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Abstract

Multimedia contents play an important role in our society. They serve as
a means of communication and can be used not only as an entertainment, but
also to inform or even to disseminate knowledge. The increasing relevance of
multimedia contents, such as digital images, audio, or video sequences, has been
tied to the development of editing software tools enabling their adjustment and
enhancement, but ultimately allowing an unskilled person to easily manipulate
them. As a consequence, their credibility as a source of information has been
questioned and an important concern has arisen regarding their authenticity.

With the aim of recovering trust on multimedia objects, this thesis presents
new techniques to detect and localize forgeries, but likewise to infer information
about the processing history undergone by a multimedia content. The design
of the proposed approaches is based on the theoretical analysis of characteris-
tic traces or footprints that emerge from the application of certain processing
to multimedia contents. In this thesis the derived research work encompassing
multimedia forensics is divided in two parts.

The first part tackles the study of the resampling operation applied when a
geometric transformation is performed to adapt a forged content to a genuine
scene. The modeling of the resampling operation is addressed from different per-
spectives, establishing connections between this problem and other similar ones
arising in distinct fields, and finally taking advantage of concepts from cyclosta-
tionarity theory, set-membership theory, or linear algebra, among others. We
design different strategies for resampling factor estimation to characterize the
particular transformation applied, providing estimates of the scaling factor or
the rotation angle. The case of resampling detection is also considered to unveil
the presence of resampling traces.

The second part of the thesis is focused on the forensic analysis of video com-
pressed sequences. We start exposing the presence of a new footprint stemming
from the double compression of video streams. By exploiting this feature, the
detection of double encoding and the estimation of part of the processing history
of a double compressed video are further investigated. Then, being capable of
extracting information from the first compression, we move to the localization of
intra-frame forgeries by applying a subsequent double quantization analysis.
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Notation

The following notational conventions will be used along the chapters of this
thesis, unless otherwise stated: calligraphic letters are only used for denoting sets,
e.g., X. Common number sets, such as real numbers set or integer numbers set,
are represented with double line notation, i.e., R and Z, respectively.

Lowercase or uppercase letters refer to scalar variables, e.g., z or X. Boldface
letters are used for representing vectors and matrices. A column vector x consists
of N, elements z;, where i € {0,..., N, — 1}, thus having x = (zg,..., 2N, 1)’.
Notice that ()7 stands for transposition and, similarly, when complex numbers
are used (-)¥ stands for transposition and conjugation. An N; x N, matrix X
has N1 N, elements X, ; (which occasionally can be denoted by X (7, 7)), where
each index (7,j) represents an element at i-th row and j-th column with i €
{O,...,Nl—]_} andj E{O,...,Nz—l}.

A time-dependent 1-D signal is denoted by z(n), with n representing indis-
tinctly a continuous index n € R or a discrete-index n € Z. Likewise, a 2-D field
is denoted by x(m) £ x(my, my) with m = (m;,msy) (notice that this represen-
tation does not follow the above convention to represent vectors, but we only use
this particular notation for denoting 2-D vectors). A time-dependent 2-D field
representing, for instance, a collection of frames in a video sequence, is denoted
as follows: x(n), where n stands for the time index.

When dealing with stochastic processes, the mean of a process x(n) is rep-
resented by p.(n) £ E{z(n)} and the covariance by c..(n;7) £ E{[z(n) —
pz(n))(z(n 4+ 7) — pe(n 4+ 7)]}. We denote the cyclic correlation of a zero-mean
process by C,.(a;7) and the Fourier Series coefficients having period @) are de-

noted by C,, <%k;7‘>, or directly by C,.(k;7), with & € {0,...,Q — 1}. The

Fourier Series coefficients of a process z(n) are denoted by X (k).

Random vectors are represented with italic bold capital letters (e.g., X)), their
outcomes with lowercase letters (e.g., ). A vector of length N starting from the
n-th component, is denoted by x,, = (2, ...,z n_1)". For a compact notation,
we use mod(a,b) to denote the modulo operation: a mod b. Floor and ceiling
functions are represented by |-| and [-], respectively. On the other hand, |[-]
represents the rounding function of a number to the nearest integer.
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Chapter 1

Introduction

Multimedia contents—such as digital images, audio, or video—have become
the most extensively used vehicle for communication during last years. The mas-
sive proliferation of these digital contents over the Internet, across the media, or
through social networks has converted them into a valuable asset. As an example,
with the current increase of Internet usage from mobile devices, any captured mo-
ment from an unexpected event may get the power of instantly distribute breaking
information by simply sharing it in a social network.

Meanwhile, the rapid growth of editing tools that were originally devised to
enhance the quality of those captured moments, enable now an unskilled person
to easily manipulate them and, eventually, to create realistic synthetic contents.
This state of affairs has boosted an important concern about the authenticity of
multimedia objects. Moreover, due to the relative simplicity of tampering with
digital images, audio, and videos, the work of the forensic investigator as a spe-
cialist in digital imagery becomes particularly relevant when a multimedia object
is used as a proof of facts in a legal proceeding. In such case, it is imperative
to know the origin of the multimedia object and also to trace back the process-
ing history of its content, in order to justify whether the digital object can be
admitted as a legal evidence or not.

As a means to rebuild trust in multimedia objects, a lot of techniques have
arisen in the past few years to prove the authenticity or verify the integrity of
multimedia contents, coping also with plausible manipulations. These techniques
are commonly labeled as active or passive depending on the generation process
and the role of the forensic analyst. On the one hand, active approaches require
a known signal (e.g., a digital watermark) that is imperceptibly embedded in the
digital content to detect forgeries later on. On the other hand, passive approaches
work in the absence of any known signal and rely on the analysis of traces left by
the capturing device during the acquisition process or any other operation applied
after its creation, such as compression and/or edition. Given the need of special-
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purpose hardware/software in the former case versus the universal applicability
of the derived methods in the latter, much effort has been lately put into passive
multimedia forensics. Currently, the analysis of these traces, also known as digital
footprints, has been broadly investigated for images [I] and increasing attention
is given to audio [2] and video [3].

This thesis is focused on the analysis of particular digital footprints left in
multimedia contents after their processing. Our main goal is to detect and localize
forgeries, but likewise to infer information about the processing history undergone
by a multimedia content in a blind fashion. In the first part of the thesis, we
theoretically model the resampling traces left by the application of geometric
transformations to images and audio signals, while, in the second part, we reveal
and further exploit a footprint that arises from the double compression of video
sequences.

1.1. Motivation

Nowadays, it is rather simple to alter the information represented by a multi-
media content without leaving obvious signs of manipulation. As a consequence,
a forensic analyst has to deal regularly with situations where a multimedia object
cannot be deemed as an undeniable proof of occurrence of a fact. For instance,
in July 2010, while the British Petroleum (BP) company was struggling against
the Gulf Coast oil spill, a doctored version of their command center shown in
Figure [[[(a) was published on their website by filling the blank screens with
other parts of the original photo yielding the final result in Figure [LT(b). Even if
there were probably no bad intentions in retouching the genuine image, it seems
that the original content of the command center could wrongly shape the public
opinion of the company.

Regardless of the final intention, this kind of manipulations hampers the trust-
worthiness of digital images, and as it can be checked in [4], this is only one of
many cases throughout History. Therefore, it is evident that there is an urgent
need to develop methods and automatic tools for assuring the authenticity of
multimedia contents. Furthermore, since active forensics cannot handle the anal-
ysis of arbitrary contents of unknown provenance, the need for passive forensic
techniques becomes apparent.

In the context of passive forensic techniques, there does not exist a common
framework to analyze multimedia contents and detect forgeries, i.e., there is not
a universal tool that can explicitly determine all the modifications or transfor-
mations applied to a digital content. Instead, there is a collection of tools that
exploit some of the inherent characteristics of a particular digital object (i.e.,
images, audio, or videos), and in doing so, try to detect the alterations such
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(a) Original image (b) Tampered image

Figure 1.1: Real example of a tampered image (on the right) shown in the BP
website by copying and moving parts of the original image (on the left). Courtesy
of The Washington Post, July 2010.

content has been subject to. Available techniques achieve promising results but,
occasionally, the lack of a theoretical model behind suggests that there is still
room for improvement. Meanwhile, a lot of effort has been put into the analysis
of digital images, paying less attention to video sequences, thus motivating the
search for new footprints in this domain.

In this thesis we use principles of signal processing to theoretically describe
digital footprints with the aim of furnishing information about the authenticity,
integrity or processing history of multimedia contents. We mainly focus our
analysis on images and videos, though several experiments are performed with
audio signals to keep some of the proposed techniques computationally tractable.
In the first part of the thesis, we deepen the understanding of the resampling
traces left in a digital image (or in an audio signal, thereof) after the application
of a geometric transformation. Since similar problems arise in other fields, such as
Digital Communications or Automatic Control, we establish links with each field,
taking advantage of concepts from cyclostationarity theory and set-membership
theory, among others. In the second part of the thesis, we explore a new footprint
emerging from the double compression of video sequences which allows us to
infer parameters from the first compression, but also the detection of double
compression and the localization of forgeries in video sequences.

