1

ji = (9% (ki)

A.2.3. Chinese Remainder Theorem

This section reformulates the Chinese Remainder Theorem (CRT) for the ring R = ®z’e[l] Ok,
in the tensor of number fields K () = ®ie[l] K, and revisits some important concepts introduced
in [41]).

Lemma 3 (Chinese Remainder Theorem). Let 71, ..., Z, be pairwise coprime ideals in R, and let
7= Hie[r] Z;. The natural ring homomorphism R — @ie[r] (R/Z;) induces a ring isomorphism
R/T — Djcpy(R/To).

We now focus on explaining why the CRT works over multivariate polynomial rings and how
the use of the automorphisms in Section affects the decomposition caused by the CRT. First,
consider R = Ok, = Z|[sp,], the ring of integers of a number field Q(g,,,), where g,,, is the
m;-th primitive root of unity. If we work with the ideal (¢) = ¢qR and g € Z is prime, we have
the following factorization (q) = [], q¢, where there are ¢(m;)/(ef) different q; of norm ¢/,
e = ¢(¢'), and f is the minimum natural number that satisfies ¢/ = 1 mod m;/q’ with ¢ the
largest power of ¢ that divides m;.

For each ideal, we have q; = (g, Fj(sm,)) with @y, (z) = [[; (Fj(2)), being the fac-
torization of ®,, (r) modulo g. As explained in [41], when considering that ¢ = 1 mod m;,,
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both e and f are equal to 1, and as there is an m;-th primitive root of unity w; in Z,, then
D, (z) = HJ'EZ?M (z—w]). Therefore, we finally have (g) = HjGani qj, with q; = (g, sm, —wy).
Additionally, we can use the automorphism T,(;) to exchange the contents between two different

prime ideals q; of ¢R; that is, we can do T,(j)(qj) = q;/k (see Lemma 2.16 in [41]).

Now, resorting to Lemma [3] we have an isomorphism from

Zlsm:]/(q) 1o Djez:  Llsmi]/ (@ sm; — wf), that is in fact also isomorphic to Zg(mi).

Multivariate extension: The multivariate case R = ®i€[l] Ok, can be formulated as the tensor
product between the previously considered univariate rings, that is, @), Z[<m,]/(q), where ¢ has
to satisfy ¢ = 1 mod m; for all 7 € [{]. This is isomorphic to the tensor product of the respective
direct sum in terms of the different prime ideals ®i€[l] (@jeZ* Zsm,)/(a, 5m; — w{ )) as the
tensor and direct product commute, we have @j €[Miery 6(m)] (®k€[l} Llsm,,)/{q, Smy, — wik>>§
the mapping between the set {ji,...,;} and j is defined by Eq. (A.T). This ring is in fact iso-

morphic to anie[” pomi)

By virtue of the ring isomorphism ¢,,, — x; for i € [I], we have that
Dicyyjiezs, Zglzr, ... ] /(x1 — wi',..., 2 — w]'). Thanks to the mapping introduced in
Eq. (A1), we consider q; = q;, ... j, = (z1 —w{l, ce, —wljl>, with j € [Hie[l} ¢(mz)] First, it
can be easily shown that each q; is an ideal and, as there is an isomorphism from Z,[z1, . .., ;] /q;

to the finite field Z,, q; is a maximal ideal and also a prime ideal, as every maximal ideal over
a ring is also a prime ideal. In order to show that all the q; are comaximal ideals, we use the
following reductio ad absurdum argument: consider two different maximal ideals q; and qg, with
k # j; by definition, q; + q; is also an ideal; we have three possible cases: (a) qx + q; = qz,
(b) g + q; = q;, and (¢) there is another maximal ideal q;, + q;. The first two cases are not true
because q;, and q; are different, and the third case is impossible because each ideal is maximal,
therefore qi, + q; = Z,[z1, . . ., 2], which is the definition of comaximal ideals.

As q; for j € [Hie[l] gb(ml)} is a set of comaximal ideals, we can use Lemmato show that

there exists an isomorphism
Zglz1, .. 2] [{ Py (21), - - -, Py (1)) = @ (ZQ[$17"'7xl]/qj)§
j€[[Tiegy ¢(mi)]

that is, we can compute the corresponding CRT, and its properties also apply. After this, we can
present a similar result to Lemma 2.16 in [41]], but adapted to our more general case:

Lemma 4 (Lyubashevsky et al. [41] Lemma 2.16). For any q; = qj,,...j, and q;1 = T
(by Equation (A.1)), we have a linear representation (automorphism) ®;cpi (k1, ..., k) =

®i€[l]’t](€? where k; € Ly, satisfies ®i€[l]ﬂr,(€? (9;) = q;7.

In the following sections, we go over the two main blocks of the security reduction.

A.3. Multivariate RLWE

The objective of this section is to adapt and generalize the techniques of Lyubashevsky et al.
[40, 41]] so as to achieve a reduction to a class of multivariate RLWE (m-RLWE) from hardness
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problems over ideal lattices. For the sake of completeness, we present a generalized version of the
multivariate polynomial RLWE problem (see Definition 2] from Chapter 2) which admits any type
of cyclotomic polynomial as modular function instead of only those with power-of-two degree

A.3.1. Main Definitions for Multivariate Ring-LWE

Definition (Definition [2| from Chapter [2; Multivariate Ring LWE distribution). For s € R;/ and
an error distribution 1 over Ky g, a sample from the m-RLWE distribution As y, over Ry X T is
generated by a < Ry uniformly at random, e < 1, and outputting (a,b = (a-s)/q+e mod R").

We refer the reader to Chapter [2] for a complete description of the Search and Average-Case
Decision problems (respectively, Definitions [3] and [, together with their corresponding error
distributions (respectively, Definitions [5]and [6).

Our main Theorem[/is obtained by combining the theorems from Sections and

Theorem 7 (Extended version to m-RLWE of Lyubashevsky et al. [41] Theorem 3.6 ). Let
Ky = ®i€[l] K; be the tensor product of | cyclotomic fields of dimension n; = ¢(m;) each, and
R = ®i€[l} Ok, the tensor of their corresponding ring of integers. Let a < +/logn/n, and let
q = q(n) > 2, ¢ =1 mod my, for all i, be a poly(n)-bounded prime such that aq > w(+/logn),
where w(f(n)) denotes a function that asymptotically grows faster than f(n). Then, there is a
polynomial-time quantum reduction from @(\/ﬁ /a)-approximate SIVP (or SVP) on (tensor) ideal
lattices in K1y to m-R-DLWE, v ,. Alternatively, for any | > 1, we can replace the target problem

by the problem of solving m-R-DLWE p, given only l samples, where § = o - (nl/ log nl)1/4.

Our proof follows the techniques introduced by Lyubashevsky et al. [41 40], adapting and
extending their proof in order to deal with the new inconveniences that this tensor case introduces.
For example, the considered number field tensor is not even a field (for instance, considering
(Q[z,y] mod 1+ z™) mod 1 + y™, the polynomial = — y does not have inverse). We discuss and
show how the different peculiarities of the tensor case can be tackled.

Therefore, we first justify that the main properties required by the techniques used by Lyuba-
shevsky et al. are preserved in the multivariate case: (a) we show that the ring homomorphism
between the finite field tensor and the subspace H (7 (defined in Section exists (even though
the finite field tensor is not a field); and we define the Gaussian measures over this tensor space,
(b) we explain the structure of the automorphisms which can be used in this tensor case and how to
address and work with them; and (c) we explain the use of the CRT (Chinese Remainder Theorem)
and its effects over the corresponding automorphisms.

Additionally, we carefully readapt and revise the tools introduced by Lyubashevsky et al. to
the multivariate case; those steps that need further treatment or corrections are further detailed
(see Appendix [A.C). Nevertheless, due to space limitations, only the main definitions and lemmas
are included here. For a detailed explanation of the different proofs we refer the reader to the

Appendices[A.B|[A.Cland [A.D]

Finally, the spherical Gaussian is in general easier to use than the distribution Y, especially
in the context of FHE where m-RLWE samples can be the result of long chains of computations.
We also provide a simpler worst-case to search-to-decision theorem for the decision version of

3See Deﬁnitionfor a particularized version of the problem.
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m-RLWE with Spherical Gaussian error, but which is not connected to the general multivariate
ideal lattice problems.

Theorem 8 (Extended Theorem 5.3 of Lyubashevsky et al. [41]). Let R, g and o be as in Theorem
There exists a randomized polynomial-time reduction from solving m-R-LWE, p, to solving
m-R-DLWE, p,,.

A.3.2. Proof sketch of reduction to the multivariate Ring Learning with Errors
problem

The security of m-RLWE is based on three different reductions:

= Quantum reduction: A polynomial time quantum reduction between the worst case discrete
Gaussian sampling (DGS) (equivalent to the SIVP) problem on multivariate ideal lattices
in K1) to the worst case guaranteed distance decoding (G D D) problem in the same class
of lattices.

= Search hardness: A polynomial time classical reduction between worst-case G D D to worst-
case multivariate search-LWE[]

= Pseudorandomness: A polynomial time classical reduction from worst-case search m-
RLWE to the average case multivariate decisional m-RLWE.

The third reduction proves the equivalence between the search version of m-RLWE, which
consists in recovering the secret key s, and the decision version of the same problem, which
consists in breaking the semantical security.

The first two reductions connect the average case of the above problems to worst case problems
on multivariate ideal lattices with the same module. This, as usual, means that if no algorithm can
efficiently solve worst case instances of multivariate GDD or DGS problems, cryptosystems based
on m-RLWE are semantically secure.

Quantum reduction: The quantum reduction of Regev [39] proves that given an oracle for the
guaranteed distance decoding problem on a lattice, one can obtain small discrete Gaussian samples
on its dual lattice. This proof can be specialized to any class of lattices that is stable by duality:
in [41], this was applied to the case of univariate ideal lattices. Similarily, by definition of the dual
of a multivariate ideal, the class of multivariate ideal lattices is stable by duality.

Search hardness: The main contribution here is to extend the tools from to the more general
case of the tensor of cyclotomic fields (or even the tensor of more general fields).

For this purpose, we use Regev’s iterative quantum reduction for general lattices together with
the corresponding tools that we can find on algebraic number theory; i.e., the Chinese Remainder
Theorem and the canonical embedding that were used in the original RLWE reduction, but adapted
to our multivariate case.

“In this chain of reductions, a worst-case instance is enough, but by increasing the parameters of this reduction, we
can reduce it to the average case problem.
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Pseudorandomness of m-RLWE: The main purpose of this second part is to show that there
exists a reduction from the search problem, discussed in the first part, to the decision variant of
the hardness problem. Two different versions are discussed: one for the decision problem with a
non-spherical distribution in the canonical embedding, and another one for the decision problem
with a spherical distribution but with a bounded number of samples. Additionally, when assuming
the hardness of the search problem with a fixed spherical Gaussian error distribution, we also have
hardness of the decision version with the same error distribution.

We remark that the main contribution of this Appendix relies on proving that the multivariate
samples following the m-RLWE distribution are pseudorandom, therefore generalizing the results
of [41]] to the case of multivariate elements. The main needed properties are those related to the
decomposition of (¢) into n prime ideals and the use of the automorphisms allowing us to permute
the prime ideals.

A.3.3. Hardness Search-LWE

Along this section, let K () = ®ie[l] K; of degree n denote the tensor of [ arbitrary number
fields, and R = ®i€[l] Ok, the corresponding tensor of rings of integers. The results can be
applied to an arbitrary number field, so in this section we do not have to consider the specific case
of cyclotomic fields.

Theorem 9 (Extended Theorem 4.1 of Lyubashevsky et al. [41]]). Let K7y be a tensor of arbitrary
number fields with degree n; each and R the tensor of the corresponding ring of integers. Let
a = a(n) >0, and let ¢ = q(n) > 2 be such that aq > 2 - w(/logn), where w(f(n)) denotes
a function that asymptotically grows faster than f(n). For some negligible ¢ = €(n), there is a
probabilistic polynomial-time quantum reduction from K(1y-DGS, to m-R-LWE, v _ ,, where

v = max {n(Z) - (vV2/a) - w(VIogn),vV2n/Ai(T")}.

