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Abstract

Channel estimation is a transversal problem in signal processing (for example, it
is used in digital communications, image restoration, digital forensics, acoustics,
etc.). Among channel estimation algorithms, pilot-based estimation techniques
stand out as being among the most frequently used. These techniques devote part
of the total available power, which is usually limited, to send pilot signals that
are used later to estimate the channel. The frequent need to send pilot signals
in order to be able to track the channel variations, which lowers the information
rate, becomes as one of their major drawbacks.

Recently, the idea of concurrently sending a known training sequence with
the information-bearing signal (also known as host) by means of arithmeti-
cally adding both sequences was proposed. These techniques are usually re-
ferred as superimposed training techniques. By implementing this idea, there
is no drop in the information rate; however, part of the power available to
send the information must be used by the added superimposed sequence thus
causing a power loss in the information-bearing sequence. In addition, the
original signal interferes with the pilot sequence of the superimposed training
techniques, causing a decrease in the estimate performance, which is measured
in terms of mean square error between the estimation and the actual chan-
nel gain. To tackle this issue, some solutions have been provided that use
part of the power to partial cancel the host-interference. In this thesis, we
have found a connection between superimposed training and digital watermark-
ing. Indeed, this partially cancellation of the host of pilot sequences, known as
Partially-Data-Dependent superimposed training (PDD) was independently pro-
posed in digital watermarking, where is called Improved Spread Spectrum (ISS).
We propose to obtain full cancellation of host-interference for estimation by ap-
plying the Dirty Paper Coding (DPC) paradigm that successfully was used in
digital watermarking with several implementations (e.g., Scalar Costa Scheme,
Distortion Compensated Dither-Modulation, etc.).

Specifically in this thesis, first we focus on the study of the flat fading chan-
nel estimation based on dirty paper coding for the case of real valued signals.
Due to its interesting asymptotic properties, we design our estimation tech-
nique using Maximum-Likelihood Estimation (MLE). In order to do that, the
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probability density function (pdf) of the random variables modeling the involved
signals is required; in general, those pdfs are hard to handle mathematically
and, as a consequence, so is the MLE cost function. Therefore, we have pro-
posed a set of approximations of the pdf whose accuracy is validated in the cases
for which they have been designed. In addition, a modification of the tech-
nique whenever the variances of the original signal and the channel noise are
unknown is presented. In addition, this thesis proposes how to make full use of
the Spread-Transform (ST) (an established concept of digital watermarking) to
estimate the channel gain.

In addition, a theoretical study is introduced following an estimation the-
ory perspective, which indicates that asymptotically our scheme is not only not
harmed by the host but it helps for estimation, and an information theory per-
spective, whose results determine that the induced structure of the transmitted
signal helps the estimation of the gain of the channel. Both analyses show an
improvement on the estimation performance of our technique with respect to
Spread-Spectrum (SS) and PDD.

The computational and time requirements needed to implement MLE, even
using our pdf approximations, are not affordable in many applications. To tackle
this, we introduce a set of MLE-based practical algorithms for estimation, de-
signed with computational and temporal constraints. These algorithms take
advantage of the statistical and deterministic properties of the problem. Sev-
eral performance tests, measuring the accuracy of our algorithm, indicate that
it outperforms other existing techniques whenever the structure of the sent sig-
nal becomes patent, and requires much shorter computational time than other
existing DPC-based estimation techniques.

With the aim of gaining insight into the wide range of practical uses of our al-
gorithms, this thesis presents a set of applications of the proposed technique. For
example, we use our algorithms to make dirty paper coding watermarking robust
to gain attacks. By using both synthetic signals and real images, the obtained re-
sults validate the efficacy of our techniques in dealing with such attacks. We also
show, in a flat fading channel communications scenario, how to equalize the gain
estimated with our algorithms. The results show that our techniques improve
the performance with respect to equalizing techniques based either on the second
moment estimation or on superimposed training. Finally, we also propose how
to adapt our estimation algorithm to the case of complex signals and complex
gains, whose performance indicates that the host also helps in the estimation.
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admirarei a sua capacidade para os detalhes, incŕıvel, um HPF em toda regra.
Magui e as discussões sobre as diferenças entre pêssegos e melocotões... Lembrar-
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Chapter 1

Introduction

Channel estimation is a transversal problem in signal processing. It is used
in a number of applications, including digital communications (e.g., estimation
of channel parameters, automatic gain control, signal-to-noise ratio estimation,
etc.), image restoration (e.g., image deconvolution), digital forensics (e.g., esti-
mation of the linear filter used for post-processing an image), and acoustics (e.g.,
estimation of the acoustic response of a room, echo cancellation, etc.).