1.2. Forensic Analysis of Resampled Signals

When a credible forgery is carried out, most of the time it is necessary to
adapt added pieces to the original content. Such adaptation may require the use
of geometric transformations that involve the use of a resampling operation which
inherently leaves characteristic traces that are not typically present in a genuine
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Figure 1.2: Illustrative example of how to create a forgery. In both cases, a
portion from a different source is first extracted and then geometrically adapted
prior to being pasted in the original content.

content. Forensic analysis of resampled signals is consequently of particular inter-
est, since the detection of traces stemming from the resampling operation can be
used as a means to unveil forgeries or to infer the processing history of a content
under analysis.

1.2.1. Introduction

A digital image forgery can be accomplished throughout many different ways,
but it usually involves copying a region either from the image itself or from a
different one and pasting it in the original scene to add a new feature or to conceal
an existing one. The adjustment of new contents to a particular scene is frequently
carried out by applying geometrical transformations (e.g., scaling, rotation, or
skewing), as it can be checked in the illustrative example of Figure [[2(a). In
a similar way, when two audio signals with different sampling rates are mixed,
then at least the sampling rate of one of them must be adjusted in order to avoid
audible distortions, as exemplified in Figure [L2(b).

The spatial transformation of a genuine image, or a region therein, maps the
intensity values at each pixel location of the original grid to a new resampled grid.
This operation must be followed by the interpolation of the pixel intensity values
in the intermediate locations between source pixels, which is performed through
a weighted linear combination of adjacent pixels. In the case of audio signals, the
same procedure is followed but across a single dimension.
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These linear dependencies among neighboring samples are therefore the char-
acteristic traces left behind by the interpolation process. Interestingly, these local
dependencies rarely show up in genuine contents and they vary periodically along
the resampled region, thus enabling their detection and the possible identifica-
tion of the applied transformation by inferring the repetition period. This results
in two different ways of tackling the forensic analysis of resampled signals: by
means of resampling detection and through the estimation of the applied resam-
pling factor. The former studies the presence or absence of resampling traces
in the observed data, so that the designed detector solves the following binary
hypothesis problem:

Ho: the observed data has not been resampled,

H1: the observed data has been resampled.

On the other hand, when performing resampling factor estimation, the specific
evolution of these resampling traces throughout the observed data is examined
and an estimate of the resampling factor used in the applied spatial transforma-
tion is provided.

Although some similarities between resampling detection and estimation can
be outlined, we emphasize the main difference between both approaches: re-
sampling detection leads to a binary classification problem were the outcome is
either “right” or “wrong”, while resampling estimation generally does not pro-
vide an exact outcome, but an approximated value to the true resampling factor.
This difference affects the manner in which the performance of each approach is
evaluated. Moreover, in the last case, the particular estimation enables the iden-
tification of the applied geometric transformation, thus yielding a more accurate
forensic analysis.

Finally, by performing either resampling detection or estimation, a possible
form to detect forgeries lies in the analysis of inconsistencies in the resampling
traces of small portions with respect to the whole content under analysis. As an
example, Figure[[L3[(a) shows the result of applying in a block-by-block fashion the
resampling detector proposed in [5] to the forged image depicted in Figure [[2)(a).
For the sake of comparison, the ground truth mask of the manipulated area is
illustrated in Figure [L3|(b).

In the following, we start formulating the resampling operation for digital
images in mathematical terms, then the related works on the forensic analysis
of resampled signals are described, and finally, our contributions to this problem
are summarized.
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(a) Detected forgeries (b) Ground truth

Figure 1.3: Tllustrative example of forgery detection from the composite image in
Figure [L2(a). On the left, the result of applying the resampling detector in [5]
to each block of size 128 x 128 is depicted. On the right, the ground truth mask
of the tampering is shown. Green color is used for representing non-resampled
regions, while red color stands for resampled areas.

1.2.2. Resampling Process Description

Let us define a digital image with a single color channel as a P x ) matrix
F with elements F),, and indices p € {0,...,P — 1} and ¢ € {0,...,Q — 1}.
The values of each element F), , are discrete quantities whose range is determined
according to the image bit depth. In practice, most digital images use 8 bits of
intensity resolution per color channel, however we notice that in general £, , €
{0,...,2% — 1}, where b represents the bit depth.

The resampling operation is assumed to be linear, so each pixel value in the
resampled image G, i.e., GG, ;, is computed by linearly combining a finite set of
neighboring samples coming from the original image. The process of resampling
involves two main steps: the definition of the resampling grid with the new pixel
locations and the computation of the intensity values in those new locations.

Regarding the first step, the mapping between the source coordinates with
indices (p,q) and the resampled ones (7,j) can be expressed through an affine

transformation as follows
<?>:A<p>+b, (1.1)
J q

where A is a matrix that embodies the linear transformation (e.g., scaling, rota-
tion, etc.) and b represents the translation vector. As an example, a rotation by
an angle 6 counterclockwise can be written in the following matrix form

. (cos@—sin@)‘ 12)

sinf cosf
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Table 1.1: Impulse response and width of several interpolation kernels.

Kernel type | Impulse response Width
1—Jt|, if |t] < ke
Linear | h(t) = 4, it | |_.2 kyw = 2
0, otherwise
3/20t)® — 5/2[t]> + 1, if [t < kw
Catmull-Rom | h(t) = < —1/2[t]3 + 5/2|t|? — 4[t| + 2, if %w <t < %w ky =4
0, otherwise
1/2[t] — [t]? +2/3, if [t < B
B-spline | h(t) = ¢ —1/6[t]> + [t|? — 2[t| +4/3, if B < |t < Ee | ky=4
0, otherwise
inc(t)sinc(t/3), if |t| < ke
Lanczos | h(t) = sine(t)sine(t/3), it ¢ 2 ky =6
0, otherwise

In addition, a homogeneous translation through b £ (4, §)T is generally applied,
such that the sampling points of the resampled image are centered with respect
to the grid of the original image. For the sake of brevity, in the following we will
consider that the resampling operation uniformly scales each dimension of the
original image by a resampling factor ¢ yielding

A:(é?), (1.3)

where £ is defined as the ratio between the upsampling factor L € N* and the
downsampling factor M € N*, ie., £ £ ﬁ with L and M relatively prime.

The second step in the resampling process can be performed using different
interpolation kernels to compute the intensity values in the new resampled grid.
As previously stated, we only take into account linear interpolation strategies
and, specifically, we restrict ourselves to the following types of two-dimensional
separable kernels] bilinear, cubic and Lanczos (i.e., truncated sinc). From the
family of cubic filters described in [6] and parameterized by the pair of values
(B, C), we select two well-known filters: the Catmull-Rom spline with parameters
(B,C) = (0,0.5), and the cubic B-spline with (B, C) = (1,0). As Lanczos kernel,
we decide to take a three-lobed Lanczos-windowed kernel following the definition
in [7]. We take into consideration these interpolation kernels because they are
the most commonly available in software editing tools. Note that we discard
the analysis of more complex interpolation algorithms, such as adaptive or non-
linear, given that their use is typically constrained to perform demosaicing and are
rarely employed to resize images. Table [LL1] gathers the one-dimensional impulse
response h(t) with ¢ € R together with the width of each considered kernel.

ITwo-dimensional separable kernels are those that can be applied as a product of two one-
dimensional functions, evaluating each function across a single dimension.
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By combining the two detailed steps in a single expression, each pixel value
G ; of the resampled image can be obtained as follows

P-1Q-1

M M
Gi,jzz h(z’f+5—k>h(jf+5—l) Fly, (1.4)

k=0 I=

where ¢ denotes the introduced shift between the two sampling grid@ and h(-)
represents any of the one-dimensional interpolation kernels described in Table [L. 1.
Given that the original image is defined at coordinates p € {0,...,P — 1}
and ¢ € {0,...,Q — 1}, the resulting resampled image will take values on
i€{0,...,(L/M)P -1} and j € {0,...,(L/M)Q — 1} 8

Notice that after computing all the pixels of the resampled image, its intensity
values should fit the original resolution or bit depth of the input image. Therefore,
as a last step, the resampled values must be quantized to the original precision,
having

Ri; = Qa (Gij),

where R; ; denotes each element of the quantized resampled image R and Qa ()
represents a uniform scalar quantizer with step size A.

So far, the detailed resampling operation can be applied for any resampling
factor £ > 0; however, if the same process is followed for resampling factors less
than one, ie., & < 1, then visual distortions might appear due to aliasing. To
circumvent this distortion problem, an anti-aliasing filter must be applied prior
to the resampling process to suppress the higher frequencies that may produce
aliasing. Given that the anti-aliasing filter is a low-pass filter as the interpolation
kernel, the typical way to implement a resampling operation avoiding aliasing is
by combining the impulse response of both filters, yielding a wider version of the
original kernel, i.e.,

ha(t) & & h(£t).
Therefore, when £ < 1, the resampled pixels are computed as in (4]), but using

the anti-aliasing version of the kernel h,(t) instead of the original h(t). Note that
the original length of the kernel also widens by £~! = % in such a way that the

final width of h4(t) becomes ky, = k2.

1.2.3. Prior Work

The problem of resampling detection as a means to unveil forgeries has been
largely investigated in recent years. Even though the resampling process can be

2In MATLAB’s function imresize and also in the tool convert from ImageMagick’s soft-
ware, the shift corresponds to § £ % (1 + %)

3For the sake of simplicity and without loss of generality, we assume that P and @ are both
multiples of M.
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Figure 1.4: Block flow diagram of the resampling process.

modeled by a relatively simple processing chain as illustrated in Figure [L4] many
different directions have been explored to infer the presence of resampling traces
from the observation of the resulting output of the processing chain.