K(7)-DGS,, denotes the discrete Gaussian sampling problem [39, 41], where given an ideal 7
in K7y and a number s > v = (Z), we have to generate samples from Dz ;. Regev [39] showed
reductions from standard lattice problems to DGS. As Lyubashevsky et al. [41] assert, combining
their lemmas 2.2 and 2.4 (from [41]]) we have n.(Z) < A\, (Z) - w(+/Iog n) (being 7, the smoothing
parameter) for any fractional ideal Z and negligible €(n); we also have that samples from D7z -
have length at most y+/n with overwhelming probability. This also applies in our tensor case.

Analogously, an oracle for K(7)-DGS,, with v = n(Z) - O(1/a) implies an oracle for
O(y/n/)-approximate SIVP on ideal lattices in the field tensor K (T)-

When each Kj is a cyclotomic field, we also have A, (Z) = A1 (Z) for any fractional ideal Z, as
for each shortest non-zero v € Z, if we multiply it by different combinations of ¢/} 1_1 ®...® gﬁlbl_l
with e; € [¢p(m;)], it yields a total of n independent elements of equal length; that is, we have an
oracle for @(\/ﬁ /a)-approximate SVP. It is worth noting that as the error distribution is added
modulo RY in the definition of m-RLWE, the condition a@ < n.(R") must be satisfied for all

negligible ¢(n) for the problem to be solvable.

A.3.4. Pseudorandomness of m-RLWE

In this section, we particularize again K () = ®z’e[l} K;and R = ®i€[l] Ok, for the cyclo-
tomic case K; = Q(g,,) with ¢, a primitive m;-th root of unity. We also consider the prime
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q = 1 mod m; for all i € [I] and we have that it is poly(n)-bounded, where n = [ ;¢ #(my) is
the degree of the considered multivariate polynomials. We recall that K7 has a set of n different
automorphisms T; with j € [n] (see Eq. (A.I)); when working over g, then (g) = [T;c(,; ds splits

into a product of prime ideals q; where the automorphisms satisfy ®ie[l]”r,(€? (q;) = q; for any
prime ideals q;, q; where k; € Z;, and j, j" € [n] (see Section [A.2.1).

We now present the main theorems about the reductions from the search version of m-RLWE
(see Definition E] and Theorem E] about the reduction over worst-case lattice problems) to the
average-case decision problem m-R-DLWE (see Definition []).

Theorem 10 (Extended Theorem 5.1 of Lyubashevsky et al. [41]). Let R and q be as shown
previously and let aq > ne (RY) for some negligible ¢ = ¢(n). Then, there is a randomized
polynomial-time reduction from m-R-LWE, w_, 1o m-R-DLWE, x,.

In order to prove the previous theorem we need four more reductions described in the following
discussion.

Automorphisms Search/Decision

LWE, v q;-LWEy v

Lemma Lemmal[I§

WDLWE DLWE], ;. — 2
’ " Lemma[20

WDLWE, y,

Worst/Average

DLWE, v
Lemma

The details of the proof follow the steps of Lyubashevsky et al. [41], which, conversely,
follows similar steps to the reductions of [39], the main point being the use of the automorphisms
to recover the secret key s when only knowing the secret key relative to one prime ideal ¢; (Lemma
[16). An additional needed step is the randomization of the error distribution (sampled from T)
such that the error is invariant under the different field automorphisms (see Lemma [T9) because
the different ¢ € W<, are not necessarily invariant under the field automorphisms. Equivalently,
if this reduction randomizing the error distribution is not desirable, we can apply a bound on the
number of samples for considering a result about pseudorandomness of m-RLWE with a fixed
spherical noise distribution.

Theorem 11 (Extended Theorem 5.2 of Lyubashevsky et al. [41]]). Let R, q and « be as in
Theorem and let | > 1. There is a randomized polynomial-time reduction from solving
m-R-LWE, v _,, to solving m-R-DLWE, p, given only l samples, where § = o - (nl/ log (nl))1/4.

In this case, we have a similar reduction to the one in Theorem [I0] but considering a different
lemma (Lemma[22]instead of Lemma|[I9]in one of the steps).

Worst/Average ; Hybrid
/ DLWE! v

WDLWE!
o Lemma[22] 4:D¢ Lemma 20|

DLWE, p,

It is worth noting that if we assume hardness of the search version with a spherical error
distribution LWE p,, then there is also a reduction for the pseudorandomness with a spherical
error, simplifying Lemma|[I9]instead of resorting to sampling from the Y distribution.

A.4. Discussion and conclusions

This appendix formalizes the multivariate Ring Learning With Errors problem, including an
extended reduction of the original Lyubashevsky et al. proof [40, 41] from hardness assumptions
over ideal lattices.
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As we have briefly mentioned in Section [A.I] the multivariate RLWE problem is especially
sensitive to the choice of modular functions. In fact, for “non-coprime” cyclotomic rings it is
reduced from an easier problem than expected at a first glance; which implies a decrease in the
effective dimension of the underlying lattice. Even so, the problem still introduces efficiency
improvements in many practical signal processing applications (see Chapters[5] [7and [8] and Ap-
pendix [B)) and also in many basic cryptographic primitives (see Chapter [3). In Chapters [5|and [2]
we study in depth how we can search for secure instantiations of the multivariate RLWE problem
(by secure we mean that there is no decrease on the effective dimension of the RLWE sample).
This allow us to preserve both the efficiency and security originally claimed in [4]].

A.A. Lattices and Algebraic Number Theory

This appendix reviews in depth the required concepts of lattices and algebraic number theory
for the more general case of a tensor of number fields.

A.A.1. Gaussian Measures

We include several known results about Gaussian distributions that are needed (we refer the
reader to Section [2.3.1] from Chapter [2] for more details).

Definition 16 (Smoothing parameter). The smoothing parameter n.(\) for a lattice A and real
€ > 0 is defined as the smallest r such that p; ;,(A*\{0}) < e.

In addition, several important lemmas from [41], [177]], [39] and [178] about the relation
between the smoothing parameter and properties of lattices are included below.

Lemma 5 (Lyubashevsky et al. [41] Lemma 2.2, Micciancio and Regev [177] Lemmas 3.2
and 3.3). For any n-dimensional lattice A, we have ny—2.(A) < /n/A1(A*) and n.(A) <

VIn(n/e)\,(A) forall 0 < e < 1.

Lemma 6 (Lyubashevsky et al. [41] Lemma 2.3, Micciancio and Regev [177] Lemma 4.1, Regev
[39] Claim 3.8). For any lattice A, ¢ > 0, v > n(A), and ¢ € H 1), the statistical distanc
between (D, + ¢) mod A and the uniform distribution modulo A is at most €/2. Alternatively,

we have p,.(A + ¢) € [hE,l} pr(N).

Let a lattice A, a point w € H(ry and r > 0 with r € R, the discrete Gaussian probability

distribution over A+wu with parameter 7 can be defined as D 4, () = prp("'A(iL) forallx € A+u.

Lemma 7 (Banaszczyk [178]], Lemma 1.5 (i)). For any n-dimensional lattice A and r > 0, a
sample point from Dy , has Euclidean norm at most r+/n, except with probability at most 27—,

Lemma 8 (Regev [39]). Let A be a lattice, let u € H, (T) be any vector, and let r, s > 0 be reals.
Assume that 1//1/r%2 4+ 1/s% > nc(A) for some ¢ < 1/2. Consider the continuous distribution
Y on Hr) obtained by sampling from D, and then adding an element drawn independently
from Dy. Then, the statistical distance between'Y and D /5 is at most 4e.

>The statistical distance A(X,Y") between two contlnuous random variables X and Y over R" with probability
density functions T} and T% is defined as A(X,Y) = £ [o.,, |T1(r) — T2(r)|dr. For more details we refer the reader
to [[177]] and [39].
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A.A.2. Algebraic Number Theory background

This section covers the main concepts related to number fields that are used in the works [41]
and [45]]; we highlight the theorems and lemmas that are fundamental to our proof and cannot fit
in the main body of the appendix; even when they have already been presented in the literature,
we include them here for completeness. We also particularize some of the results to the case
of cyclotomic fields; for further details, we refer the reader to the two cited works or to any
introductory book on the subject (e.g., [133])).

The concepts about algebraic number theory presented here are necessary to show which are
the main changes needed to extend the proof of Lyubashevsky et al. to the generic multidimen-
sional case (not only “coprime” factors), as explained in Section[A.3.2]

Full-Rank Tensor Embedding: We can work with the embedding over the space H (see Ap-
pendix [A.2.T) of any type of cyclotomic field. As a cyclotomic field can be decomposed in the
tensor of power prime cyclotomic fields, it is easily shown that for that particular case of tensor of
cyclotomic fields the embedding exists.

In our more general case, this relation with cyclotomic fields does not necessarily hold, so we
cannot justify the existence of the tensor embedding by solely resorting to the existence of the
embedding in an isomorphic cyclotomic field.

We can see that the embedding of a cyclotomic field (respectively, its corresponding ring of
integers or the corresponding reduction modulo g) is equivalent to an invertible linear transforma-
tion from Q?(™:) (respectively, Z#("™) or Z?(mi)) to the corresponding subspace H; C C"i, where

ni = ¢(m;).

There are two properties of Kronecker products that allow us to justify the existence of the
embeddings: (a) det(A Q) B) = det(BQ A) = (det(A))"(det(B))™ where A and B are square
matrices of size n X n and m x m, respectively. This property states that A Q) B is non-singular
(and therefore invertible) if and only if A and B are non-singular. (b) (AQ B) ' = A '® B,
which defines this inverse. See [179]] for further details on the properties of the Kronecker product.

Our embedding can be defined as the Kronecker product of different invertible linear transfor-
mations (which correspond to the different embeddings for each cyclotomic field). Hence, by re-
sorting to the properties of the Kronecker product, there exists the corresponding tensor embedding
between the tensor of cyclotomic fields and the subspace H (1) = ®i€[l] H; (see Appendix .

Trace and Norm

Here we present the basic concepts of trace and norm over number fields that were proposed
in previous works. Section[A.2.2]in the main body of the Appendix [A] highlights which are the
changes needed and how we can work with them when we have the tensor product of non coprime
cyclotomic fields.

The trace Tr = Trg /g : K — Qand norm N = Ng /g : K — Q are defined as:

Tr(z) = Z oi(z), N(z) = H 7i(z). (A2)
1€[n]

1€[n]
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In addition, the trace is a linear function in Q because Tr(a+b) = Tr(a) + Tr(b) and Tr(ca) =
cTr(a) forall a,b € K and ¢ € Q. It is also important to note that Tr(a - b) = . 0y(a)o;(b).

Even though we will put more emphasis on this later, we note that when working with tensor
products K1y = @), K, resorting to the fact that o(®;a;) = ®i0 " (a;) the corresponding trace
satisfies TrK(T)/@(&ai) =11, TrKl./@(ai).

Tensor Ring of Integers and its Ideals

This section revises some basic properties of the ring of integers of a number field and its
ideals. Although we are considering cyclotomic number fields K; = Q(,, ), these results apply to
more general number fields. The ring of integers of a number field is denoted O, and it is defined
as the set of elements belonging to K; that satisfy a monic polynomial f(x) with coefficients
belonging to the integers, that is, elements a € K; such that f(a) = 0.

It can be seen that Ok, is a free Z—moduleﬁ with rank the degree of K; (when working with
cyclotomic fields this degree is ¢(m;)), and that its Z-basis B; = {bgz), cee b )} C Ok, results
to be a Q-basis for K; and also an R-basis for K; ) R.