One of the most prominent approaches of channel estimation is blind esti-
mation. These techniques exploit certain underlying properties of the original
signal (i.e., a transmitted signal in digital communications, an image in image
restoration, etc.) and the channel to estimate the channel from the received sig-
nal. Those characteristics can be statistical, such as Higher Order Statistics [14],
or deterministic, as in Constant Modulus Algorithms [56] or as in Determinis-
tic Maximum Likelihood [32]. One of the main advantages of blind estimation
is that these techniques do not need to modify the original signal to estimate
the channel; however, blind estimation approaches suffer from slow convergence
(i.e., a high number of samples of the received signal are required), and possi-
ble misconvergence [57]. Since it is not necessary to modify the original signal,
this approach is usually selected in applications with this constraint (e.g., for
petroleum exploration).

Arguably, pilot-based estimation is the other most widely-used channel esti-
mation approach. In contrast to blind estimation, these techniques modify the
original signal. Specifically, pilot-based systems use part of the total power bud-
get to transmit a signal, referred to as pilot or training signal, that is known to the
receiver, so it can be used to infer the channel response. In most cases, the pilot
signal is transmitted in an orthogonal subspace to that of the information-bearing
signal, most often through either time-domain or frequency-domain multiplexing.

Pilot-based approaches have a number of well-known drawbacks [59, 29, 30]:
1) in fast-varying channels, the training signals must be sent frequently in order

1
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to update the channel state information, thus wasting a significant amount of
resources (in terms of bandwidth increase or loss in information rate1), 2) the
information-bearing signal has to be shut down, requiring the implementation of
additional logic to synchronize the pilot sequence slots (in whatever domain they
are allocated) both at the transmitter and the receiver, 3) the estimate is based on
particular locations of the pilot sequences (typically locations of time and/or fre-
quency); therefore, interpolation is frequently required in order to obtain channel
estimates at other times/frequencies.

Although they are less significant than the two channel estimation approaches
described above, we would like to mention that there are estimation techniques
called semi-blind estimation that use the statistics just as blind estimation does
and known symbols as training algorithms do [15]. As their most important
advantage, these techniques require shorter training sequences; however, they still
need to use part of the time/frequency payload for sending training sequences.

1.1 Connections with Digital Watermarking

Although the basic idea was originally proposed in 1996 by Farhang-Boroujeny
[22], recently the so-called Superimposed Training (SIT) has gained relevance as
an alternative to the above approaches. In superimposed training a known pilot
sequence (we will name it watermark due to the parallelism with data hiding) is
added to the information-bearing signal (which, similarly, we will call host); to
the best of our knowledge, the first reference to this relation between superim-
posed training and digital watermarking was mentioned in Mazzenga’s work [40].
Essentially, these techniques use periodic sequences as watermarks to estimate the
channel in order to take advantage of the induced cyclostationarity of the sent
sequence. Since both signals are simply added (i.e., they are sent concurrently),
explicit allocation of time/frequency slots for training purposes is not required,
in contrast to traditional training methods [58, 41, 59]. However, assuming that
the transmitter has some fixed power budget, the information-bearing signal will
suffer from some power loss, and will be additionally distorted by the superim-
posed signal. Note that SIT is a precoding technique, which is not new in digital
communications, since it has been extensively studied after being presented by
Tomlinson-Harashima [53, 28] in order to take into account the side information
regarding the channel state available at the transmitter.