Popescu and Farid’s seminal work [8], was the first to uncover the existence
of periodic correlations in G induced by the resampling process. By relying on a
linear predictor that models the relation between each sample and its neighbors,
they proposed a method to detect and quantify these periodic correlations. In
particular, given any vector z from the quantized resampled image R in Fig-
ure [[L4] containing a set of 2N + 1 adjacent samples, they use the Expecta-
tion/Maximization (EM) algorithm to estimate the predictor coefficients o (with

ap = 0) that satisfy
N
Zi — Z agZivr = 0.
k=—N

Once each sample of the image under analysis has been processed through the
proposed EM algorithm, a probability map (p-map) is generated comprising the
probability of each sample being correlated to its neighbors. In the presence of
interpolation, this p-map exhibits periodic patterns that can be captured in the
frequency domain. After the generation of synthetic maps for a set of possible
spatial transformations, the detector’s decision is based on the similarity between
the p-map of the image under analysis and each element of this set.

Despite the good results achieved by Popescu and Farid, one of the main
difficulties of their approach was related to the correct initialization of some
parameters for reaching the EM convergence. However, a few years later Kirchner
suggested a simpler solution in [9], by focusing the analysis on the variance of the
prediction residue. Following the same model above, he realized that the variance
of the prediction error e, whose ¢-th sample can be computed as

N
€ = 2 — E Ok Zitk,
k=—N

also exhibits periodic artifacts. At the same time, he recognized that the forma-
tion of periodic artifacts does not depend on the actual prediction weights, thus
proposing a simplified detector bypassing the EM estimation throughout the use
of a prefilter with fixed symmetric coefficients (i.e., a. = a_). Once computed
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the new p-map, Kirchner discards the detection of resampling by means of the ex-
haustive search in [§]. Instead, the detection process is reduced to the calculation
of the cumulative periodogram of the p-map under analysis, which will show a
sharp transition in case of resampling. The final decision of the detector is based
on the maximum absolute value of the gradient of the cumulative periodogram.

Almost in parallel with the seminal work by Popescu and Farid, Gallagher
noticed in [10] that another type of prefilter yields detectable periodic artifacts
in the variance of the filtered signal. In particular, he proved that the variance of
the second order derivative of an interpolated signal (with i.i.d. samples coming
from a Gaussian distribution) is periodic with a period equal to the resampling
factor. Therefore, as a first step, the proposed method computes the second
order derivative of each row from the resampled image R. Then, the [;-norm
of each column from the resulting image is computed, generating the so-called
pseudo-variance signal in [I0]. As a last step, the Discrete Fourier Transform
(DFT) of this variance signal is computed, ignoring the lowest frequencies of the
spectrum. The detector finds resampling traces if it follows that a local peak in
the magnitude of the DFT is T times greater than a local average.

Later on, Mahdian and Saic [I1] extended this idea showing that under a
stationary signal model, the variance of the n-th order derivative of a resampled
signal is periodic with the resampling factor. Supporting this fact, Dalgaard et al.
carefully analyzed in [12] the role of differentiation as a way of boosting resam-
pling traces, showing that differentiators used as prefilters are nearly optimal.
In line with this, Mahdian and Saic proposed a method maintaining the second
order derivative filter from [10], but applying afterward a Radon transform to the
magnitude of the filtered image. By doing this, the detection of more complex
affine transformations becomes possible (a total of 180 different angles is taken
into account). In this case, the search for periodicity is performed by computing
the DFT of the autocovariance function of each Radon transform (previously fil-
tered by a first order derivative filter). Finally, the proposed detector is driven
by the same criterion than in [10].

All the techniques described so far work with a residue signal obtained either
by a global predictor [§], a fixed linear filter [9], or a derivative filter [10, [IT].
However, it was later noted by Kirchner in [I3] that the specific structure of
resampled images can be explicitly modeled by a series of linear predictors, whose
estimated predictor coefficients describe the characteristic periodic correlations
between neighboring pixels. The following model is assumed: each row/column
from R can be written as the linear combination of their vertical/horizontal
neighbors, i.e.,

r@ = (pO=K) L pleD )RR ) g0 )

g e

where r¥ denotes a column vector containing the i-th row/column of the quan-
tized resampled image R, B stands for the predictor coefficients, and €® rep-
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resents an error term. After using a Weighted Least Squares (WLS) procedure
to estimate the coefficients 3%, Kirchner suggests that the differences

d; = Y — g

are promising to detect traces of resampling. As a matter of fact, making use of a
robust spectral method to reveal the periodicity in the differences d;, the proposed
detector shows very good performance especially for downscaled images.

Note that all the detailed schemes are designed to expose the presence of
resampling traces, thus focusing solely on the problem of resampling detection.
Although the foregoing works in [8], [0, [10, T1] provide some insights about how to
estimate the resampling factor of an image, they do not evaluate the performance
of the derived estimates. Following a more comprehensive analysis of the resam-
pling estimation problem, interesting approaches have arisen in this area. For
instance, different methods have been proposed for dealing with the estimation
of the scaling factor ¢ from (I[3) avoiding ambiguities [I4, [I5]. Other research
works have been oriented towards the estimation of the rotation angle 6 from
(L2) applied to an image, as in [16], [I7]. Recently, a more general solution has
been achieved in [I8], where the estimation of the complete linear transformation
A from (LLT) is performed.

In the literature, more techniques are available to expose forgeries by detecting
inconsistencies in such characteristic resampling traces. We have deepened the
description of the above methods mainly because they are considered as state-of-
the-art techniques in resampling detection, but also because comparative results
against some of them will be provided throughout this thesis. Nevertheless, in-
terested readers may find appealing the following approaches: in [19], an example
of how to use a resampling detector to unveil tampered regions is provided; in
[20], the case of resampling detection in re-compressed JPEG images is investi-
gated and further revisited in [21]; in [22], a first attempt to characterize linear
dependencies through the Singular Value Decomposition (SVD) of a resampled
image is proposed, resorting to a Support Vector Machine (SVM) classifier to
detect resampling; finally, in [23], resampled images are detected by measuring
the normalized energy density of different window sizes and feeding these values
to an SVM classifier.

In this first part of the thesis we start by proposing new approaches that are
also based on the frequency analysis of a residue signal, but establishing links with
the cyclostationarity theory. The study of new prefilters and their design under
the cyclostationarity framework has also been considered. However, given that
the examination of the periodic correlations in the frequency domain presents
some drawbacks such as the need for a large number of samples (to elude the
windowing effect which impairs the estimator’s performance), we later address
the resampling estimation problem from a different perspective. In particular, we
pay more attention to how the quantization applied as a last step in the diagram
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of Figure [[.4] could help inferring parameters from the applied resampling opera-
tion. In this direction, we tackle the problem of the estimation of the resampling
factor following the maximum likelihood criterion, from where we discover that
resampling estimation can also be addressed in line with the set-membership the-
ory. Ultimately, with the aim of characterizing the linear dependencies induced
by the resampling operation, we exploit the capability of the SVD to perform
resampling detection via subspace decomposition.

1.2.4. Contributions

The main contributions regarding the forensic analysis of resampled signals
in this first part of the thesis can be summarized as below:

RC1. Derivation of a theoretical framework for the estimation of parameters
from the applied spatial transformation to an image, establishing links be-
tween the resampling factor estimation problem and cyclostationarity the-
ory. Within this framework, a method for estimating the actual parameters
of spatially transformed images (i.e., scaling factor and rotation angle) has
been derived. In addition, the design of prefilters to improve the estimation
accuracy of the resampling factor has been analytically investigated.

RC2. Analysis of the resampling factor estimation following the maximum like-
lihood criterion. Even though the considered scenario is constrained to a
piecewise linear interpolation, which unavoidably limits the scope of appli-
cation of the derived estimator, important insights are provided on how to
benefit from the scalar quantization applied after the resampling operation.
The most distinctive contribution of the derived approach is that only a
small number of samples of the resampled signal are needed to correctly
estimate the employed resampling factor.

RC3. Identification of resampled signals in accordance with set-membership esti-
mation theory. Using as starting point the foundations laid by the previous
contribution, we adhere to set-membership theory to design a technique
that is able to estimate the resampling factor of a one-dimensional signal.
Interestingly, with this approach we can provide estimates whose singular
characteristic is to be consistent with all information arising from the ob-
served data and the a priori knowledge about the resampling process. This
tool is powerful and it is often required by forensic examiners because they
have to guarantee that the forensic techniques being used (in a legal pro-
ceeding, for example) are reliable, in such a way that innocent people will
not be unfairly charged.

RC4. Analysis of resampling detection as a subspace decomposition problem.
Delving into the linear dependencies induced by the interpolation process,



Chapter 1. Introduction 13

we show that upsampled images can be decomposed in two components:
one of them is determined by the resampling process (in particular, by the
interpolation kernel) thus belonging to a so-called signal subspace, while
the other component arises from the scalar quantization applied after re-
sampling, thus pertaining to a so-called noise subspace. From this analysis,
we propose the use of the SVD for decomposing both subspaces and ac-
cordingly detect the upsampling operation.