We work with the result of the tensor product of the different rings of integers which corre-
sponds to each number field, that is, for the tensor of number fields K (T) = ®i€[l] K; we consider
the tensor ring of integers R = ®i€[l] Ok, . All the properties introduced for the ring of integers
in [41] are also valid when working with ideals of the new multivariate polynomial ring R.

Firstly, we could see 1? as a Z-module with rank n = J[;c;; #(m;) and its Z-basis would be
X, e[l B; C R that also results to be a Q-basis for K7 and an R-basis for K (1) r.

Next, we include some important facts about the ideals of R. An integral ideal (a.k.a. ideal) of
R is an additive subgroup that is closed under multiplication by R, thatis,r-x € Z forany r € R
and z € Z. In order to generate an ideal Z of R, it can be shown that there exist two different
elements g1, go € R whose R-linear combinations generate Z = (g1, g2). An ideal is also a free
Z-module of rank n, so we have some basis {u, ..., u,} C R.

The norm of an ideal is its corresponding index as an additive subgroup, thatis, N(Z) = |R :
Z|. The sum Z + 7 is also an ideal whose elements are all the pairs  + y withz € Zand y € J,
the product ideal Z .7 is the set of all finite sums of pairs zy with x € Z and y € J. The norm
of ideals generalizes the previous definition of norm in the following way N ((z)) = |N(z)| with
x€ Rand N(ZJ) = N(Z)N(J).

We say that two ideals Z and J are coprime (or relatively prime) if Z + J = R. An ideal
p € R is prime if whenever ab € p for some a,b € R,thena € porb € p. Anideal p of R
is prime if and only if it is maximal. The ring R has unique factorization on ideals, that is, every
ideal of R can be expressed as a unique product of powers of prime ideals.

A fractional ideal Z C K satisfies dZ C R where dZ is an integral ideal for some d € R. Its
norm is defined as N(Z) = N(dZ)/|N(d)|.

®A free module is a module which has a basis.
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Ideal Lattices

This Appendix relies on the lattices embedded by the fractional ideals in K (7 under the canon-
ical embedding. Next, we describe some of their properties. A fractional ideal Z has a Z-basis
U = {u1,...,uy}. Then, under the canonical embedding o, the ideal yields a rank-n ideal lattice
o(Z) with basis {o(u1),...,0(un)} C Hp). The lattice embedded by an ideal is commonly
identified by the ideal, so we consider the minimum distance A1 (Z) of an ideal.

The absolute discriminant Ay is defined for a field K. We generalize this term to the field
tensor K (), considering A Ky as the square of the fundamental volume of the embedded lattice
o(R). We also have Ak, = [det(Tr(b; - b;))|, ...,bn} is an integral basis of R.

Therefore, we can define the fundamental volume of an ideal lattice 0/(Z) as N(Z) - |/ Ak -

The following lemma that gives upper and lower bounds on the minimum distance of an ideal
lattice.

Lemma 9 (Extended version of Lyubashevsky et al. [41] Lemma 2.9, Peikert and Rosen [180]]
detailed proof). For any fractional ideal T in a field tensor K 1) of degree n, and in any l,,-norm
forp € [1,00],

(a) ®) 1/n

< M () < nYP . N(T) A (A.3)

1/p . 1/n
n'?- N(I) Kry

The proof of the previous Lemma [9] follows analogously to the proofs of the Lemmas 6.1
(upper bound) and 6.2 (lower bound) in [180].

First, we start with the upper bound (b) following the guidelines of [180]. Considering ||z, <

n'/?||z|| forz € K (1> we only need to prove the bound for the p = oo norm. For this purpose,
we resort to Minkowski’s Theorem[12]to bound the distance of A7°:

Theorem 12 (Minkowski’s Theorem). Let A be any lattice of rank n and B C span (A) be any
convex body symmetric about the origin having n-dimensional volume vol (B) > 2" - det (7).
Then B contains some nonzero x € A.

Now, we consider the n-dimensional closed C = {x € H(7) : |[z||,, < 1}, and each ¢(m;)-
dimensional closed C() = {x € H; : ||z||,, < 1}. Knowing that H; C RS x (CQSS), it can be
shown that the Volume of C1) is 200m) . (1r/ 2)‘92) where ¢(m;) = ng) + s(l) and finally being

n . (rr/2) lien %" the volume of C.

(%)
Proceeding as in [180], we have for any g > N/" (T) - Akin (2/m)icw 2" /n

vol (BC) = B"vol (C) > 2" - N () - |/ Ak = 2" - det(0 (I)),

where by Minkowski’s Theorem |12} we know that 5C contains a nonzero point of o (Z), therefore
AT® < B; consequently, it also satisfies the upper bound (b) of Lemma@

Regarding the lower bound (a), we follow the steps of the proof for Lemma 6.2 in [180]]. For
1 < p < o0, by the arithmetic mean/geometric mean inequality we have:

1/n

|||l = Z loi (z) P >n - H loi (x =n-|N (z) |p/n;

ZE[TL] zE[n
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by taking the p-root in both sides, this expression yields the lower bound (a), by considering that
|N(z)| > N (Z) for any nonzero x € Z (for more details of both proofs we refer the reader to
[180]). Here, it is important to note that by resorting to the concepts presented in Section [A.2.T]
we can deal with the different embeddings, even when working with the tensor of number fields.

Duality

For any lattice £ in K7y (this is the Z-span of any Q-basis of K 7)), its dual is defined as:

LY ={z € Ky : Tr(zL) C Z}. (A.4)

As in the “traditional” (non-tensor) number field case, using the canonical embedding, £V
embeds as the complex conjugate of the dual lattice, that is, o(£") = 7. Taking this into account
and considering also that £ = &) I L; and the dual operation commutes with tensoring, we
have:

i€

o(LY) = o(iL)) = ®io (L)) = @™ (L)
= ®;0*(L;) = (®i0'(£i>)* = o*(®;L;) = o*(L).

It is also easy to check that (£Y)" = £ (tensoring commutes with dual), and that if £ is a
fractional ideal, its dual is also fractional. An important fact is that an ideal and its inverse are
related by multiplication with the dual ideal of the ring: for any fractional ideal Z, its dual ideal
isZV = Z~' - RV. The factor R (often called codifferent) is a fractional ideal whose inverse
(RY) ™, called the different ideal, is integral and of norm N ((RY) ') = A Kz the discriminant
of K, (T)-

Ideal Lattice Problems

We revise here the computational problems over ideal lattices related to RLWE, and, by ex-
tension, to m-RLWE: the Shortest Vector Problem (SVP), Shortest Independent Vectors Problem
(SIVP), and the Bounded Distance Decoding (BDD) Problem. The three problems can be re-
stricted to the case of integral ideals over R (the tensor of ring of integers Ok ), analogously to
the argument followed by Lyubashevsky et al. [40], [41] in the non-tensor case: if Z is a fractional
ideal with denominator d € R (such that dZ C R is a integral ideal), then the ideal N(d)-Z C R,
because N (d) € (d).

Definition 17 (SVP and SIVP). Ler K (1) be a tensor of number fields endowed with some geo-
metric norm (e.g, the ly-norm), and let -y > 1. The K7)-SVP., problem in the given norm is posed
as: given a fractional ideal T in K ), find some nonzero x € T such that ||z|| < v - M (Z). The
K(1)-SIVP., problem is defined similarly, where the goal is to find n linearly independent elements
in Z whose norms are all at most y - A, (I).

Definition 18 (BDD). Let Kt be a tensor of number fields endowed with some geometric norm
(e.g, the ly norm), let T be a fractional ideal in Kr), and let d < \(Z)/2. The K(1\-BDDz1 4
problem in the given norm is: given T and y of the form y = x + e for some x € T and ||e|| < d,
find x.
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Chinese Remainder Theorem

The next lemma states that when the ring isomorphism from Lemma [3|exists, we can compute
a CRT basis C for the set of pairwise coprime ideals Z;,...,Z.. The basis is composed by ele-
ments ci, . ..,c, € R thatsatisfy ¢; = 1 mod Z; and ¢; = 0 mod Z; when ¢ # j. We can use that
basis in order to invert the CRT isomorphism as follows: for any w = (w1, ..., w,) € @,(R/L;),
we have that v = ). w; - ¢; mod Z is the unique element in R/Z that maps to w with that ring
isomorphism.

Lemma 10 (Efficient computable basis for isomorphism). There is a deterministic polynomial-
time algorithm that, given coprime ideals T, J C R (represented by Z-bases), outputs some ¢ € J
such that c = 1 mod Z. More generally, there is a deterministic polynomial-time algorithm that,
given pairwise coprime ideals 1., . .. ,Z,, outputs a CRT basis c1, . ..,c, € R for those ideals.

The following two lemmas enable an efficiently computable bijection between the quotient
groups Z/qZ and J /qJ for any fractional ideals Z, 7. They are important for clearing out the
arbitrary ideal Z in the BDD-to-LWE reduction:

Lemma 11 (Lyubashevsky et al. [41] Lemma 2.14). Let I and [J be ideals in R. There exists
t € T such that the ideal t - T=' C R is coprime to J. Moreover, such t can be found efficiently
given I and the prime ideal factorization of J.

Lemma 12 (Lyubashevsky et al. [41] Lemma 2.15). Let T and J be ideals in R, lett € T be
such that t - T~V is coprime with [J, and let M be any fractional ideal in K, (t)- Then, the function
0r : K1y — K(r) defined as 0,(u) = t-u induces an isomorphism from M |J M to IM|TJ M,
as R-modules. Moreover, this isomorphism may be efficiently inverted given I, J, M and t.

The proof of Lemma |12 for the case where K7 is a tensor of cylotomic fields follows with
the same techniques considered in [41]], by taking into account that #; induces a homomorphism
of R-modules because it represents a multiplication by at € R, so we do not include it here.

A.B. Proof of Theorem

This appendix presents the proof of Theorem[9] It is based on the iterative use of the following
lemma:

Lemma 13 (Extended version of Lemma 4.2 Lyubashevsky et al. [41]). Let « > 0 and q > 2 be
an integer. There exists an efficient quantum algorithm that, given a fractional ideal T in Kt
a number v > \/2q - n(I) for some negligible ¢ = e(n) such that v' = r - w(y/logn)/(aq) >
V21 /M (ZV), an oracle to m-R-LWE, y_ ., and a list of samples from the discrete Gaussian
distribution Dz, (as many as required by the m-R-LWE, v oracle), outputs an independent
sample from D .. -

Theorem @ is proven as follows: we start with a value r > 22n ). (Z), in such a way that we
can classically generate any polynomial number of samples from Dz ,.. Given the samples from
Dz, Lemma|[[3]can be used iteratively a polynomial number of times (using the same samples)
to obtain a polynomial number of independent samples from Dz ,» with 7’ = 7 /2 at each iteration.
Repeating this process, we can obtain samples from increasingly narrower distributions, until we
have samples from a distribution with parameter s > ~.

Lemma [I3]is obtained thanks to the following two results (Lemmas [T4] and [I3)):
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Lemma 14 (Extended version of Lemma 4.3 of Lyubashevsky et al. [41], proof in Section 4.2).
Let o > 0, let ¢ > 2 be an integer with known factorization, let I be a fractional ideal in K r),
and let v > \/2q - nc(T) for some negligible ¢ = ¢(n). Given an oracle for the discrete Gaussian
distribution Dz ., there is a probabilistic polynomial-time (classical) reduction from BDDzv g in
the lo, norm to m-R-LWE, w _, where d = aq/(ﬁr).