Unfortunately, in superimposed training, the host and pilot sequences are
not orthogonal; thus, the former will interfere with the pilot signal. This is
a well-known problem in watermarking, where it is referred to as host inter-
ference, and it occurs in those schemes in which a watermark independent of

1Specifically, the training sequence in UMTS-TDD can be up to 20% of the payload.
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the host is added to the latter (as in Additive Spread Spectrum schemes [13]).
In both fields solutions have been proposed that devote some of the available
power to partially cancel the host-interference in the direction of the added se-
quence. These schemes were independently developed by Malvar and Florêncio
in 2003 [38] in the watermarking field, and by He and Tugnait in 2008 [29]
for channel estimation (inspired by the work presented in 2005 for OFDM by
Chen et al. [9]2), and they were named Improved Spread Spectrum (ISS) and
Partially-Data-Dependent superimposed training (PDD), respectively. Interest-
ingly, this connection between PDD and ISS has not been reported before our
work [16].

Both ISS and PDD only partially cancel the host interference,
thus leaving room for improvement. In fact, full host-interference
rejection has been achieved in data hiding by exploiting the
Dirty Paper Coding (DPC) paradigm, initially proposed by Costa [10]. Adapt-
ing Costa’s code construction, Chen and Wornell [8] proposed the use of
Distortion Compensated Quantization Index Modulation (DC-QIM) which,
thanks to its host-rejection feature, leads to substantial performance improve-
ments with respect to ISS. The advantages of DPC techniques in watermarking
have been widely recognized [10, 8, 18]. Specifically, DPC-based schemes
can achieve the channel capacity for Additive White Gaussian Noise (AWGN)
channels [21].

Since DPC is very sensitive to the gain attack (also known as linear valumet-
ric attack), channel equalization has been studied in watermarking as one the
possible solutions to this issue. In this case, the channel simply multiplies the
watermarked signal by a constant real number, which can be cast as flat fad-
ing channel in traditional digital communications, resulting in very large prob-
abilities of decoding error. Due to its relevance, several techniques have been
proposed, based on channel equalization such as in Balado et al. [4] where a
method based on uniform scalar quantizers and turbocodes was developed, which
iteratively estimates the gain factor, compensates its effect, and decodes the em-
bedded message. Shterev and Lagendijk [51] proposed an implementation based
on exhaustive-search of the Maximum-Likelihood (ML) estimation of the gain
factor; again, this value is used for equalizing the observations, and performing
the decoding with the original codebook. However, the computational cost of
[4, 51] is substantial, leaving room for improvement. This issue has been success-
fully addressed in our work [17], where we propose an ML approach but requiring
far less computational resources than [51].

We should mention for the sake of completeness that other techniques tackle
the DPC sensitivity to gain attacks in a way that can be called Robust Code-
books; in this case the typical Scalar Costa Scheme (SCS) codebooks [18] are

2The first work considering only full cancellation of host interference for SIT was proposed
by Ghogho et al. in [26].
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replaced by codebooks implicitly robust against the gain attack [47, 2, 42]. While
[42] proposes the use of phase-based codebooks (as opposed to magnitude-based
ones), in [2] the information is embedded by considering the maximum correlation
between the host signal and a pseudo-randomly generated set of sequences, and
in [47] a codebook that depends on the empirical statistics of the watermarked
signal is used. Unfortunately, these techniques show several drawbacks as em-
bedding distortion is difficult to control in phase quantization based techniques
[42] and orthogonal dirty paper coding [2] (itself is also more computationally
demanding than SCS), and the work in [47] requires a sample buffer to be filled
before decoding can be performed in a robust way.

1.2 Applications of Channel Estimation

As previously indicated, channel estimation has applications in different techno-
logical fields. In this section, we discuss how channel estimation can be applied
in some of them.

Digital communications has already been presented as one of the most active
research areas for channel estimation. Primarily, channel estimation is used to
help to mitigate the effects of Intersymbol Interference (ISI), which is a conse-
quence of dispersive propagation channels. However, there exist several other
well-known used applications in digital communications for channel estimation,
including

• Automatic Gain Control (AGC) in Satellite Communications Channel: the
estimation of the flat fading effect in satellite communications channel is
not a trivial problem, even when that channel is time-invariant. Just as
an example, in [25] De Gaudenzi and Luise propose a Non-Decision-Aided
pseudo-Maximum Likelihood amplitude tracker, as part of a global all dig-
ital demodulator.