RC5. Design and evaluation of a practical solution for exposing original an dupli-
cated regions in a copy-move manipulation. We propose the combination of
two existing methods: the first one, based on Scale Invariant Feature Trans-
form (SIFT), is capable of finding duplicated regions; while the second one,
based on a resampling estimator, allows one to identify which region is the
source and which is the forged one. On account of the more comprehensive
analysis that can be provided from a tampered image, this tool is valuable
for a forensic analyst.

1.3. Forensic Analysis of Video Sequences

Recent advances in video compression have made possible the adoption of digi-
tal video technologies in many different fields, such as digital television broadcast-
ing, videotelephony or Internet video streaming, among others. As happened first
with digital images, today we can easily find powerful and accessible video edit-
ing software that facilitates the modification of video sequences. Consequently,
in the last years, the creation of forensic tools that analyze the authenticity and
integrity of digital videos has become an important field of research.

1.3.1. Introduction

Forensic analysis of video sequences, which is commonly referred to as video
forensics, is an emerging discipline that strives to find information about the pro-
cessing history undergone by a digital video. Since video processing is computa-
tionally more demanding than image processing, the research community started
working on images first, having in mind the possible extension of the derived
approaches to video streams. For instance, any working technique with JPEG
compressed images could be straightforwardly adapted to the Motion JPEG (M-
JPEG) video compression format.

This is one of the reasons why video forensics is still an emerging field, how-
ever more obstacles have prevented forensic investigators from addressing video
forgeries. In the first place, creating realistic forgeries with videos is more la-
borious than tampering with images; meanwhile, video streams can be encoded
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Figure 1.5: Processing chain for video manipulation.

through a large variety of encoding parameters and different compression formats,
whereas digital images are usually available either in uncompressed or JPEG for-
mat. Finally, video sequences often go through stronger compressions compared
to digital images, making their forensic analysis more difficult. This contrasts
with the fact that nowadays digital videos are probably more used than images
for security tasks (e.g., in video-surveillance systems), so their trustability must
be strengthened.

Generally, existing video editing tools do not work directly on the compressed
domain, but in the reconstructed spatio-temporal domain. Therefore, the process
of editing a video sequence is composed of at least three main steps, as it is
illustrated in Figure [[L5l At the beginning, the input video sequence is decoded,
then the actual video editing task takes place, and as a last step, the edited video
is re-encoded (possibly with a distinct codec or different encoding parameters).

As a consequence of such hardly avoidable but characteristic processing chain,
one of the most studied tasks in video forensics is the detection of double encoding
and/or transcoding. On the other hand, leveraging on the initial work on image
forensics, several techniques are based on the study of the effects introduced by
double quantization in DCT coefficients. Although not always applicable, these
techniques are also of interest since intra coded frames (which might lead to
double quantization traces in several video coding standards) are periodically
generated in video streams to allow random access.

In the following, we start by covering the basics on video coding to introduce
afterward the related works on video forensics. Finally, the main contributions
of this thesis on the forensic analysis of video sequences are outlined.
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1.3.2. Video Coding Description

Over the past few decades, different video compression standards have
emerged, being MPEG-2 [24], MPEG-4 Visual Part 2 [25] (we will refer to this
one as MPEG-4) and H.264 [26] the three most broadly used. The oldest one,
MPEG-2, is still widely used for video content storage in DVD and for broadcast
television. MPEG-4, instead, has been mostly adopted in video surveillance sys-
tems and for video content sharing over the Internet. The most recent, H.264,
is nowadays considered as the state-of-the-art in video compression and it is
gradually replacing all its predecessors in almost all the mentioned applications,
because it gives better performance than any of the preceding standards [27].
Very recently, the new standard H.265 [28] (successor of H.264) has started to be
deployed, albeit its use in real systems is still scarce so we exclude its study from
the forensic analysis of compressed video sequences.

Although each standard defines its own coding characteristics, their design
is built over a common block-based hybrid video coding scheme which consists
of motion compensated prediction and DCT-based transform quantization of the
prediction error (cf. Figure[[Lf]), thus sharing several syntax elements. According
to the block-based structure, each picture from a captured video sequence is
divided into macroblocks of size 16 x 16 samples, which are encoded with the
most suitable coding mode from each particular standard.

Different types of pictures are defined depending on the prediction process
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carried out during the encoding. The three standards share the definition of
intra-coded and inter- (or predictive-) coded pictures. In the former type, each
macroblock is encoded without referring to other pictures within the video signal.
We will identify this type of pictures as I-frames[ In the latter type of picture, the
macroblocks can be additionally predicted from already coded and reconstructed
frames (i.e., reference frames), which leads to two possible types of frames: the
usually named P-frames and B-frames. The macroblocks in P-frames can only
be predicted from previous reference frames, while those on B-frames can be
estimated from past and/or future reference frames.

The different types of frames can be grouped into sequences, creating a Group
Of Pictures (GOP). Formally, a GOP is an encoding of a sequence of frames that
contains all the information that can be completely decoded within that GOP
[29]. Therefore, in general, a GOP is composed of only one I-frame that indicates
the beginning of the group and some combinations of P- and B-frames. We do not
tackle B-frames in this thesis due to their associated complexity, so we constrain

the compression to be performed according to the baseline profile for H.264 and
to the equivalent simple profile for MPEG-2 and MPEG-4.

Every standard proposes its own intra/inter coding modes for each type of
frame with the final goal of increasing coding efficiency. However, they all follow
the same basic design: each macroblock is either coded in an intra- or an inter-
coding mode, as it can be checked in Figure Intra coding modes only exploit
spatial redundancy from the captured scene, resorting to a DCT-based transform
of the macroblock itself (or the residual signal obtained from an intra prediction,
as in H.264). On the other hand, inter coding modes take advantage of the
temporal redundancy among neighboring frames through motion compensated
prediction and DCT-based transform of the achieved prediction error. Ultimately,
the resulting transform coefficients in either case are quantized and then entropy-
coded together with side information (e.g., particular coding modes, motion data,
etc.).

1.3.3. Prior Work

Following the trail of image forensics, a growing body of literature seeking
characteristic footprints left by video processing tools is now rising. Forensic
researchers have been developing effective video forensic strategies intended for
reconstructing the processing history of video signals under analysis and also for
validating their origin. A thorough overview and taxonomy of published video
forensic techniques can be found in [3].

40nly progressive-scan videos and full-frame encodings are considered in this thesis, thus,
for the sake of clarity, the term frame is used to represent a picture or a slice independently of
the standard.
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As previously discussed, it is broadly accepted that double encoding is a
necessary step when creating a digital video forgery, since most of the time a
first encoding will occur during the acquisition process and a second one when
storing the manipulated content. Pushed by such motivation, several approaches
targeting this problem have been proposed, borrowing the acquired knowledge
on double compression from image forensics. Accordingly, numerous works are
based on the effects introduced by double quantization in the DCT coefficients
of intra-coded frames.

Along these lines, the authors in [30] (that further extended the idea in [31]),
unveil the artifacts left by the second compression on the distribution of the quan-
tized DCT coefficients stemming from I-frames of a double MPEG-2 compressed
video. In particular, they reveal that the histograms of two specific DCT coeffi-
cients follow a monotonically decreasing trend when the video is encoded once,
while a convex shape is exhibited in presence of double encoding. A threshold-
based detector is first derived to detect the convex pattern in [30], whereas a
vector of features obtained from the histogram values is fed to an SVM classi-
fier in [31I]. A distinctive aspect of this approach is that it is able to work with
Constant Bit Rate (CBR) encoded video streams which are more challenging
than those encoded with a fixed quantization scale factor, i.e., Variable Bit Rate
(VBR) encoded videos. Both detectors show promising results, however their
performance drops when smaller bitrates are used in the second compression.

A similar method has been proposed in [32] to detect double compression
with a different video coding standard, i.e., in H.264 video streams. Also in
this case, authors take advantage of the double quantization effect and study the
histogram of quantized DCT coefficients in the I-frames of the double encoded
video. Nevertheless, the proposed detector which also relies on an SVM classifier
only works when the second encoding is at a higher quality than the previous one.
Recently, a different approach has been proposed in [33] to detect double MPEG-
4 encoding. Instead of considering the histogram of DCT coefficients, authors
model adjacent coefficients as a Markovian process: they evaluate the difference
between adjacent coefficients obtaining a transition probability matrix. A feature
is then extracted from such a matrix and used to train an SVM classifier. The
method is tested on videos encoded twice in VBR mode, achieving very interesting
results when the second encoding is performed at a lower quality than the first
one.

Taking as reference an image forensics work by Fu et al. in [34], where the
effect of double compression on JPEG images is analyzed through the Benford’s
law, different approaches have extended such model to the detection of double
compression in video sequences [35], [36], [37]. Specifically, in [35], a straightforward
extension of Fu et al.’s work is adapted to deal with MPEG videos, while in [36],
the first-digit distribution of DCT coefficients from I-frames is gathered to build a
feature vector to be classified within an SVM framework, indicating whether the
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second encoding has been carried out at a higher or lower bitrate with respect to
the first one. Finally, in [37], a set of SVM classifiers is trained with the first-digit
distribution of a subset of DCT coefficients, being able to detect multiple (up to
3) compressions of the same H.264 video stream.