Details for the proof of the lemma|[[4]follow the same steps of Lyubashevsky ez al. for Lemma
4.3 in [41]], so we do not replicate it here. However, we have to take into account that we are
working with ideals over the tensor of the ring of integers, so instead of considering Lemmas 2.14
and 2.15 from [41] we have to use the redefined lemmas already presented in our work as Lemmas
and

Lemma 15 (Extended version of Lemma 4.4 of Lyubashevsky et al. [41]]). There is an efficient
quantum algorithm that, given any n-dimensional lattice A, a number d' < \1(AY)/2 (where
A1 is with respect to the lo norm), and an oracle that solves BDD on AV except with negligible
probability for points whose offset from AV is sampled from D @ /3m OUIpULS a sample from

DA,\/E/(ﬁd')' In particular, since a sample from Dd’/\/ﬁ has loo norm at most d' -w(+/logn) /\/n
except with negligible probability, it suffices if the oracle solves BDDzv 4 in the lo, norm, where

d=d" - w(ylogn)/y/n.

The sketch of the proof for Lemma T3]is the following: starting with samples from Dz, and
an oracle for m-R-LWE, y_, and resorting to Lemma |14 we can obtain an algorithm for BDD
on ZV to within distance d = ag/(v/2r) in the I, norm. Next, considering Lemma [15| with
d = dyn/w(y/logn) = \/n/2/r" < X\i(Z")/2, we obtain a quantum procedure that outputs
samples from the discrete Gaussian distribution Dz .

A.C. Proofs of Theorems 10} 11 and

This section includes the proofs for the main results involving the security reductions of m-
RLWE, as stated in Theorems[I0} [TT] and [8]

A.C.1. Search to Worst-Case Decision

Here we explain the two first reductions of Theorems [I0]and [TT] Next, we introduce the main
definitions of the intermediate problems and the corresponding lemmas, and we also highlight the
differences due to working with the tensor of rings of integers.

Definition 19 (Extended version of the q;-LWE, ¢ problem, Definition 5.4 from Lyubashevsky et
al. [41]). The q,-LWE, g problem is defined as: given access to Ay, for some arbitrary s € R(\]/
and 1 € ¥, find s mod q; R".

Lemma 16 (LWE to q;-LWE, entending Lemma 5.5 of Lyubashevsky et al. [41]). Suppose that
the family W is closed under all the automorphisms of Kty (see Lemma , that is, v € U
implies that Ti,(y)) € W for all k € [n]. Then, for every i € [n], there exists a deterministic
polynomial-time reduction from LWE, y to q;-LWE v.

The proof is based on the fact that by having an oracle for q;-LWE and resorting to the different
field automorphisms, we can recover s modulo q;R" for every j € [n] and we can use the CRT
for recovering s modulo R".



188 A.C. Proofs of Theorems and @

The reduction works in the following way: Let (a,b) < A, and apply an automorphism
(tx(a), Tx(b)) that satisfies Tx(q;) = g;. Now, we use the q;-LWE oracle with the transformed
samples and we apply the reverse automorphism Ty (¢ ) € RY/q;RY toits output t € RY/q; R".

In order to see that Tk(t)f has the desired value s mod q;R", we operate with the pair
(tr(a), T (D)), with T, (b) = Tx(a) - Tk(s)/q + Tk(e) mod RY where we see that the pair fol-
lows the A, (), (p) distribution (we know that T4(¢)) € W, see Lemma [17). Therefore, the
oracle outputs ¢ = T4 (s) mod q;R" and Lemmal[l6]is proven.

Lemma 17 (Extended version of Lemma 5.6 of Lyubashevsky et al. [41]). For any o > 0,
the family V<, is closed under every automorphism t of K(r), that is, ¢ € W<, implies that

T(lﬁ) € \I’SQ.

In order to see that for v € ¥ any possible automorphism also belongs to ¥, we proceed as
follows: each automorphism is the tensor of the existing automorphisms for each cyclotomic field,

that is, ®Z€[l] T](j) with k; € Z}, . Hence, resorting to the definition of our error distributions (see
Section [A , we have ¢ = D® uyri € Y<a where the elements of ®;c;7; are bounded by a.
As the effect of the automorphism 51mply permutes the coordinates of each r;, we can clearly see

that ®]6m’r§€ 9) <D®ZE ,,2) = D, ey for k; € Z* which also belongs to W<, because the value
of the different elements follow being at most « (they have only been permuted).

Before stating Lemma [I8]for the second reduction of the proof, we introduce two definitions
for the intermediate problems:

Definition 20 (Extended Hybrid LWE Distribution of Lyubashvesky et al.[41])). For j € [n],
s € RV and a distribution 1 over K (1) R, the distribution A over Ry x T is defined as follows:

choose (a,b) <= As,y and output (a,b+h/q) where h € RV is umformly random and independent
modulo q; R for all i < j, and is equal to zero modulo all the remaining q; RY. We also define

Agﬂp = Ay

Definition 21 (Extended WDLWEg ¢ (Worst-Case Decision LWE Relative to q;) of Lyubashevsky
et al. [41])). For j € [n] and a family of distributions U, the WDLWEg g problem is defined as
follows: given access to A;w for arbitrary s € R,y € U, andi € {j — 1,7}, find i.

Lemma 18 (Extended version of Search to Decision of Lyubashvesky et al. [41]]). Forany j € [n],
there exists a probabilistic polynomial-time reduction from q;-LWE, v to WDLWE{Z o

The proof of the reduction is based on trying each of the different possible values of s modulo
q;RY in such a way that after modifying the samples from A, we have that (a) for the correct
value, the samples are distributed following AJ and (b) for the rest of possible values, they

follow Ai,zﬁ

We can try all different values for s mod q;R" because the norm of q; for all j satisfies
N(q;) = q = poly(n), so we can enumerate all the combinations. Finally, we can use the oracle
WDLWE; , for distinguishing between the distributions Ai;l and A,

Following an analogous procedure as the one in [41]], given a sample (a,b) < A 4, we have:
(@' V)=(a+v,b+ (h+vg)/q) € Ry x T,

where v € R, satisfies that it is uniformly random modulo q; and zero modulo other different
prime ideal, h,g € R, where h is uniformly random and independent modulo any q; R" when
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1 < j, and it is zero for the rest of possible values of 7. Finally, we have:
b= (d's+h+v(g—s))/q+e,
with e < 1.

Now, choosing different values for g we have the following results: (a) if ¢ = s mod q; R,
the distribution of (a’, ') is Ai;pl, and (b) if g # s mod q; RY, the distribution of (a’, V) is A7 .
Hence, we only have to enumerate different g values which satisfy different conditions modulo
q;RY (the values modulo other q; R¥ with i # j are not important) to achieve the reduction.

A.C.2. Worst-Case Decision to Average-Case Decision

The objective of this part is to cover the two last reductions of Theorems |[10|and For this
purpose, we present some definitions and lemmas that allow us to reduce the worst-case decision
WDLWE;\I, problem to an average-case problem DLWE, v where the goal is to distinguish be-
tween A, ,, and uniform samples where the parameters of the error distribution are also secret and
drawn from Y.

Definition 22 (Extended version of Average-Case Decision LWE Relative to q; (DLWEg 7T) of
Lyubashevsky ez al. [41]). For j € [n] and a distribution T over error distributions, we say that
an algorithm solves the DLWE;’,T problem if with a non negligible probability over the choice of
a random (s,%) < U(R,) x Y, it has a non negligible difference in acceptance probability on

inputs from AZ,, o VErsus inputs from Ai;/}.

Lemma 19 (Extended version of Worst-Case to Average-Case Lemma 5.12 of Lyubashevsky et
al. [41])). For any o > 0 and every j € [n), there is a randomized polynomial-time reduction from
WDLWE] ,_ to DLWE] . .

In order to prove the previous lemma, let s’ € RY, 7’ € (R*)", k € [n], and the pair (a, b),
and consider the transformation (a,b + (a - s 4 h)/q + €') where €’ is drawn from D, h € R}/

and h satisfies that h mod q; R are uniformly random and independent for i < k, and zero for all
max {k,j}

other 7. Then, when the input is A s this transformation outputs A, S D,

Now, to achieve the reduction, we repeat the following process a polynomial number of times:
we draw s’ € RY, and we have ' € (RT)" where 7’ = &;ep i (as it was presented in Sec-

tion i and 77 ; = 7] it(ma 2 With i € [l and j € [¢(m;)]. We also have 7“’3- = o?\/nz;

for all j € [n] and where the z; are chosen not necessarily independently from I'(2,1). A sam-

ple from D,. is given by »_ V2!=1zlh; where the 2, are Gaussian variables with param-

j€n] j
eter o \/HF(QL%, 1) (I comes from the expression n = ][;c;; 7). and the distribution of the

gaussian variances 7’ 3 is preserved thanks to the properties of the I' distribution which satisfies
i1 T(g2r, 1) = T(2,1).

Next, we estimate the acceptance probability of the oracle for two different input distributions:
(a) applying to the input the previous transformation with parameters s’, " and j — 1; (b) applying
to the input the previous transformation with parameters s’, 7’ and j. Finally, after a polynomial
number of repetitions we output 5 — 1 if there is a non negligible difference between the two
acceptance probabilities; on the contrary, we output j.

Let us assume that the input distribution is Ai}i for some r where all 7; € [0,a] for i €

Jj—1

5+8",Dy+D s and

[n]. Then, we have to estimate the acceptance probability of the oracle on A
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AgH, Do+D,,» and we notice that Dy. 4 Dy, = Dy where 3 =7y r2. If we denote by S
the set of palrs (s,) for which the oracle has non negligible dlfference in acceptance probability
between A’ ! and A’ 4> We have by assumptlon (the measure of S under U(R;/) x T, is non
negligible) and by clalmlbelow that (s + ', D, + D,) € S with non negligible probability, and

the proof of Lemma[I9]is complete.

Our Claim [2]is a variant of Claim 5.11 presented by Lyubashevsky ef al. [41]]. For our case,
we need a similar result, but it must hold not only for independent variables following a I'(2, 1)
distribution, because in our more general case, for i € [n] we can have that more than two z;
are equal. Therefore, we present a modification for vectors of coefficients distributed as I'(2, 1),
where they do not have to be independent, and we justify its validity.

Claim 2 (Extended Claim 5.11 from [41]]). Let P be the distribution T'(2,1)" and Q be the distri-
bution (I'(2,1) — z1) x - -+ x (['(2,1) — 2y,) for some 0 < z1, ..., z, < 1/\/n where the different
['(2,1) of both P and Q do not have to be independent and some of them can be equal to each
other. Then, any set A C R"™ whose measure under P is non negligible also has non negligible
measure under ().

The proof of the claim follows the next scheme: first, let P,Q : R® — R™, where when
Q(x) = 0 we also have P(x) = 0, and we define R ( ) = Jgn %dw, considering that
the fraction is zero when both the numerator and the denominator are zero)’| By Cauchy-Schwarz
inequality, we have for any non empty set A C R",

(fﬁl /Q 4o < R(PI|Q).

Thus, if we have a set A with non negligible measure under P and R (P||Q) < poly(n) holds, we
can say that the set A has non negligible measure under Q).

For the particular setting of the Claim[2] when z > 0 we have

R(I'(2,1)||T'(2,1) — 2) = ¢€* <1 —z+ 2262/ azlexdx> ,

and when z is small, this expression reduces to 1 + 22 log (1/2) 4+ O(z?).

The difference regarding the proof of [41] relies on the following fact: if we compute
R (P||Q), we have:

R, )"(F(2,1) = 21 X -+ x T(2,1) = 2))
<RTE,DIT(2,1) —21)-...- R(T(2,)]IT(2,1) — 2zp),
where the equality is achieved when all the components of each vector are independent. When

some of the I'(2, 1) variables are equal, we can see that the ratio of the corresponding distributions
is equal to the ratio of only one of the variables of P and () respectively.

Now, as we know that the second term of the expression is bounded by poly(n), the claim is
proven because for the setting of the claim our expression is bounded by the second term.

Lemma 20 (Extended version of Lemma 5.14 Hybrid by Lyubashevsky et al. [41]]). Let Y be
a distribution over noise distributions satisfying that for any v in the support of T and any s €

"The logarithm of R(P||Q) is the Rényi divergence of order 2 [I81].
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RV the distribution A"w is within negligible statistical distance from uniform. Then for any
oracle solving the DLWE v problem, there exists a j € [n]| and an efficient algorithm that solves
DLWEJ  using the oracle.