• Receiver adaptation: by considering the channel estimate, receiving filters
could be designed in order to optimize the performance of the global sys-
tem with respect to a target function. Different target parameters could
be considered (e.g., minimization of the Mean Square Error (MSE), maxi-
mization of the Signal-to-Noise Ratio (SNR), minimization of the bit error
rate, etc.).

• SNR estimation: a typical problem in communications is the estimation of
the ratio between the received signal variance and the variance of the noise
introduced by the channel. This is a non-trivial issue, mainly due to the
possible scaling that the desired signal may have experienced.
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In a different field, image restoration, one can be interested in recovering orig-
inal information from a degraded image [35]. In order to study the alterations
suffered by the image, they are usually modeled as a chain of operations applied
to the image. These operations can include: blurring due to the optics, quantiza-
tion, white balance adjustment, gamma correction, digital image post-processing,
color filter array interpolation, etc. Some of those operations (e.g, blurring) can
be modeled as bidimensional convolutions between the image and a filter that
accounts for the alteration. If the filters can be estimated with enough accuracy,
then their effect can be compensated by their inverse. In some applications, the
image can be available at some point of the processing chain (e.g., the informa-
tion obtained by the image sensor before performing the color array interpolation,
JPEG compression, etc.) to aid filter estimation. However, in many cases, one
cannot access to the original image, so one must perform a blind estimation (e.g.,
astronomical imaging, remote sensing, medical imaging, etc.). Besides image
restoration, an estimate of the image filter is also interesting in image forensics,
which studies the processing history of images in order to help determining their
authenticity and reliability.

Acoustics also stands out as one of the areas that extensively uses channel
estimation in many problems. For example,

• Room acoustic response estimation by using preprocessed audio: in some
scenarios, the audio is prefiltered to compensate the acoustic response of
the room to improve the listener’s experience.

• Active noise control: in order to reduce the noise of an audio signal, which
is usually modeled as an addition of an information-bearing signal and a
noise signal, other additional noise signal is obtained (e.g., by using other
sensor). This noise signal must be correlated with the noise of the audio
signal, and it must be uncorrelated with the information-bearing signal.
By estimating the acoustic channel through which the audio signal and the
noise signal go, an active noise cancellation algorithm uses such estimate
and the information that the noise signal has regarding the noise of the
audio signal to cancel the latter at the listener (for example, by using a
headphone/loudspeaker).

In petroleum exploration, channel estimation is used to determine the presence
of oil reservoirs. In order to do that, the subsurface structure must be estimated;
specifically, a general method presents the following steps: a source (in this case,
controlled explosions on the surface) is emitted from the surface and its waves
reflect between the union of different layers, part of the energy is reflected and
recorded. In [37], the reflected waves are studied by modeling this effect as the
convolution of an unknown source and a filter that accounts for the reflections.
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1.3 A Brief Introduction to Digital

Watermarking

During the last decade of the 20th century, the expansion of Internet, which
allowed massive data sharing, and the digitization of the information with the
consequently corresponding ability to copy digital contents (e.g., images, movies,
music, etc.) cheaply and losslessly provoked that many digital contents with
digital intellectual rights were distributed without respecting the rights of use.
As a result, the digital content industry lost a relevant portion of its revenue3.

In order to protect the intellectual property rights of digital contents, solu-
tions based on encryption were proposed. In a basic scheme, a digital content
is encrypted by the intellectual rights holder, afterwards the encrypted content
is distributed to a legitimate user, decrypted and then consumed. However, one
of the main drawbacks is that once the content is decrypted, it can be easily
shared, the control of the content will be lost by the rights holder, and with it,
the capability to profit from it.

Digital watermarking can be defined as the imperceptible and secure embed-
ding of information into a signal. Almost 40 years after its first publication [23],
this technology flourished driven by the idea that digital watermarking could help
to maintain the business model of the commercial exploitation of digital content.
In comparison to cryptography, digital watermarking in a regular digital right
protection case is designed to insert data into the digital asset in such a way that
the inserted data will be present as long as the digital content maintains its value
(e.g., the alterations required to remove the watermark from a image must be
large enough to deteriorate it to the point where it becomes worthless). Then, a
special player can verify the presence of a valid watermark in the digital content
before using it in order to enforce the compliance with its intellectual rights.