Setting aside the populated family of methods relying on the DCT domain,
Luo et al. proposed in [38] a different approach that measures the strength of
block artifacts for each frame in MPEG-2 compressed videos. Following an itera-
tive procedure (i.e., re-encoded versions of the video under analysis are generated
removing each time one frame from the beginning of the sequence), an average
measure of the strength of block artifacts is calculated for each frame. For single
compressed videos, this averaged measure preserves a periodic behavior, whereas
for double compressed videos an irregular behavior shows up enabling its detec-
tion. Nonetheless, authors do not provide in [38] a way to automatically detect
such irregular event.

Up to this point, we have only described techniques that make possible the
detection of double compression maintaining the same encoder in both compres-
sions. However, a conversion from one codec to another (i.e., a transcoding oper-
ation) might be carried out during the elaboration of the video forgery. Starting
from a video that is assumed to be double encoded, Bestagini et al. put forward a
way to identify the video coding standard used during the first compression [39].
Their idea is to exploit the idempotency property of common coding schemes:
assuming that the original implementation of the encoders is available and that
VBR mode has been used during the first encoding, the video under analysis is
re-encoded with every possible encoder and every possible quantization parame-
ter, then the similarity between the resulting sequences and the analyzed video
is measured. The similarity will show a peak when any of the tested encoding
settings match the one used in the first compression. To avoid the dependency
with the genuine codec, this idea has been further extended in [40] by employing
eigen-algorithms. However, this method is still limited to VBR video sequences.

Besides double compression detection, other works have focused on the study
of tampering, such as removal or insertion of frames. Wang and Farid were the
first to propose an effective method for detecting removal of frames in [41]. They
discovered that when a set of frames is deleted, a de-synchronization between
the GOPs in the first and second encoding takes place, which induces a periodic
behavior on the prediction error of P-frames along time. Therefore, by examining
the presence of such periodicity in the frequency domain, the removal of frames
can be unmasked. Following a different approach, another method is presented
in [42], where the different characteristics of quantization matrices employed for
intra- and inter-coded pictures is taken into account to find out GOP structure
inconsistencies. The main assumption lies in the fact that, when an I-frame is
re-compressed as a P- or B-frame, its high-frequency DCT coefficients will be
negligible, whereas the frames encoded twice as inter will not show such effect.



Chapter 1. Introduction 19

By measuring the energy of high-frequency DCT coefficients for each frame, a
threshold-based detector is defined in order to detect a change in the GOP struc-
ture and thus unveil tampering.

With the aim of gaining more knowledge about the processing undergone by a
video signal, a further step is explored trying to localize the actual forgery both in
the spatial and in the time domain. Intra-frame forgery localization is probably
the most challenging problem and that is why existing techniques only work under
strict assumptions [3]. The first approach in this direction is the one proposed by
Wang and Farid in [43], where a double quantization analysis is applied separately
for each macroblock of the video under study. The underlying idea is to look for
the macroblocks that show traces of double quantization against those that do
not, thus pointing out a possible patch from another previously encoded sequence.
The analysis is limited to the frames that have been encoded twice as intra. A
recent work by Bestagini et al. in [44], is able to reveal and localize two types of
forgeries. One type consists in replacing a part of the video sequence with fixed
images repeated in time, and a second type also replaces a part of the video, but
with a portion of the same video from a different time interval. The localization of
the former type of forgery is addressed by evaluating successive differences in the
pixel domain across time, thus unveiling the tampered region where zero motion is
obtained. The latter type of forgery is localized by adapting the method in [45].
Authors have shown that their approach works remarkably well with realistic
forged video contents coming from the Surrey University Library for Forensic
Analysis (SULFA) database [46].

We have restricted ourselves to the description of the foregoing methods since
they are closely related to the work carried out in the second part of this thesis.
However, readers can still widen their perspective on video forensics by referring to
the following works: the localization of frame removal and insertion in compressed
videos has been extended to the three main codecs, i.e., MPEG-2, MPEG-4,
and H.264, in [47]; the first anti-forensic technique capable of hiding evidence of
frame deletion or addition in MPEG video sequences has been derived in [48] and
further extended in [49]; an appealing approach linking video tampering detection
with resampling detection to expose video splicing with different frame rates has
been proposed in [50]; given the facility to cover digital footprints through video
recapture (i.e., recapture is used as an anti-forensic technique), its detection has
gained attention and has been tackled in several works [51l (52 [53]; finally, a
systematic analysis of popular video file formats from a forensic point of view has
been recently addressed in [54].

In the second part of this thesis, we mainly focus on the detection of double
encoding and the localization of intra-frame forgeries in video sequences. We
first disclose a new characteristic footprint, caused by double compression of a
video signal, exploiting it to detect double encoding and also to provide valuable
information from the first compression such as the size of the employed GOP.
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Then, combining this with a double quantization analysis, intra-frame forgeries
are also exposed.

1.3.4. Contributions

The main contributions concerning the forensic analysis of video sequences in
this second part of the thesis are summarized below:

VC1. Discovery of a new digital footprint that is left behind when a video se-
quence is encoded twice. Such footprint reflects an unexpected change in
the macroblock prediction types of re-encoded P-frames. By performing an
analysis of the periodicity of this footprint across time, a threshold-based
detector is designed to reveal the presence of double encoded videos. Sur-
prisingly, the characteristic footprint is detectable on CBR videos and can
endure relatively strong second compressions.

VC2. Estimation of part of the processing history of a video sequence under anal-
ysis. Specifically, a blind estimation of the length of the GOP in the first
compression is derived by processing the periodicity of the extracted foot-
print over time. Given that most of the cameras work with a fixed and
distinct GOP size, the estimation of the GOP in the first compression is
valuable for a forensic analyst since, for instance, it might help to link a
forged video with a specific type of camera.

V(3. Design and evaluation of a novel and practical solution for localizing forg-
eries in MPEG-2 video sequences. This solution uses the above GOP size
estimation as a means to expose originally coded I-frames and combines it
with a double quantization analysis on the resulting double coded I-frames
to provide a probability map of tampering for each frame under evaluation.

1.4. Structure of the Thesis

The content of this thesis is structured in 9 chapters, divided into two parts.
Part I includes Chapters2tolfland describes the contributions on forensic analysis
of resampled signals. Part II includes Chapters [7] and [8 and is composed of
the contributions on forensic analysis of video sequences. Finally, Chapter
elaborates the conclusions drawn from the ideas introduced in this thesis and
provides possible future lines of work.
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1.5.

Publications

In the first part of this thesis, Chapters 2] to 6l comprehend the research work
which led to the following publications:

R1

R2

R3

R4

R5

R6

David Vazquez-Padin, Carlos Mosquera, and Fernando Pérez-Gonzalez.
Two-Dimensional Statistical Test for the Presence of Almost Cyclostation-
arity on Images. In IEEE International Conference on Image Processing

(ICIP’2010), Hong Kong, China, September 2010.

David Vazquez-Padin and Fernando Pérez-Gonzalez.  Ezxposing Origi-
nal and Duplicated Regions Using SIFT Features and Resampling Traces.
In 10th International Workshop on Digital Forensics and Watermarking
(IWDW’2011), Atlantic City, NY, USA, October 2011.

David Vazquez-Padin and Fernando Pérez-Gonzalez. Prefilter Design for
Forensic Resampling Estimation. In IEEE International Workshop on In-
formation Forensics and Security (WIFS’2011), Foz do Iguagu, Brazil, De-
cember 2011.

David Vazquez-Padin and Pedro Comesana. ML Estimation of the Resam-

pling Factor. In IEEE International Workshop on Information Forensics
and Security (WIFS’2012), Tenerife, Spain, December 2012.

David Vazquez-Padin, Pedro Comesana, and Fernando Pérez-Gonzalez.
Set-Membership Identification of Resampled Signals. In IEEE International
Workshop on Information Forensics and Security (WIFS’2013), Guangzhou,
China, November 2013.

David Vazquez-Padin, Pedro Comesana, and Fernando Pérez-Gonzalez. An
SVD Approach to Forensic Image Resampling Detection. In European Sig-
nal Processing Conference (EUSIPCO’2015), Nice, France, September 2015.

In the second part of this thesis, Chapters [[] and [8 comprise the research work
which led to the following publications:

V1

V2

David Vazquez-Padin, Marco Fontani, Tiziano Bianchi, Pedro Comesana,
Alessandro Piva and Mauro Barni. Detection of Video Double Encoding with
GOP Size Estimation. In IEEE International Workshop on Information
Forensics and Security (WIFS’2012), Tenerife, Spain, December 2012.

Daniele Labartino, Tiziano Bianchi, Alessia De Rosa, Marco Fontani, David
Véazquez-Padin, Alessandro Piva, and Mauro Barni. Localization of Forg-
eries in MPEG-2 Video through GOP size and DQ Analysis. In TEEE
International Workshop on Multimedia Signal Processing (MMSP’2013),
Pula (Sardinia), Italy, October 2013. Top 10% Award.
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1.5. Publications

Table 1.2: Summary of chapters, contributions, and publications.

Parts | Chapters | Contributions | Publications
I Chapter RC1, RC5 R1, R2
I Chapter RC1 R3
| Chapter (] RC2 R4
I Chapter RC3 R5
I Chapter RC4 R6
IT Chapter [7] VC1, VC2 V1
II Chapter [§ VC3 V2

In addition to these publications, the following patent application has been
derived as a result of other parallel works in active video forensics:

P1 Title: METHOD AND SYSTEM FOR EMBEDDING INFORMATION
AND AUTHENTICATING A H.264 VIDEO USING A DIGITAL WATER-

MARK

International Application No.: PCT/EP2013/068067
Filling date: 02/09/2013
Inventors: L. Pérez-Freire (ES), G. Dominguez-Conde (ES), D. Vazquez-
Padin (ES), L. Z. Dzianach (PL)
Applicant: Centum Research & Technology S.L.U.