The proof works as follows: consider a pair (s, ) for which the oracle can distinguish be-
tween A,  and uniform distribution with a non negligible advantage. By Markov’s inequality, the
probability measure of those pairs is non negligible. Knowmg that A° s = = A,y and that A
is negligibly far from the uniform distribution (see Lemma [21), we see that for each (s,v) we
must have a j € [n] for which the oracle distinguishes between A ,» and AJ with non negligi-
ble advantage. Finally, the lemma is proven if we take the j that i 1s assomated to the set of pairs
(s,1) with the highest probability. With the proof of this lemma, the proof of the Theorem |10] m is
complete.

Lemma 21 (Adapted version of lemma 5.13 of Lyubashevsky et al. [41]]). Let o > n.(R")/q for
some € > 0. Then, for any v in the support of T, and s € R(\I/, the distribution Agw is within
statistical distance €2 of the uniform distribution over (R, T).

The proof of this lemma is obtained by following the steps in [41] and taking into account the
considered changes in our setting together with our Lemma|6]

Finally, we introduce the needed lemma for the reductions of Theorem[IT]

Lemma 22 (Extended version of Lemma 5.16 of Lyubashevsky et al. [41] Worst-Case to Average—
Case with Spherical Noise). For any a > 0,1 > 1, and every j € [n], there exists a randomized
polynomial-time reduction from solving WDLWEZ v 1o solving DLWE; De given only | samples,

where £ = a(nl/log (nl))1/4.

In order to prove Lemma[22] we consider the transformation that we have already used for the
proof of Lemma but in this case the transformation has [ different inputs. So, let s € RY,
k € [n], and e; € T for i € [I]. Now, consider for the following [ samples (a;, b;) the mentioned
transformation (a;, b; + (a; - 8" + h;)/q + e;), where h; € Ry and i € [I]. It is important to
note that all the h; satisfy that they are independent and uniform modulo qqR" for all d < k, and
they are zero when d does not satisfy the previous relation. Therefore, if we take [ independent
inputs drawn from A; " and we apply the transformation to all of them considering that all e; are

N
independently drawn from D,.r, we have as output distribution (A?f;(, "{lf;fl}:h) )

Now, the reduction repeats the following process a polynomial number of times: we consider
s € R;/ and a set of independent e; drawn from D¢. Next, we estimate the acceptance probability
of the oracle for two different input distributions: (a) applying to the input the previous transfor-
mation with parameters s’, e; and j — 1; (b) applying to the input the previous transformation with
parameters s’, e; and j. After a polynomial number of repetitions, we output j — 1 whenever a non
negligible difference between the two acceptance probabilities is observed; otherwise, we output
J.

Assuming the input distribution is AS D , where all the coefficients of 7 are in [0, o] for the two

! , I
previous cases, we have two different output distributions: (Ai +i 4D, ) and (Ai st Dw) .
We also consider that the coefficients of " verify r/ ZQ = &2 —r2, so we have Dy + D,v = Dk.

As with Lemma let S be the set of all tuples (s, e1, ..., e;) for which the oracle has a non

, l . l
negligible difference in acceptance probability on (Ai;iw n Dr/) and (Ai st Dr/) . By our
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assumption and a Markov argument, the measure of .S under U (Rg) X (D,,/)l is non negligible,
and we have

3 3 log (nl)
1§\/52—1"i2§\/§2—02§1+ nl -

where thanks to Claim [3| below, we can assert that the measure of S is also non negligible under
U (R))x (Dg)l, and where we can derive the condition ¢ = a(nl/ log (nl))'/*, hence completing
the proof of Lemma[22|and Theorem I 1]

Claim 3 (Claim 5.15 from [41]]). Letr,...,7, € RT and s1,...,s, € RT be such that for all i,
|si/ri — 1| < y/(logn) /n. Then any set A C R™ whose measure under the Gaussian distribution
D,, x ---x D, isnon negligible, also has non negligible measure under Dg, X - -- X Dy, .

A.D. Definitiond over y error distribution

Here, we present a variant of Definition [d] that we call m-R-DLWE, , where we have a given
number of samples from Y instead of ¢, and we have the problem of distinguishing between
samples from A , and uniform samples from R, x R,.

In order to guarantee the hardness of the discrete version, we follow the procedure described
in [45]]. We revisit the main lemmas together with some relevant explanations about the consider-
ations needed for our multivariate case.

The following lemma states that if m-R-DLWE, , is hard with [ samples, then m-R-DLWE,
is also hard for the same number of samples, being x the distribution obtained from [p - ¢],, PRV
and p and ¢ coprime integers (| -] denotes a valid discretization to cosets of pR", see [43])).

Lemma 23 (Extended version of Lemma 2.23 in [45]). Let p and q coprime integers, and |-]
a valid discretization to cosets of pRY. There exists an efficient transformation that on input
w € Ry and a pairin (a',V') € Ry x Kpygr/qR" outputs (a = pa’ mod qR,b) € Ry x Ry with
the following considerations: if the input pair is uniformly distributed then so is the output pair;
and if the input pair is distributed according to the multivariate Ring-LWE distribution A, y, for
some unknown s € RV and distribution 1) over K, (T),R> then the output is distributed according to
Ag x where we have that x = |p - ], ,gv-

In order to show that the variant with short error (R-DLWE, ,) is as hard as the original
R-DLWE, 4, [45] follows the technique of [38]]. Their results can be adapted to our more general
case, so we include below the relevant lemma:

Lemma 24 (Extended version of Lemma 2.24 in [45]]). Let p and q be positive coprime inte-
gers, |-| be a valid discretization to cosets of pR", and w be an arbitrary element in RZ L f
m-R-DLWE, ,;, is hard given some number | of samples, then so is the variant of m-R-DLWE, ,
where the secret is sampled from x = |p -], +prv> &iven I — 1 samples.

The proof of the previous lemma relies on how to use an oracle of the second problem to solve
the first one. The difference with respect the proof presented in [45] lies on how to compute the
fraction of invertible elements of I,. In order to resolve this, we resort to the following claim
about cyclotomic fields:

Claim 4 (Claim 2.25 in [45]). Consider the m-th cyclotomic field of degree n = ¢(m) for some
m > 2. Then, for any q > 2, the fraction of invertible elements in Ry is at least 1 /poly (n,log q).
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Proof. Our case deals with the tensor of cyclotomic fields K1) = ®ie[l] K;; for each cyclotomic
field K, the fraction of irreducible elements in Ok, /(g) is at least 1/poly (¢(m;), log ¢) with ¢ >
2 and with ¢ = 1 mod m; for all ¢ € [l]. When working in the tensor of the different polynomial
rings over Zg, if an element is invertible, the corresponding elements belonging to each O, must
be invertible too (same explanation as for the Kronecker product of matrices, Section[A.2.T]). Then,
the fraction of invertible elements in Ry = @),c Ok, /(q) is at least the product of the fractions

of each ring of integers 1/poly (Hie[l} o(m;),log q) = 1/poly (n,log q). O






Appendix B

Block-Processing

This appendix is adapted with permission from ArXiv: Alberto Pedrouzo-Ulloa, Juan Ramon
Troncoso-Pastoriza, and Fernando Pérez-Gonzdlez. Multivariate Cryptosystems for Secure Pro-
cessing of Multidimensional Signals. ArXiv e-prints, CoRR abs/1712.00848, December 2017.

B.1. Introduction

This appendix analyzes the applications of the m-RLWE problem on signal processing sce-
narios (initially introduced in the conference paper [4]]), and shows why it better suits multidimen-
sional signals (e.g., 2-D and 3-D images, video, ...). By rooting the used SHE cryptosystems in
this hard problem, we show that we can achieve a reduction of both the computational cost and the
cipher expansion along with an increase in the security when working with multidimensional sig-
nals and a secure multivariate RLWE instantiation (see Chapters 2] and [5] for a detailed discussion
on the security of multivariate RLWE). This is so due to the more compact and efficient representa-
tion of the signals that outperforms the direct use of packing and unpacking steps in RLWE-based
cryptosystems. Furthermore, we show that the use of m-RLWE is compatible with other methods,
so it can be combined with packing techniques and CRT (Chinese Remainder Theorem) [131],
which can be leveraged for parallelizing cleartext operations under encryption [S0, 98, [29]. We
therefore achieve our first goal of efficient and practical encrypted processing of multidimensional
signals.

Besides its benefits for multidimensional signals, it must be noted that the m-RLWE problem
yields further degrees of freedom which can be leveraged to exploit additional structures (not
necessarily related to the dimensions of the data) in the data or operations. These structures can be
recognized, for example, when processing several signals in parallel or when applying block-wise
operations. Therefore, we can achieve performance and security gains with respect to univariate
RLWE in a variety of applications, especially comprising multi-scale approaches [46] [182]; these
are used, among others, in disciplines like geology, astrophysics, biology, imagery, medicine;
being the latter one of the most relevant due to its privacy constraints. Furthermore, m-RLWE
also enables a new type of homomorphic operations which are independent of the dimensions
presented on both the signals and scenarios.

Contributions: Here we summarize and briefly describe the contributions of this appendix:

195
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= We present a toolset of multidimensional secure operations enabled by the m-RLWE prob-
lem (see Section [B.3)), comprising: (a) better encrypted packing of information, (b) unat-
tended encrypted divisions without resorting to interactive protocols, and (c) multi-scale
approaches as wavelet transforms and pyramids.

= We analyze the use of pre- and post-processing to enable unattended packed and block-
processing operations. Additionally, NTTs (Number Theoretic Transforms) are proposed as
a means to optimize the encrypted operations (see Section [B.4).

= We develop strategies to homomorphically modify the structure of ciphertexts by incorpo-
rating some additional information, and without the need of an interactive protocol with
the secret key owner, hence enabling different types of unattended secure operations (see

Section [B.3).

Structure: The rest of the appendix is structured as follows: Section [B.2] briefly revisits some
basic concepts of homomorphic cryptosystems and the underlying hard problems. Section [B.J]
introduces a set of possible encrypted unattended applications for which m-RLWE brings about
notable optimizations; Section [B.4] includes the description of the main tools proposed in this
appendix, and Section [B.5] proposes an optimization which enables to homomorphically update
the ciphertext structure.

B.2. Preliminaries

The state of the art in FHE is based on the Learning with Errors (LWE) [[183] and Ring Learn-
ing with Errors (RLWE) problems [41]], which have proven security reductions from hard lattice
problems. Both RLWE leveled cryptosystems [S0]], which enable the homomorphic execution of a
bounded-degree polynomial function, and scale-invariant leveled cryptosystems based on RLWE
produce the currently most efficient FHE systems [[85, 86, 87].

Both RLWE and LWE have a similar formulation, that Brakerski et al. generalized to a com-
mon General Learning with Errors (GLWE) problem [50]. We recall a slightly adapted informal
definition of GLWE, as the basis for our schemes introduced in the next sections:

Definition 23 (GLWE problem [50]]). Given a security parameter \, an integer dimension | =
L(X), two univariate polynomial rings R[x] = Z[x]/(f(x)), Rylx] = Zg[z]/(f(x)) with f(z) =
" +1, ¢ = q(X\) a prime integer, n. = n(\) a power of two, and an error distribution x[x] € Ry[x]
that generates small-norm random univariate polynomials in Ry|x], GLWE, ¢ . , relies upon the
computational indistinguishability between pairs of samples (a;,b; = a; - s+t - ¢;) and (a;, u;),
where a; Ré [z], u; + Ry[x] are chosen uniformly at random, s <+ x'[z] and e; < x[z] are
drawn from the error distribution, and t is an integer relatively prime to q.