As digital watermarking was being developed for this major application (i.e.,
the intellectual property protection), many other uses arose. For example, for
broadcast monitoring, a watermark can be embedded into an aired advertisement
to be automatically tracked, in such a way that its statistics can be analyzed (e.g.,
number of times heard, its duration etc.). Another application of digital water-
marking is to introduce metadata into digital contents. For example, Centum-RT
developed an application for Unmanned Aerial Vehicles (UAVs) [7] that, in re-
connaissance missions, can film terrain looking for a fire while at the same time
embedding the Global Positioning System (GPS) coordinates or the time of the
recording in order to make it possible to more easily determine the fire location
and manage the footage.

3The conflict even provokes the pressure between governments. For instance, as Wikileaks
has revealed, the US Government exhorted the Spanish Government to pass a stricter law of
intellectual property [49].
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Digital watermarking can also be used to discover the source of a leak. A
watermark is embedded in order to be able to identify every copy of a digital
content; if a copy is leaked, then this copy can be further analyzed to discover
the source. For example in movie awards, copies of the films are distributed
among the members of the jury, and if one of these copies ends up, for instance,
in a peer-to-peer network, the license agreement breaker can be discovered. A
famous case involved the actor Carmine Caridi who distributed movies in 2004.
He was exposed and, as one the consequences, he was expelled from the Academy
of Motion Picture Arts and Sciences [31]. This application can be also useful
for the sensitive documents of corporations. A product called Shadow that uses
watermarking for documents in traitor tracing and can expose the origin of the
leaked document was recently presented by Gradiant [27].

Another example of application of digital watermarking is to increase the
reliability of digital contents. For instance, to verify that footage taken by a
videosurveillance system is authentic and has not been modified. Clearly such
video has to be submitted as evidence in a court of law, and it has to be proven as
completely genuine. As there are many powerful editing applications which allow
an unskilled person to manipulate a video sequence in such a way as to alter it
tracelessly, it is clear that a solution whereby a watermarking is embedded into
the original is important. This can later be analyzed to detect manipulations
or deletions. Academia has provided several watermarking-based solutions [35,
6, 19], as well as some commercial products, introduced by companies such as
TRedess and its CWS Software [54].

In general, the selection of the digital watermarking algorithm to be used
must depend on the requirements of the specific application. These needs can be
described using the following basic characteristics of digital watermarking:

Blindness This property indicates if the original signal is required to extract
the data (blind) or not (non-blind) from the received watermarked content.
Typically, a blind digital watermarking algorithm is better than a non-blind
one. Indeed, in many applications, due to practical constraints, only blind
watermarking can be considered.

Perceptibility This feature measures the distortion which results from data em-
bedding. Obviously, one is interested in producing an embedding distortion
as low as possible. The particular selected metric depends on the required
precision of the application and the limitations in its complexity. Due to
the difficulties in modeling the human perception system, it is assumed that
perceptual tests involving people are the most accurate but, at the same
time, the most expensive. However, there are uses that do not require such
precision, or where it cannot be afforded, and adopt simpler mathematical
measures. For example, Peak Signal to Noise Ratio (PSNR) or more com-
plex ones like Structural Similarity (SSIM) [61] can be used to measure the
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difference between the original image and the watermarked image.

Security Indicates that ideally only the authorized users of the digital water-
marking system can embed, modify, detect, or decode the embedded infor-
mation. Attacks on security are defined in [48] as “those aimed at obtaining
information from the secret parameters of the embedding and/or decoding
functions”.

Robustness Given an alteration of the watermarked signal, which can be inten-
tional or unintentional, an algorithm can be designed to be fragile, semi-
fragile, or robust, which is usually determined by the application. For
example, in applications of protecting the copyright of digital contents, the
owner is interested in using a robust digital watermarking technique.

Payload This indicates the amount of information that can be conveyed per
time or use by the host signal. For instance, the number of bits that can
be embedded into an image.