Finally, the relation between the different chapters, contributions and pub-
lished papers is summarized in Table [[2]
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Chapter 2

Study of the Presence of Almost
Cyclostationarity on Images

In this chapter, we first study the presence of almost cyclostationary fields
in images for the detection and estimation of digital forgeries. The almost pe-
riodically correlated fields in the two-dimensional space are introduced by the
necessary resampling operation associated to the applied spatial transformation.
In this theoretical context, we extend to the two-dimensional space a statistical
time-domain test for unveiling the presence of cyclostationarity. The proposed
method allows us to estimate the scaling factor and the rotation angle of resized
and rotated images, respectively. Examples of the output of the derived method
are shown and comparative results are presented to evaluate the performance of
the two-dimensional extension.

In the last part of the chapter, we address a common type of digital image
forgery, known as copy-move image splicing, consisting in the duplication of a
region from the image itself to conceal or duplicate some portion of the captured
scene. Combining the aforementioned resampling-based method with an existing
detector of copy-move manipulations, we provide a practical solution to point
out and differentiate which is the original region and which is the tampered one
by analyzing the resampling factor of each area. Comparative results are also
presented in this case to evaluate the performance of the combination of both
approaches.

2.1. Introduction

Throughout the first part of the previous chapter we have seen that a lot of
powerful and intuitive software editing tools are nowadays available, facilitating
the manipulation and alteration of digital images. With the aim of identifying
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traces of possible forgeries, we have also highlighted several passive techniques
working in the absence of any known signal. From this, we have noticed that
one of the main problems addressed in this field is the detection of geometric
transformations—such as scaling, rotation, or skewing—since they are usually
employed when an image forgery is carried out.

The detection of these spatial transformations has been studied following dif-
ferent approaches as pointed out in Section [[.2.3] but in this chapter we will
mainly focus on the work done by Mahdian and Saic in [I1]. Extending the idea
proposed by Gallagher in [10], they suggest to filter the image under analysis
with a second-order derivative filter, apply a Radon transform at specific angles
and then study the covariance of the resulting signal in the frequency domain.
By doing so, they provide a blind and very fast method capable of detecting
traces of spatial transformations. However, the proposed method presents some
weaknesses in the estimation of the scaling factor and the rotation angle, due to
the projection onto a single dimension of the Radon transform.

Motivated by these shortcomings and the need of a theoretical framework to
explain why interpolated images present periodically correlated fields, we propose
to use the cyclostationarity theory for resampling factor estimation. The derived
method is a two-dimensional extension of a statistical time-domain test proposed
by Dandawaté and Giannakis in [55], allowing us to estimate the resampling
factor of a spatially transformed image, specifically the scaling factor and the
rotation angle.

In the next section, we first synthesize the model for the spatial transformation
of images (which has been thoroughly described in Section [[2.2), and then we
introduce the cyclostationarity theory needed for the estimation of the resampling
factor. In Section 2.3] the two-dimensional extension of the time-domain test for
revealing the presence of cyclostationarity is carried out. Section 2.4 presents
the results obtained by our method, drawing a comparison with those obtained
by Mahdian and Saic’s approach [I1]. Reaching the final part of the chapter, in
Section 2.5 the novel and practical solution enabling the distinction of original
and duplicated regions is described. Finally, Section provides the conclusions.

2.2. Preliminaries and Problem Statement

Throughout this chapter we will consider an original image as the output pro-
vided by an acquisition system after the operations of sampling and quantization.
The resulting digital image F is a matrix of integer values defined on a discrete
grid of size P x @), where each element F), ;, represents a gray level. The conven-
tion used for the source coordinates with indices (p, q) is that p € {0,..., P — 1}
represents the vertical axis and ¢ € {0,...,Q — 1} the horizontal one.
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2.2.1. Spatial Transformations

The spatial transformation of an original image F maps the intensity value at
each pixel location (p, q) to another location (7, j) in the new resampled image G,
whose elements are denoted by G; ;. The most commonly used transformation is
the affine one that combines several linear operations like translation, rotation,
scaling, skewing, etc. The mapping can be expressed as:

()2

where A is the matrix that defines the linear transformation and b represents the
translation vector. In general, the pixels in the resulting image will not map to ex-
act integer coordinates on the source image, but rather to intermediate locations
between source pixels. Therefore, when any of the mentioned spatial transfor-
mations is performed, it is necessary to apply a pixel interpolation algorithm.
The interpolation of a spatial transformed image by a generic resampling factor
€2 (&,&) = (L1/My, Ly/M,) can be modeled by the following expression:

P-1Q-1
M M.
Gij= h (2_1 — k) h (jL—; — l) Fyi, (2.1)

where h(-) represents the one-dimensional impulse response of any interpolation
kernel, such as those gathered in Table imill Many different interpolation filters
are available with different characteristics, but as shown in Table [I.TI] the most
common are: linear, cubic, and truncated-sinc kernels.

Finally, to fit the original resolution, the resampled values must be quantized
to the original precision, having R; ; = Qa (G, ;), where R, ; denotes each element
of the quantized resampled image R, and Qa (-) stands for a uniform scalar
quantizer with step size A.

2.2.2. Cyclostationary Approach

Once we have mathematically described the resampling process, we can ob-
serve from (2] that an interpolated image can be seen as a random field (i.e.,
the original image) that is periodically filtered with the same kernel. As a conse-
quence, the resampled image will exhibit periodically correlated fields (cf. [56])
with a period equal to the resampling factor & = (L;/M;, Ly/Ms). Equivalently,
the output image is cyclostationary with period &.

'For the sake of simplicity, but without loss of generality, we refrain from explicitly adding
the shift § between the two sampling grids as in (L4).
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In the one-dimensional case, Sathe and Vaidyanathan showed in [57] that the
output of a multirate system that performs sampling rate conversion by a factor
€ £ L /M, produces a cyclostationary signal with period L/GCD(L, M) provided
that the input signal is wide-sense stationary (the output becomes wide-sense
stationary only when the interpolation filter is ideal). They only take into account
pure cyclostationary processes, i.e., with an integer cyclic period; nevertheless,
for the estimation of the resampling factor it is more convenient to consider that
the output can be an almost cyclostationary process.

This idea regarding multirate systems can be extended to the spatial domain

with two dimensions, but before we have to extend the concept of almost cy-
clostationarity to the two-dimensional space. As it is mentioned in [58], those
time series that have an “almost integer” period accept generalized (or limiting)
Fourier expansions, so following the definition in [56] of periodically correlated
fields with an integer period, we introduce the concept of almost cyclostationary
random fields.
Definition 1 Let z(m) £ x(my, my) be a real random field with mean ji,(m) =
E{z(m)} and covariance cy.(m; 1) 2 E{[z(m)— p,(m)|[z(m+7) — p,(m+7)]},
where m = (my,my) € Z% and T = (11, 7) € Z%. The random field x(my, my) is
strongly almost periodically correlated (equivalently, almost cyclostationary) with
period T £ (Ty,Ty), if and only if its mean and covariance functions satisfy

fo (M, me) = pp(my + K17, me + 1T3),
Cox(Ma, Moy T) = Cpp(my + KTh, mo + 1Ty ),

for all integers my, ma, 71, T2, k, [ and rational numbers T, T5.

Such random fields accept generalized Fourier expansions and assuming that
x(my, mz) has zero mean, the generalized Fourier series pair for every 7 is:

Caw (M1, Ma; T) = Z Conlry, ag; T)ed (M Fazma)

Mi—1 Ma—1

DD cunlma,mgy)e I mitezma) - (2.9)

m1=0 mo=0

1
Cxcc(ala 23 T> - Ml,lj\i/[rznﬁoo M1M2
where (aq, ay) represents each frequency pair in the cyclic domain. The set of
cyclic frequencies A,, = {a £ (a1, a2) : Cpp(a; T) # 0, —7 < a1, ap < 7} must
be countable and we assume that the limit exists in the mean-square sense. To
express those random fields in terms of Fourier Transforms, we define the cyclic
spectrum.

Definition 2 The cyclic spectrum for random fields x(my,ms), is defined as:

o0 o0
. -
Secl@iwi,wn) & > Y Cralo 7y, m)e 7 mtenm),

T1=—00 Tg=—00
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where w = (wy,wsy) represents each frequency pair in the frequency domain.

In order to show the presence of almost cyclostationary fields in a resampled
image by a rational factor &, we consider the single case when the original image
is an infinite-length white-noise random field with zero mean and variance equal
to one. In this situation the cyclic correlation becomes

sz(ml,mg;’r> = Z Z h (mlL—ll — ’l> h (mgL—j —j>

1=—00 j=—00

« h ((m1 + 71)]‘5—11 _ z) h ((m2 +72>]‘L4—22 - ) ,

and it is easy to see that

Cow (M1, M2y T) = Cop <m1 + k]@—ll,mg + l%;r) ,

with k,l € Z. Hence, unless the kernel used is ideal, the output is almost cyclo-
stationary with period T = (Ly/M;, Ly/Ms). The same reasoning can be applied
to real images, albeit with an unknown distribution which makes more difficult
the estimation of the cyclic period. For this reason, we choose to extend the
time-domain test proposed by Dandawaté and Giannakis in [55] that allows the
detection of almost periodicities without considering a specific distribution on the
data.