When n = 1, GLWE becomes the standard LWE, , , , and when [ = 1 itreduces to RLWE, ¢ .
LWE-based cryptosystems yield huge expansion factors and are computationally demanding, rea-
son why RLWE was defined as an algebraic version of LWE, trading subspace dimensionality
for polynomial ring order (using an ideal ring), and achieving huge efficiency improvements. As
for the generic GLWE (n > 1 and [ > 1), Brakerski et al. [50] speculate that it is hard for
n-1=Q(Alog(q/B)), where B is a bound on the length of the elements output by x[z]. It must
be noted that despite the efficiency improvement, there are no known attacks in RLWE that get a
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substantial advantage with respect to attacks to LWE Hence, the currently most efficient homo-
morphic cryptosystems are based on RLWE, particularly BGV [50, 78] and NTRU [84], together
with their scale-invariant counterparts FV [86] and YASHE [87]]; depending on the requirements of
the specific application, the optimal choice of the used RLWE-based cryptosystem can be different
as analyzed by Costache and Smart in [|83]].

In [4] 22] we proposed a generalization of RLWE as a new problem called m-RLWE (mul-
tivariate Ring Learning with Errors), providing an exemplary new cryptosystem based on it, es-
pecially designed for encrypted image filtering. The m-RLWE hardness assumption is especially
useful for working with multidimensional signals; for simplicity of the exposition, this appendix
works with cryptosystems extending Lauter’s cryptosystem [[/9] (a simpler non-leveled version of
BGYV), but the same methodology can be applied to any other RLWE-based cryptosystem as those
previously cited.

It is worth noting that the contributions of this appendix are exemplified considering the m-
RLWE problem instantiated with power-of-two cyclotomic modular functions. The formulation
of this variant of the m-RLWE problem can be found in Chapters 2] and [5] (see Definition [I)).

B.3. Applications of m-RLWE for Secure Computation

This section discusses how the m-RLWE problem can enable encrypting multidimensional
information while still preserving its structure. As we show, this can be achieved with only a
small overhead on cipher expansion with respect to the version in the clear, enabling additive and
multiplicative homomorphisms.

We briefly recall first the example cryptosystem presented in [4] and the use of m-RLWE for
performing encrypted multidimensional linear convolutions. Next, we introduce a set of practical
scenarios where the m-RLWE problem can produce effective solutions. These methods are not
exclusive for multidimensional signals, so they can also be of benefit to unidimensional signals.
Among the proposed solutions, we find a better way to pack the information, we enable encrypted
divisions without an interactive protocol, and we implement encrypted versions of several multi-
scale algorithms (e.g., wavelet transforms and pyramids) which are widely used in both computer
vision and signal processing applications. We provide here a high level description for these
solutions, and detail the proposed underlying mechanisms in Section [B.4

B.3.1. An example of an m-RLWE based Cryptosystem

Any cryptosystem whose security is based on RLWE (e.g., 50, (78} [79] 184, 186, |87]]) could be
extended to m-RLWE (see Chapter[5). In [4], we extended Lauter et al.’s [79], due to its efficiency
and security, as a basis to exemplify the main properties of a semantically secure m-RLWE-based
cryptosystem. Table [B.I] summarizes its parameters and primitives. There are currently more
efficient choices like FV [86] or BGV [50], but we prefer to abstract the peculiarities of the high
level cryptosystem functions and focus on the actual functionalities that our proposed mechanisms
enable. Our results can be straightforwardly extended to more efficient cryptosystems in case it is
required.

The cryptosystem in Table [B.T| supports both additions (the smallest ciphertext is previously

"For a formal definition of the GLWE problem and proofs of security reductions for RLWE and LWE, we refer the
reader to [4.1} 150} [183]].
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Table B.1: Proposed Cryptosystem: Parameters and Primitives.

Parameters
Let R¢[z1, ..., Zm] be the cleartext ring and Rg[z1, ..., Zm] as ciphertext’s. The noise distribution
xlx1,...,xm] in Rg[z1,...,zm] takes its coefficients from a spherically-symmetric truncated i.i.d
Gaussian N(0,021). gisaprime ¢ = 1 mod 2max {n1,...,nm} (withn = [[n;),and t < g is
relatively prime to gq.
Cryptographic Primitives
SH.KeyGen | Process s,e < x[z1,...,Tm], a1 < Rqlz1,...,2m] sk = sand pk = (ap =
—(a1s +te),a1)
SHEnc Input pk = (ao,a1) and m < Ri¢[z1,...,Tm]
u, f, g < x[z1,...,2m] and the fresh ciphertextis ¢ = (¢, c1) = (apu+
Process
tg+m,ai1u+tf)
SHDec Input sk and ¢ = (col, Cl’,' S Cy—1)
Process m = <<Z;7;0 cisl) mod q) mod ¢t
SH.AAd Input co = (co,-- -, 0/5,1) and ¢ = (cf), . .. 7/‘3/7—1)
Process Caad = (co+ ¢}, -5 Cmax B)-1t Cmax(ﬁ,’y)—l)
SH.Mult Input co = (co,...,cg_1)and ¢y = (cg,...,c’v_l) —
Using a symbolic variable o their product is (Zi:o civl)
Process =1 i By—2 g1
(zi:O GV ) =220 Gv

zero-padded) and multiplications between ciphertexts which are composed by v > 2 ring elements
from Ry[x1, ..., xy]. This encryption size increases with each multiplication (see Table , and
it can be brought back to the size of a fresh cipher by means of a relinearization step, which
involves using partial encryptions of the secret key (more details can be found in [S0, [79]], and

Section B.3).

Security and Correctness: The security of the cryptosystem is based on the computational
difficulty of reducing the n-dimensional lattice (n = ][ n;) generated by the secret key, and on the
semantic security guaranteed by the underlying m-RLWE problem (two encryptions of the same or
different plaintexts cannot be distinguished). As we have discussed in other chapters, the hardness
of the m-RLWE problem can vary substantially depending on the chosen modular functions. For
the worst-case (see Chapter [3), it is roughly equivalent to the RLWE problem considering the
maximum univariate degree; that is, for Deﬁnitionthe effective dimension is max {ny, ..., nmy}.
Even so, all the proposed solutions in this appendix can be adapted to work with secure m-RLWE
instantiations which do not suffer a decrease on the effective lattice dimension ]

As for correctness, ¢ must be set such that enough “space” is guaranteed to avoid decryption
errors produced by wrap-arounds of the performed homomorphic operations. Due to the analogous
(not isomorphic) polynomial structure of m-RLWE with n = [ [ n; and n-degree RLWE, bounds
for the error norm [79] are preserved when switching from RLWE to m-RLWE, by adjusting the
increased dimensionality of the ring elements: for D successive products between fresh ciphertexts
and A sums, the needed ¢ for correct decryption is lower-bounded by

q > 4(2to*\/ning .. .nm)D+1(2n1n2 .. nm)D/2\/Z. (B.1)

2We refer the reader to Chapters [2| and [3| for a detailed discussion on the choice of secure multivariate RLWE
instantiations and how to adapt the results of this appendix to them.
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B.3.2. Encrypted Multidimensional Linear Convolutions

Unlike RLWE-based cryptosystems, which lack support for multidimensional signals, the pro-
posed cryptosystem [4] introduces a natural way to work with multidimensional linear operations.
Additionally, it achieves a more compact representation of the data, as it can effectively encrypt
one signal value per coefficient of the encryption polynomial. We exemplify here the implemen-
tation of different representative encrypted processing operations like convolutions, correlations
or filtering, showing the advantages of the proposed cryptosystem compared to its RLWE-based
counterpart. Unless otherwise stated, we always consider that all the used signals and filters are
encrypted, to fully conceal all the involved elements in an untrustworthy environment.

Convolutions, correlations and filtering can all be expressed as a linear convolution between
two m-dimensional signals X and H, namely Y [n1,...,n,] = X[ni,...,npxH[ny, ..., nyl,
which is equivalent to the ring product of the signals represented as multivariate polynomials
y(z1, .-y 2m) = x(21,. .., 2m) - h(z1,. .., zm). Using the original RLWE-based scheme, an en-
crypted convolution would comprise encoding each dimension of the two signals separately as
elements of the univariate polynomial ring R;[z], resulting in two (m — 1)-dimensional elements
Xt omm1(2)and Hy, . (2) of R;”fl[z]. If Ny, is the number of samples in dimen-
sion n; for the signal y, the number of involved polynomial products is Hﬁ_ll Ny, o Ny, 1 (€.,
N2m=Dif N, » = Ny, = N).

Contrarily, with our proposed cryptosystem the convolution can be done through a single poly-
nomial product of the encryptions, homomorphic to the polynomial product of the clear text. In
particular, an encrypted image convolution with the proposed cryptosystem would translate into
the product of two bivariate polynomial encryptions.

Complex signals: m-RLWE also enables to naturally incorporate one extra variable to cope with
complex signals, represented in the polynomial ring Z;[w]/(w? + 1), isomorphic to the complex
integers ring, where the variable w plays the role of the imaginary unit.

Edge Detection Algorithms: As an example of multidimensional convolutions, the Sobel oper-
ator is frequently used in image processing and computer vision applications as part of edge detec-
tion algorithms. Resorting to the homomorphic product property of the m-RLWE cryptosystem,
we can easily convolve the Sobel kernel (any other different type of kernel could be considered)
with the encrypted image (even a 3D image).

Additionally, if the kernel operator is public, it can be in the clear when convolving it with the
encrypted image, hence being its homomorphic execution even more efficient.

B.3.3. Better Encrypted Packing

It can be seen that for practical image processing scenarios it is not so common to filter the
whole image. In fact, images are usually divided in different blocks and independent operations
are applied to each block.

The approach introduced in [4]] applied to this scenario would encrypt each block separately.
However, this would not benefit from the use of 2-RLWE (m-RLWE with bivariate polynomials)
because we would not be encrypting the whole image in only one ciphertext.
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In order to preserve the same security (related to the dimension of the underlying bivariate
lattices) as in [4], we propose different mechanisms to pack the information by exploiting the
block-structure of the operation and restructuring the signals into “virtual” dimensions that can be
leveraged by an m-RLWE encryption.

Instead of encrypting each block independently, we can consider one additional polynomial
variable for representing the image like a video sequence where each frame corresponds to a dif-
ferent image block (see Figure [B.I). Therefore, we can get an optimal packing of the information
while preserving and exploiting the block structure in the encrypted domain.

Figure B.1: Indexing a set of blocks with 3-RLWE.

The division of an image into blocks is not the unique additional dimension that we can con-
sider and, in any real application, we can also take into account the number of plaintext signals
which we want to work with. One would traditionally have to encrypt each signal in a different
ciphertext, ending up with as many ciphertexts as plaintext signals in the process. To this end, we
can use m-RLWE as an optimization which enables packing several signals in only one ciphertext,
therefore using a smaller number of ciphertexts or even just one ciphertext

For this purpose, we only have to consider one additional polynomial variable that indexes
the different messages which are encrypted inside the ciphertext. For example, when dealing with
simple images we would use 3-RLWE (for 3D-images we would resort to 4-RLWE) in such a way
that two polynomial variables would define the content of each image, and the third variable would
define the “index” of the chosen image (see Figure [B.I)).

It is easy to find further scenarios where this strategy can be applied. For example, when
considering the different color layers of the images we can encrypt each layer in a different poly-
nomial variable; hence having a total of 7 dimensions (R, G, B layers, horizontal and vertical
spatial dimensions, the block structure of the images and the number of images). This highlights
the versatility of m-RLWE.

The difficulty of the implementation in the encrypted domain can vary depending on the op-
erations performed on each block or signal. For example, the computational cost will be smaller
or higher depending on whether all the operations are, respectively, the same or different for each
block. All the details of the underlying primitives are explained in Section [B.4]

*Depending on the choice of the modular functions we also can benefit of an increase in security (higher dimen-
sionalities in the underlying lattices; see ChapterEI).
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An example of Block Image Processing: A paradigmatic example of block processing in com-
puter vision can be found in the JPEG compression method, where one step requires to divide the
image in blocks of 8 x 8 pixels and apply a DCT (Discrete Cosine Transform) to each block.

Chapter [] describes how to efficiently apply a known linear transform to a signal which has
been previously encrypted by a RLWE-based cryptosystem. These techniques can also be applied
to this block-wise processing scenario, however the size of needed relinearization matrix would
become 2n%[log, q] coefficients modulo ¢ (considering a single layer image with n pixels).

Our proposed strategy encodes the block structure with an additional variable. This enables a
reduction in the size of the required relinearization matrix, resulting in 128n[log, ¢| coefficients
modulo ¢ for an image with n pixels (we would have to generate the vectors a,b which are
composed of 64[log, ¢ polynomials with n coefficients).

B.3.4. Unattended Encrypted Divisions and Homomorphic Modular Reductions

A recurrent problem in Secure Signal Processing is the cipher blow-up of the obtained results
after several encrypted operations in iterative processes, as a result of the accumulation of the
multiplicative factor whenever the encryptions are not “refreshed” after each iteration [19]]. For
mitigating the effect of this overflow we could increase the available space for the encrypted mes-
sages (the modulo ¢ in an m-RLWE cryptosystem; see Table [B.1), or consider a homomorphic
integer division or quantization after each encrypted iteration (removing the accumulated factor).

In the literature we can find several approaches for computing a secure integer division [ ¢ |,
but all of them resort to interactive protocols (e.g., [[184} 185, [186]), and they commonly consider
that the denominator b in the division is public ([186] keeps it private).

We briefly discuss how to tackle non-interactive encrypted quantizations by resorting to the
flexibility of the m-RLWE formulation, by including additional (i.e., virtual) polynomial variables.
This enables the execution of both real and integer divisions, at the cost of an increase on the cipher
expansion.

First, we deal with unattended encrypted integer divisions (always considering that the denom-
inator is public), and then we address how to encode real numbers.

Integer Divisions

We can add one variable representing the binary encoding of the different messages (either
signal samples or pixels when dealing with images). This implies an increase on the cipher expan-
sion as we encode each value using one polynomial instead of only one coefficient. Thanks to this
increase in the cipher expansion (and with the use of binary masks), we enable encrypted integer
divisions with a denominator power of 2.

For performing these integer divisions we can leverage the tools from [29], where we show
how to perform shifts and element-wise products between two encrypted messages in an unat-
tended way; the secret key owner only has to generate several relinearization matrices which allow
the server to recover the original structure of the ciphertexts after the different operations. Thus,
if we work with the binary representation of the different values, we only have to apply a mask
which discards the bit(s) with the smallest significance, and afterwards, homomorphically perform
the corresponding binary shift.



202 B.3. Applications of m-RLWE for Secure Computation

The efficiency of such scheme is severely limited by the use of a binary decomposition, so we
can look for a tradeoff that enhances the performance: instead of encoding each value using its
binary decomposition, we can use a representation in any other base b > 2. This considerably
reduces the cipher expansion while still being able to perform a reduced set of integer divisions by
powers of the new base.

Additionally, it is worth noting that the encryption does not hold information about the carries
in each position (when they have been previously undergone another homomorphic operations),
so the performed divisions could contain errors. To address this, we can adapt the homomorphic
threshold function presented in [46] to homomorphically compute the existing carries in each
position, therefore correcting the results.

Working with Real Numbers

The same additional variable used in the previous paragraphs can be used for a fixed point
representation of real numbers. For example, we can use the binary encoding of [[187]]. Hence, the
polynomial bg+bjv+. . .+bN+vN+ —b_ju™ T b _qu 2~ —bn o™ N~ that belongs to the
ring Ro[v] = Zo[v]/v™ + 1 encodes the real number by, ...b1bo.b_1b_2...b_y_ in base two.
After a product of two polynomials encoding two real numbers, if the number of coefficients in the
polynomial is big enough for storing the new integer and decimal parts, we obtain a polynomial
that encodes the desired result.

This encoding enables multiplications between real numbers and also real divisions in fixed-
point. After an encrypted division between real numbers, we can apply a mask for rounding the
corresponding result, hence achieving a better control on the increase of the encrypted values after
the homomorphic operations. Analogously, as in the case of integer divisions, we can consider a
base b > 2 for the real fixed point representation.

B.3.5. Multi-Scale Approaches

Both signal processing and computer vision make extensive use of multi-scale representations
to work with the content of a signal or image [188]. In essence, they aim at finding describing
structures of the content by means of representing the information as a one-parameter family of
smoothed signals which we call the scale-space representation.

Among the most widespread multi-scale approaches, we can highlight pyramids (e.g., Gaus-
sian and Laplacian pyramids) and wavelet transforms (e.g., Gabor and Haar wavelets). In general,
both cases require the use of a chain of downsampling and filtering operations. The use of 2-RLWE
to perform wavelet-based operations was introduced in [46] (we revise it in Chapter|/), where we
exemplify how to homomorphically perform the denoising of an image in an unattended way.
By combining m-RLWE-based cryptosystems with the tools introduced in [29]], which enable the
computation of changes on the sampling rate, we can efficiently perform multi-scale processing
like wavelet filters and pyramids.

The set of possible applications [182] enabled by these techniques is really wide and covers
some very diverse applications. Among all of them, applications related to medical scenarios are
more amenable for the presented solutions, due to their intrinsic privacy constraints. In these sce-
narios, we can consider several applications dealing with highly sensitive data, like Electrocardio-
grams - ECG, Electroencephalograms - EEG, Computer Tomography scans, Magnetic Resonance
Imaging - MRI, fMRI, among others.
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B.4. Encrypted Toolset based on m-RLWE

As mentioned above, image processing commonly relies heavily on block-wise processing.
This section explains in detail how the block structure of these operations can be incorporated into
m-RLWE ciphertexts to take advantage of the multivariate structure and the m-RLWE formula-
tion. It is worth noting that while we exemplify solutions for image processing scenarios due to
their typical block-wise operations, all the results are equally valid and applicable for any scenario
dealing with multidimensional signals.

B.4.1. Block Processing

First, we consider the case where the same processing is applied to each block. The straight-
forward approach would be to encrypt each block separately and filter each encrypted block in-
dependently, effectively considering every block as a different signal. However, we can leverage
the m-RLWE structure and, instead of encrypting each block separately, we include one additional
variable to the encrypted polynomials which assigns one block per coefficient and enables process-
ing different blocks in parallel without separating them (for the case of images that are divided in
several blocks, the equivalent would be to use 3-RLWE for coding the image as a video where
each frame is one of the different blocks). That is, incorporating an “index” variable to address
the block structure, we can work with only one ciphertext for all the blocks or signals.

If we apply under encryption a filter defined in those variables that represent the dimensions
of the blocks, we can effectively work with ciphertexts whose underlying lattice dimensionality
is much higher than the ciphertexts of the straightfoward approach, so the security can be con-
siderably increased. We remind the reader that the security of m-RLWE can vary substantially
depending on the chosen modular functions, but even in the worst-case scenario from Definition

we have an effective dimension of max {ny, ..., n,, } with an additional increase in the error vari-
ance by a factor of m when using the Bootland et al.’s attack [44] (see Chapter ﬂ

In addition, efficiency is not reduced, as the expansion is not significantly increased, and one
encrypted operation is equivalent to processing several blocks in parallel. We address now the case
in which each block has to be processed by a different filter.

Modifying encryption and decryption primitives

When a different filter has to be applied to each block of the multidimensional signal, it is not
enough to have one additional variable for coding the pointer to the block structure. This case
would be analogous to having a set of independent multidimensional signals, and the correspond-
ing filter has to be applied to each of them. Hence, we need an efficient and secure packing of
several independently operable multidimensional signals into only one ciphertext.

To this end, we consider a pre- and post-processing inside the encryption and decryption prim-
itives, respectively, that we explain below, highlighting the differences that have to be accounted
for with respect to the univariate primitives of the cryptosystem presented in [4].

*The most favorable case is that of preserving an effective dimension equal to the product [] ;,ni. We cover this
situation in Chapters[2|and 3]
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DFT/IDFT as pre-/post-processing: In order to obtain independent blocks, we apply a trans-
form (DFT, Discrete Fourier Transform) along the additional variable defined as the block index.
The convolution theorem states that the transform of a cyclic convolution between two signals in
the temporal domain is equivalent to the element-wise product of the transforms of the two original
signals:

DFT(z[l] ® y[l]) = DFT(z[l]) o DFT(y[l]).

This means that the operations applied along the variable [ will be “component-wise” and
independent for each coefficient slot. Hence, we represent the m-dimensional signals by means of
multivariate polynomials with m + 1 variables

(21, 2my 2) = Z m[ll,...,lm,l]zlll...zf{l”zl,

llv"'vl’ﬂul

considering x(z, z) where z = (21,...,2y) and l = (l1,...,ly); 2 is the variable that indexes
the different blocks of z, so we compute the DFT with respect to the coefficients (each coefficient
represents an m-dimensional block) encoded in the variable z (we consider the modular function
1+ 2V, thatis, N blocks). We have the following:

—_

N—
DFT(z[L,1)) = 3 afl, []e"~ .

=

If we apply the cyclic convolution (by means of one homomorphic product between ciphertexts)
between X[, k] and HJl, k] with respect to the variable k, and afterwards the corresponding
IDFT with respect to k, we are effectively computing the block-wise linear convolution between
the blocks that form z(z, z) and h(z, z) (provided that the results of the linear convolutions do
not overflow).

Therefore, if we apply the unidimensional DFT/IDFT across the index variable as pre-/post-
processing, we can perform the block-wise linear convolution between all the blocks that form
both signals by means of just one homomorphic convolution between X and H.

Circular Convolution inside the Cryptosystem: The correctness of the result of the linear
convolution only requires that there be enough coefficients to store it, but the convolution property
of the DFT requires a cyclic convolution. It must be noted that the cryptosystem only allows to
perform multiplications between polynomials modulo f(z) = 1+ z" for each variable, so we can
only perform nega-cyclic convolutions homomorphically.

Several works (see for example [[104]) show how to implement operations modulo 1 + z" by
means of cyclic convolutions. Here, we can apply the reverse process (presented in [54] and gen-
eralized in [29]), for enabling cyclic convolutions using operations between polynomials modulo
f(z) =1+ 2N (see Chaptersand.

= First, we have to do a pre-processing before encryption

=

=

Il

> 8
'F

=

[

S~—

Z|~

forl =0,...,N — 1.
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= Next, we can homomorphically evaluate

Y (z,2) =2'(2,2)h (2,2) mod 1+ 2V,

» Finally, we have to do the post-processing for the resulting y/(z, z) after decryption

=L

y[l, ” = y/[lv l](_l) N,

forl =0,...,N — 1, and we obtain a homomorphic cyclic convolution.

It is important to note that the presented pre- and post-processing steps require the use of com-
plex numbers to represent the complex roots of 1 and —1. As mentioned in Section[B.3.2] complex
numbers can be accommodated in the used cryptosystem by adding one additional variable with
a modular function f(w) = 1 + w?. The main drawback of this solution stems from the need
for quantizing the non-integer complex roots represented in fixed-point with sufficient precision;
this introduces rounding errors and implies an increase in the needed modulo for representing the
signals, therefore increasing also the cipher expansion. In order to remove this constraint and
avoid rounding errors, we can replace the DFT by its finite ring counterpart as explained in the
next section.

B.4.2. Optimizations: Using the NTT to remove rounding errors

Instead of the complex-valued DFT, we resort to the DFT over finite rings, that is, the NTT
(Number Theoretic Transform) [[104} [29]]. Additionally, we use a finite /V-th root of —1 in Z; for
the pre- and post-processing of the cyclic convolution. This allows us to avoid both the rounding
problems and the need of doubling the size of the used polynomials. It can only be applied for
certain values of ¢ and V.