2.3. Extension of the Time-Domain Test

The calculation of the scaling factor £ or the rotation angle 6 of a spatially
transformed image can be achieved through the estimation of the cyclic frequen-
cies o, as we will see at the end of this section. Assuming that an image block of
size N x N can be modeled through a real random field z(my, my) with zero mean,
the detection of the set of cyclic frequency pairs in ([22)) can be made through
the estimation of the cyclic correlation:

~ ~

C..(a;71)=C,, (aq,a0; 11, T2)
| NN
T N? 0D z(ma,ma)z(my + 71, my + ) S Hmeema) - (2.3)

m1=0 mo=0

This estimate ézz(a;‘r) is asymptotically unbiased according to Definition [Il
Thus, if we represent e, (a;T) as the estimation error and C,, (a;7T) as the
ideal covariance, the estimation provides:

~

CZZ (a; T) = sz (a; T) + e, (a; T) s
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where e,, (a; T) vanishes asymptotically as N — oco. To make a decision about
the presence or absence of a given cyclic frequency in the image block, we build
up a vector from C., (a; 7) evaluated in a set of K lags {7}, = {m,..., 7k :
T € ZQ}i

1 A

A N N T
ézz £ E (sz (a;Tl)u-"7sz (a;TK>7C:z (a;Tl)v'-wC:z (ayTK)> )

and we consider the following hypothesis testing problem:

HO Ny ¢ -Azzav{Tk}szl = ézz = €z,
Hi:a € A, for some {7}, = C.. =C,, +€,,, (2.4)

where A.. = {a = (a1, a3) : C..(a;T) # 0,—7 < a3, a9 < 7}. Note that c..
is the corresponding true value of the cyclic correlation vector and e, is the es-
timation error vector. From (24)), if we know the distribution of the estimation
error e,,, we can seek a threshold to detect the cyclic frequency pairs (aq, as)
given that c,, is deterministic. Dandawaté and Giannakis use the asymptotic
properties of the cyclic correlation estimator to infer the asymptotic distribution
of the estimation error. In our case, considering that the extension to the spatial
domain of the mixing conditions (A1 in [55]) is fulfilled, then the cyclic corre-
lation estimator in (23] is asymptotically normal and thus the error estimation
converges in distribution to a multivariate normal, i.e.,

lim Ne.. 2 N(0,3..),

N—oo
where A(0,3,,) represents a multivariate normal distribution with zero-mean
vector and asymptotic covariance matrix 32,,, which is defined as follows:

1 SS-*;),TZ(O;—a) S, (2a; )

M 4 lim NQCOV{ézzvéi} -5 *
e 2 | (Srm(20;@))" (S5n (0; —))*

zz N

In the above expression, S, (o, w) is a K x K matrix whose (k,[)-th entries
are given by the cyclic cross-spectrum of z,, (m) £ z(m)z(m+ 7) and z,,(m) £
z(m)z(m + 7) for the different K lags and, similarly, matrix S%)V.,-l(a,w) is
obtained from the cyclic cross-spectrum of zr, (m) and z; (m) at the different
lags. Hence, for N large enough, the vector ¢, under H, and H; differs only
in the mean. In order to solve this detection problem, we use (in the same way
as in [55]) the norm of a weighted version of the cyclic correlation estimation
vector (v = Nel 3 %), so the statistic and then the likelihood ratio test with

z

a threshold I'" correspond to:
Hy

T.. = ||7||§ = Nzéiﬁlz_zlézz z I
Ho
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where ||-||2 stands for the Euclidean norm and 3., is an estimate of the asymptotic
covariance matrix. From Theorem 2 in [55], the statistic 7., has the following
asymptotic distribution under H,

. D
lim 7;z = XgKa
N—o0
where 2, represents a chi-square distribution with 2K degrees of freedom. Un-
der H; and for N large enough, the asymptotic distribution is approximately
Gaussian

T.. ~ N(N%is le,, aN%ei s te..).

Once we know the asymptotic distribution of the statistic 7., under the two
hypotheses, we can set the threshold I" for a fixed probability of false alarm Prp =
Pr(T.. > T'|Ho) = Pr(x3 > I') and then estimate the set of cyclic frequencies
A... Below, the fundamental steps for the implementation of our method are
presented.

As a first step, the image block under analysis Z of size N x N is selected from
the quantized resampled image R. Then, the mean from Z is removed yielding
a zero-mean random field z(mq, my) with my,mge € {0,..., N — 1}. Finally, the
following algorithm for each frequency pair @ = (o, o) defined in the Discrete
Fourier Transform (DFT) grid is applied:

1. From the data z(m4,ms) and using (23]), we compute the vector ¢,, for a
fixed set of K lags {7} .

2. We estimate the asymptotic covariance matrix ¥,, using the cyclic spec-
trum estimator. From the two options available for cyclic spectral esti-
mation [58], we use the smoothed periodogram with a frequency domain
window W (wy,ws) of size P x P (with P odd). So, defining

N-1
A

N—
—j(wimi+wama
(w1, w) g z(my, ma)z(my + T, me + T2)e i )7

we calculate the elements of the matrix ﬁ)zz as

(P—1)/2 (P—1)/2

sg’gn(o;—a):(N;)Q > > W(rns)

=—(P-1)/2s=—(P-1)/2

2mr 2ms\ o, 2mr 2ms
XIp o+ ——,0+— [} |1+ —,00+— |,

N N N N

and for S, ,,(2a; ) we take the same expression used for S(TZ),T,(O; —a),
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but adopting I, (w) instead of I} (w), i.e.,

1 (P-1)/2 (P-1)/2

STk’Tl(Za;a) = (NP)2 Z Z W(r,s)

=—(P-1)/2 s=—(P—1)/2

2rr 21s 2rr 27s
X Iy o+ ——, 00+ — | In | a1+ —, 00+ — | .

N N N N

3. Once 3., is obtained, we calculate the test statistic 7. = N2¢E 3 1¢...
4. For a given probability of false alarm Ppg, we set I'.

5. We declare the frequency pair o« = (1, ap) as cyclic if 7., > T

After the application of the method, we obtain the resampling factor & = (&1, &)
from the detected cyclic frequencies (a1, as), due to the relation between these
and the cyclic periods (T3, Ts), i.e., oy = 2w /T; = 27 /&; with i € {1,2}. However,
because of aliasing and for any & > 1, we have the same cyclic frequencies for the
scaling factors &; and 5’ . So desplte this unavoidable ambiguity, the estimated

value of the resamphng factor 5 can be computed as follows:
27 _ -
g={ 5 ol ) , (2.5)
]ai] , ,

for i € {1,2}. On the other hand, if we consider that 6 is the angle of rotation of
the image in a counterclockwise direction around its center point, its estimation
from the detected cyclic frequencies o« = (a1, ay) can be reached through the

following relation:
T

¢ = arctan (%> mod —,
aq 2

where mod represents the modulo operation, and finally, the estimated angle is
obtained by

—24, if 0<¢<Z
6 —arccos(k), if & <¢ <32, (2.6)
s, ifE<oss

where k = cos?(¢)(1/2tan(¢) — tan(p) + tan?(¢)). From the above definition of
the estimate, it is clear that our method will not be able to distinguish angles
separated by 90°, i.e., the same estimation will be obtained for any 6 + n% with
n € Z. Note, however, that this ambiguity is also common to other resampling-
based methods [8, I1I]. Moreover, because of the DFT symmetry, the cyclic
frequencies for the angles § = —Z and 6 = —Z are the same, thus yielding an

6 3
ambiguity when estimating these precise angles.
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Figure 2.1: Graphical results obtained with the proposed method for two different
spatial transformations.

2.4. Experimental Results

With the aim of showing how is the output of our method, we present in
Figure 2.1] the results obtained for two different spatial transformations. Fig-
uresZ.I(a) and 2.T)(d) depict the analyzed block of size 128 x 128 pixels in each spa-
tially transformed image. The statistic 7T, is plotted in Figures 2i(b) and 21l(e),
where the peaks indicating the presence of possible cyclic frequencies can clearly
be distinguished. In both cases, the spectral window used is a two-dimensional
Kaiser window of parameter § = 1 with size P x P. After applying the threshold
I', we represent in Figures 2Zi(c) and 2I(f) the detected cyclic frequencies that
make possible the identification of the applied transformation.

For the evaluation of our method, we use 40 TIFF format images from the
Miscellaneous volume of the USC-SIPI image database (discarding the 4 test
pattern images) and we perform two different experiments. In order to evaluate
the performance of our method, we compare our results with those obtained using
the technique proposed by Mahdian and Saic in [II]. Since our main objective
is to detect forgeries in a relatively small region of the image, we use an image
block Z of size 128 x 128 pixels for both approaches (i.e., N = 128). The sizes of
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Figure 2.2: Comparative results obtained with both methods for different scaling
factors and rotation angles.

the tested images are of 256 x 256, 512 x 512 or 1024 x 1024 pixels, so whenever
possible we apply both methods to four blocks and take the average of the results
obtained for each image.