The use of the NTT as a method both for efficiently performing encrypted operations and as an
encrypted operation inside an RLWE based cryptosystem was introduced by the authors in [29],
and exemplified as a pre-/post-processing in [189] for the univariate case. Hence, here we briefly
discuss the particularities of the NTT when applied to the multivariate case, and we refer the reader
to Chapters [4] and [5] for further details.

The existence conditions for an NTT with size N in Z; are the same included in Chapter [4]
The expressions for the calculation of the NTT and the INTT are the following:

N—-1
X[tk =Y zl,lja" mod ¢,
=0

fork=0,1,...,N —1and
N-1
zll,[]=N""Y " X[l ko™ modt,
k=0

forl =0,1,..., N — 1. In Section we analyze the impact of these pre- and post-processing
steps in the computational cost and we show that it is negligible compared with the cost of the
(regular) encryption/decryption primitives. In addition, when the case requires it, it is also possible
to offload these pre- and post-processing operations to be performed under encryption (without the
intervention of the secret key owner) by applying the methods proposed in [29] to the multivariate
case, at the cost of an increase in the computational load at the evaluator.
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This concludes the basic mechanisms for efficiently operating on m-RLWE encryptions. The
next section introduces methods to perform on-the-fly changes in the ciphertext structure in an
unattended way, which enables homomorphic updates on the available encrypted operations.

B.S. Updatable Ciphertext Structure

The previous sections show how the possibility of adding some extra structure to the encrypted
information together with the use of some pre- and post-processing can enable a unattended en-
crypted processing in a wide set of practical scenarios. However, once data are encrypted, m-
RLWE imposes a specific fixed structure optimized for a determined processing, and it is easy to
imagine scenarios where the ability to change the underlying ciphertext structure is very conve-
nient (if a chain of processes has to be applied unattendedly).

The straightforward approach would be to send the ciphertext to the secret key owner with the
aim of decrypting and reencrypting under the new structure. This introduces several problems: (a)
the user can see some part of the required steps for the execution of the algorithm implemented
by the server, and (b) this has an increase in the total response time because of the delay caused
by the communication between the server and the user. In order to address these two problems,
we propose a new mechanism which allows the third party to change the ciphertext structure
in an unattended way (without interaction with the secret key owner). To this end, we apply a
modification of the relinearization procedure [29].

For simplicity on the exposition we exemplify the process with m-RLWE as it was introduced
in Definition [I] (power-of-two cyclotomic functions). It is important to remark that the same idea
can be extended to work with more general (secure) multivariate RLWE instatiations as the ones
discussed in Chapter 2]

B.5.1. Relinearization

The basic relinearization operation is intended to process encryptions after a homomorphic
product. After a product, the encryptions become a function of powers of the secret key s. The
relinearization builds key homomorphisms that relate s? to s and is used to produce a 2-component
fresh-like encryption from a three-component one. For our purposes, we present a more generic
version of the relinearization, which defines key homomorphisms between two keys s and s’. Let
us consider a ciphertext (¢, ¢1) with decryption circuit ¢o + ¢1s. If we apply the relinearization
algorithm to (¢, ¢1) to express it as a function of the new key s’, we have:

} [logr q]—1 _ [logp q]—1
Cgelm =g+ Z Cl,ibi and qulm = Z C1,iGy,
i=0 i=0
where the set of polynomials ¢;,; with i = 0,...,[logr¢] — 1 is the base-T" decomposition

of ¢; for a given 0 < T < ¢ The different b; and a; come from the key homomorphism
hi = (a;,b; = —(s'a; + Te;) +T's) withi = 0,. .., [logy q] — 1; these homomorphisms can
be seen as “pseudoencryptions” of the key s under s’. For the sake of exposition, the decryption
circuit of (cp, c1) can be represented in matrix notation as ¢y + C1s, where C1 is a block skew
circulant matrix of the polynomial c¢; [29]. The matrix notation allows to see the decryption

SWe assume that 7' = ¢ unless otherwise stated.
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equation as a sum of external products of restructured versions of the polynomial c; times each

()

of the coefficients of the key: ¢y + Z ,0 c1 sj where the different c1 are polynomials whose
coefficients are the elements of the j- th column of the skew circulant matrix C. In general, if

we consider the concatenation of n key homomorphisms hl(j ) with i = 0,...,[logrq] — 1 and

j=0,...,n—1, where h( 7 has the coefficient s; “pseudo-encrypted” with the secret key s’, we
can obtarn a new crphertext (chelin creliny without changing its content (we refer to Chapter for
more details).

B.5.2. Changing the polynomial structure

The introduced representation of the decryption circuit (cg + Z? & cgj s;) already sheds some

light about the approach we follow to change the polynomial structure through a relinearization
operation: we simply encode the different polynomials that form the hgj ) along with ¢y and cgj )
under the desired polynomial structure.

In order to incorporate this new structure, we first define a family of n! different reversible

polynomial ring mappings f,(Lw,zz : Rylz1,...,21] = Rylz,..., k] with w belonging to the
set {1,...,n!} where n = (ny,...,n), m = (my,...,mg) and n = Hi:r n; = Hlemi
(the modular functions of the polynomial rings are f;(z;) = 2" + 1 with ¢ = 1,...,l, and

fj(x])—x '+ 1withj=1,...,k).

This mapping takes as input a polynomial element that belongs to the ring R,[z1, ..., 2] and
produces as output a polynomial element that belongs to the ring Ry[x1, ..., x| and whose co-
efficients are the same as the coefficients of the polynomial input but rearranged in one of the n!
different ways (w indicates the specific reordering used).

Now, we need a set of key homomorphisms hgj ) with 7 = 0,...,n — 1 where all the used
polynomials belong to the output polynomial ring, that is a;,e; < Rg[z1,...,xx], and where
instead of using s € Ry[z1, ..., 2| we are “pseudo-encrypting” the coefficients s; with the secret

key £ (s) € Rylo1,. .., xx)-

Equipped With these tools, we perform a relinearization in which we consider the use of

(4)

( m(co), fn m( "forj = 0,...,n — 1 instead of co and ¢;”’. By doing this, we obtain

a new ciphertext (ch™", c7€!n) that is the encryption of f (m) € Ri[x1,..., x| (the corre-
sponding reordering of the original message m € Ry[z1,. .., z;]) with the secret key f,(lwy)n(s) €
Rylz1, ..., zx] and where chelin, crelin € R, [z, ..., zy).

For example, if both ¢ and ¢; are polynomials that belong to Z,[z]/(1 + 2™) and we want to
divide the encrypted signal in blocks of length n, (e.g., to obtain an image whose rows are the
different blocks), we consider the ring (Zq[x,y]/(1 + 2"*))/(1 + y™) with nyn, = n; being n,
and n, powers of 2. As we know which is the new position of each coefficient of the encrypted
message in the new multivariate structure, we apply the explained method considering that the
polynomials belong to the bivariate ring (Zq[x, y]/(1 + ™)) /(1 4+ y™).

The presented strategy can be applied to change the structure of the encrypted messages to all
types of multivariate polynomials depending on what we need.

Security considerations: The security of this process is guaranteed by the underlying m-RLWE
problems involved in the execution of the algorithm. Consider that we have a chain of structure
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changes defined by a composition of L mappings f:ff){nm o fr(:fjgn(s) 0...0 f:é’f))n( L+1)» Where
each w; belongs to the set {1,...,n!} withi = 1,..., L and each n\) = (ngj), . ,n}j)) with

Jj = 1,...,L + 1is a vector composed of k; natural numbers satisfying n = Hf;l ngl) =

1%, nz@) = ... = Hfif ngLH). Then, the security of the proposed algorithm is based
on the hardness of the underlying multivariate RLWE problems defined over the L + 1 rings
R, [zy ). , zg ) ], where the different modular functions are defined as in the previous section,

. @)
that is, fp, (zg )y = (z,(é ™3 4 1. Additionally, the security is also based on the circular secu-

rity of the different involved multivariate RLWE based cryptosystems (see Section [B.3), hence
guaranteeing that releasing encryptions of the secret key is secure.

B.6. Conclusions

This appendix presents novel uses of Multivariate Ring Learning with Errors (m-RLWE),
which enable efficient encrypted processing of images and multidimensional signals (3-D images,
video,...). Cryptosystems based on this problem can flexibly fit the input signal structure, there-
fore producing an extremely efficient encryption with very low processing overhead and cipher
expansion. We have also produced novel techniques to deal with non-interactive transformations
between different structures, enabling for the first time block-based multidimensional encrypted
signal processing in a non-interactive way. This is especially relevant in privacy-aware scenarios
like outsourced medical imaging (ECG, EEG, CT scans, MRIL,...), opening up a wide range of
novel encrypted processing applications supporting secure unattended outsourced processing of
signals of almost any kind.

B.A. Computational cost for modified encryption and decryption

We have proposed a modification for encryption and decryption by introducing pre- and post-
processing in them (see Section [B.4.I). We now analyze the impact of such pre- and post-
processing in terms of computational cost. Considering an example of filtering between I images
with size N x N and filters of size F' x F, the cost for the product between polynomials from our
cryptosystem is

Costpoly. Prod = (N+F— 1)4h212.

On the other hand, the cost of a pre- or post-processing operation would be (N? +
F?)Costp FT(Ipoints) because we have to perform N 2 DFTs of size I for the images and F2> DFTs
of size I for the filters. If we use a fast algorithm like FFT for computing the polynomial products
and the DFT, we have a total cost of

Cost =~
Npoy Prod.Crrr(N + F —1)*hIlogy (N + F — 1)2AI)
+ (N? + FA)Cpprllog, I,
where Npoyy. proq. 18 the number of polynomial products needed for performing the considered

cryptographic primitive (in this case, encryption or decryption), and C'rpr is the linear constant
of the used FFT algorithm.
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Using a slack value of h = 1, we can obtain the ratio betweeworkn the cost for the pre- or
post-processing and the respective encryption/decryption primitive (with no pre-/post-processing):

Ratiogyst =~
(N? + F?)Crprllogy I
NPoly.Prod.CFFT(N +F — 1)21 logQ((N + F— 1)21)’

where Ratiog,s; achieves its highest value when F' = 1.

Now, let us express the asymptotic Ratiogys; when ' =1 and N — oo:

. . . (Nz—i-l)CFFTIlOgQI
| Rat =1
Noo H0C0st = I Npoly.Prod. Crrr N2I logy(N2I)
. (1+ 52)Cpprllogy I
N—00 Npoly.Prod. Crrr I loge(N21)
=0.

Therefore, when increasing the size of the images, the additional cost for the primitives be-
comes negligible. Additionally, it is also interesting to calculate the maximum increase in com-
putational cost that the use of pre- and post-processing can incur on. With this aim, we study the
case when / — oo and F' = 1:

lim Ratioc,st =
I—o0

I (N2 + 1)CFFT[10g2 I

= l1m

100 Npoly.Prod. CrrrN21 logy(N21)
_ N2 41

= lim

log, IN?
I=00 ]VPoly.Prod.]v2 102g2 7

_ N2 +1
T 5 2(logy N?
NPoly.Prod.N (W + 1)
_ N*41
]VPoly.Prod.]V27

that is approximately ﬁ
oly.Prod.

when N is big enough.

Hence, the worst-case computational cost of the modified encryption and decryption prim-

itives with respect to the original one is Costorig. Primitive - (1 + ﬁ) The encryp-
oly.Prod.

tion conveys 2 polynomial products, so %CostEmTypti,m (Costgneryption Tepresents the compu-
tational cost of the original encryption), and for the decryption it depends on both the number
of polynomial elements comprising the ciphertexts and the computation of the powers of the se-

cret key. Assuming that the powers of the secret key have been precomputed, we would have

1 _ Num. of Elements
Costpecryption(1+ Num. of Elements-l) = Costpecryption Num. of Elements_1 (COStDecryption

represents the computational cost of the original decryption).

Summarizing, we can see that the cost increase due to the use of the pre and post-processing
is very small, and in fact, it becomes negligible for practical cases.
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