In the first experiment, we study the estimation accuracy when all the im-
ages from the database are uniformly scaled by a factor &, i.e., using the same
factor for each dimension, such that & = (£,£). The set of tested scaling fac-
tors is defined in the interval [1.05,2.25] discretized with step size 0.05 (i.e.,
¢ € {1.05,1.1,...,2.2,2.25}), and the used interpolation kernel is Lanczos (cf.
Table [LT]). We decide that the estimation is correct when the estimated scaling
factor &;, obtained through (Z7), satisfies |&; — &| < 0.05 for any i € {1,2}.

In Figure[2Z2[(a) we plot the average percentage of successful resampling factor
estimates for both methods. We also represent the estimation accuracy of our
method applying first a Laplacian operator to the whole image. As we can see,
the performance of our method is worse if we do not use the Laplacian prefilter,
mainly for scaling factors close to 1. The application of a high-pass filter like the
Laplacian operator eliminates low-frequency components (belonging to the image
content) that are near the spectral peaks (corresponding to the cyclic frequencies
associated to these scaling factors), thus improving the estimation results. Tt
can also be observed that the method of Mahdian and Saic cannot detect the
resampling factor & = 2, which is not an issue for ours.
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In the second experiment, we analyze the performance of our method when
all the images from the database are rotated by a discrete set of angles in the
range —3 < ¢ < 0 sampled with a step size of 7, and fixing the lowest value of
the interval at —% and the highest at —1%5. In this case, we use the Catmull-
Rom interpolation kernel (cf. Table [LT]) and we determine that the estimation
of the angle is correct for our method when the estimated angle following (2.6))
satisfies |é — 0| < &. For the method of Mahdian and Saic we use other criterion
because we can only assess the angle from the position of the corresponding
spectral peak, denoted by wy, so in this case we decide that the angle is correct
if |y — wy| < 0.022. The threshold used in both cases is equivalent because
it corresponds to the minimum distance between the theoretical values for the

defined set of angles.

Figure 2.2(b) shows the comparative results for the two approaches. The best
results are obtained when our method is combined with the use of the Laplacian
prefilter. We have to notice that the output of the method of Mahdian and
Saic presents the spectral peaks at the same positions for any angle 6 + n7 with
n € Z, S0 Wy = W mod _x) for —5 < 6 < —7. Hence, their method shows more
ambiguities than ours, which just fails at discerning ¢ = —% and ¢ = —% within
the interval —7 < 6 < 0. Despite of this, the shown results are presented without
taking these errors into account.

As a conclusion, the proposed method performs better than the one described
by Mahdian and Saic in [I1] for estimating the parameters of spatially trans-
formed images. As a counterpart, our method is more time consuming, but the
processing in the two-dimensional space provides more information. For instance,
we avoid some ambiguities caused by indistinguishable periodic patterns in the
one-dimensional case. Note that all the experiments, including the resampling
operations, were carried out in MATLAB.

2.5. Practical Solution: Exposing Original and
Duplicated Regions

As previously pointed out, a characteristic type of digital image forgery is
the duplication of a region in the same image to hide or duplicate some portion
of the captured scene. The detection of region duplication forgeries has been
recently addressed using methods based on SIFT features that provide points of
the regions involved in the tampering and also the parameters of the geometric
transformation between both regions. However, examining this output, there is
no sufficient information about which of the two regions is the original and which
is the duplicate. A reliable image forensic analysis must supply this information.
Therefore, in this section, we outline how to use the above resampling-based
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(a) Original image (b) Tampered image

Figure 2.3: Real example of a tampered image (on the right) shown in the BP
website by copying and moving parts of the original image (on the left). Courtesy
of The Washington Post, July 2010.

method for accurately distinguishing between the original and the tampered re-
gion by analyzing the resampling factor of each area.

2.5.1. Introduction

At the beginning of Chapter [Il we have discussed a motivating and represen-
tative case of how easy the alteration of a digital image can be. Specifically, we
have seen that during the BP oil crisis, the image shown in Figure Z3|(a) was
doctored on the BP website by filling the blank screens with other parts of the
same picture yielding the forged image in Figure 2.3(b). The resulting image is
a perfect example of a realistic copy-move manipulation.

Currently, in the context of passive forensic techniques there are several meth-
ods that are capable of detecting duplicated regions (cf. Section 5.1.1 in [I]),
providing a set of matched regions, but being unable to determine which belong
to the genuine scene and which are clones. We will tackle this problem by esti-
mating the resampling factor in the matched regions. In particular, the proposed
practical solution combines these two different and complementary forensic tools
to reach a more accurate forensic analysis of tampered images. The main idea is
to mitigate the drawbacks of each technique by using the characteristics of the
other.

As a consequence, in the next section we start discussing in more detail the
advantages and disadvantages of the selected types of techniques. In Section 2.5.3]
the applied model is described focusing on the combination of both techniques
as a means of improving performance. Finally, experimental results carried out
with this image forensic scheme are summarized in Section 2.5.4]
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(a) Region duplication detection (b) Resampling analysis

Figure 2.4: Examples of drawbacks of each technique. On the left, the detected
regions are highlighted and tagged with 1 and 2. On the right, the tampered
region is highlighted and each analyzed block is denoted by a white border box.

2.5.2. Advantages and Disadvantages of each Technique

The complementary behavior of both techniques can be established from the

analysis of advantages and drawbacks of each, as it is summarized below.

Advantages/drawbacks of region duplication detectors: First works in

this area were based on an exhaustive search and analysis of correlation
properties of the image [59]. However, more efficient approaches have been
recently proposed, such as those in [60] and [61]. These two works address
copy-move detection by searching for similar SIFT descriptors extracted
from the image under analysis (more details on these descriptors will be

given in Section Z5.3.]).

Figure 24)(a) illustrates the typical output from any of these copy-move
detectors, where the matched regions are highlighted and tagged with num-
bers 1 and 2. Even though these methods are capable of estimating the
geometric relation between these two regions, they cannot distinguish the
original region (i.e., 1) from the cloned patch (i.e., 2). Moreover, an impor-
tant limitation from the SIFT-based methods comes also from the difficulty
to extract reliable descriptors from less textured regions of the image, thus
hindering detection performance.

Taking into account the advantages of the region duplication detectors,
these methods are able to detect copy-move forgeries even when no geo-
metric transformations are applied to the pasted regions. Furthermore, the
recently proposed methods based on SIFT (i.e., [60] and [61]), allow for a
very fast analysis of an entire image, in terms of computation time.

Advantages/drawbacks of resampling detectors: The detection of resam-

pling traces and the estimation of the applied resampling factor have been
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Figure 2.5: Block diagram of the proposed image forensic analysis tool.

studied in several works, as covered in Section[I.2.3l These methods are able
to accurately estimate the scaling factor and the rotation angle of spatially
transformed images, basing their analysis on periodic linear correlations
introduced by the applied spatial transformation.

Although these methods provide good results in controlled scenarios, when
they are evaluated in more realistic situations, their performance gets worse
[62, 63]. For instance, as shown in Figure 224(b), it is very likely that the
tampered region will not be aligned with the analysis grid, thus failing
in the localization of the forgery. Notice that a non-overlapping block-
based analysis is generally carried out to minimize the computation burden.
Moreover, an important handicap of these methods is the impossibility to
detect basic copy-move forgeries (without content adaptation), since the
resampling factor of the whole image remains constant.

After highlighting the advantages and disadvantages of both approaches, it can
be expected that the combination of them will provide better performance and
also a more complete and accurate forensic analysis of tampered images.

2.5.3. Model Description

In order to overcome the problem related to the distinction of the original
regions from the tampered ones using a region duplication detector, but also to
avoid the aforementioned misdetections of the resampling detectors, the proposed
approach uses a combination of both techniques.

In Figure we represent in block diagram form the steps involved in the
proposed forensic analysis of an image. As a first step, we use a region duplication
detector to extract the original and the cloned regions. When the method is not
able to find any duplicate, it is necessary to analyze the entire image following a
block-based procedure and looking for inconsistencies in the resampling factor of
each block. However, if the region duplication detector is capable of finding the
duplicated regions, then the resampling-based method is just applied to estimate
the resampling factor of each area. Finally, according to the results obtained in
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the previous stages, the system determines and differentiates the original regions
from the tampered ones.

Next, we describe the specific methods that are fit together to build a practical
implementation of the proposed forensic analysis tool.

2.5.3.1. A SIFT-based method for region duplication detection

Nowadays, we can find several approaches based on the matching of image
features and keypoints (e.g., [60] and [61]) which provide very good results for
the detection of duplicated regions. In this case, we rely on the method proposed
by Amerini et al. in [60].

Following the steps described in [60] we analyze a digital image with a single
color channel F of size P x () with elements F},, and indices p € {0,..., P — 1}
and ¢ € {0,...,Q — 1}. We apply the algorithm proposed by Lowe in [64] to
produce a set X of N keypoints:

X={x,€72:i=0,...,N — 1},
with their respective SIFT descriptors:
D={d;cR™:i=0,...,N -1},

where each descriptor is a 128-dimensional vector. Since the descriptors of a
duplicated region will look like those of the original area, we want to identify the
nearest neighbor of each descriptor to find a possible match of similar keypoints.
To that end, for each descriptor d;, the Euclidean distance between each pair of
descriptors is computed and gathered in a set S;, o