Method As indicated in the previous section, there are mainly two groups of
digital watermarking techniques. The first to appear were the techniques
that adopted Spread-Spectrum (SS), while the other class, the one that this
work focuses on, is the Dirty Paper Coding.

1.4 Thesis Objectives and Outline

In this thesis, we propose the study of the flat fading channel es-
timation based on dirty paper coding, which will be addressed using
Maximum-Likelihood Estimation (MLE). A set of practical ML-based algorithms
will be proposed with strict complexity constraints (in contrast with [51] which
employs exhaustive search). In addition, we want to analyze the performance of
the technique in order to gain insights about its fundamental limits and to be
able to determine if an analogous result to host interference cancellation obtained
for digital watermarking could be achieved for estimation. The performance of
the proposed algorithms must be tested under different conditions and compared
against other estimation techniques (specifically, we will focus on estimators based
on second order statistics as representative of blind estimators, and PDD, as an
example of SIT). In addition to the main application framework, we will present
further possible applications in a variety of technological fields to show the ver-
satility of our approach.

In order to meet these objectives, the remaining chapters of this thesis are
structured as follows:
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• Chapter 2 briefly introduces watermarking techniques and channel estima-
tion and presents the framework for this thesis. In addition, the hypotheses
that will be used in this work are set and explained.

• In Chapter 3, the Maximum-Likelihood criterion is introduced to estimate
the gain of the flat fading channel. There, the probability density function of
the random variable that models the received signal is studied and approx-
imated in several scenarios. Then, these probability density function (pdf)
approximations are used to formulate an ML-based gain estimation algo-
rithm. In addition, the lack of knowledge about the variance of the involved
signals is studied, as well as a technique to control the effective conditions
of the application cases.

• Chapter 4 presents a double theoretical analysis of the proposed
technique following an estimation theory approach by studying the
Cramér-Rao Bound (CRB), and also following an information theory per-
spective by analyzing the mutual information between the received sequence
and a random variable modeling the gain of the flat fading channel.

• Chapter 5 presents a set of practical algorithms based on ML to obtain the
gain of the flat fading channel with the restriction of requiring affordable
computational resources. In addition, the accuracy of the technique is ana-
lyzed with respect to the key parameters of the system and compared with
other channel estimation techniques.

• Chapter 6 extends the proposed estimation technique to other applica-
tions. Specifically, DPC estimation is used to make SCS more robust to
gain attacks. In addition, Dirty Paper Coding Estimation (DPCE) is used
in a digital communications framework for the case of using as host the
symbols of Pulse-Amplitude Modulation (PAM) constellations. Two DPC-
based techniques of complex gain estimation of complex flat fading channels
are also presented.

• Finally, Chapter 7 summarizes the conclusions drawn from this thesis and
describes several future research lines that we find interesting to address.
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Chapter 2

Problem Formulation

In this chapter we formalize the gain estimation problem, and summarize some of
the best known approaches to gain estimation and digital watermarking. Then,
we introduce our new approach to gain estimation based on host quantization.
Finally, we present the hypotheses that we will use throughout the remainder of
this work.

2.1 Gain Estimation Problem Formulation

Following the discussion in the previous chapter, our design is expected to satisfy
two constraints, specifically: 1) the transmission of the signal in the channel
should not be interrupted, and 2) the estimation procedure must modify the
transmitted signal only very slightly. As it was discussed in the Introduction,
interruptions on the primary signal require additional logic, and may even be
unfeasible. On the other hand, the original signal must keep its value (according
to some objective distortion measure) when the estimation procedure is in place,
i.e., after modifying the primary signal to assist the flat fading channel estimation
(that is, gain estimation) performed at the receiver. Here we will use the MSE to
quantify this distortion, but our results can be extended to any other topologically
equivalent metric (e.g., all metrics induced by the p-norm in finite dimensional
spaces). In terms of power budget, we aim at maximizing the ratio between
the host power and the watermark power, and obtaining accurate estimates even
when few observations are available.

Signal-aided gain estimation modifies the host signal x, where the elements of
this vector are continuous variables, to produce a transmitted signal y with some
underlying structure that assists the estimation. We will denote w , y − x; as
indicated in the Introduction, this signal w is referred to as the watermark due to
its similarity with the watermarking problem. We assume that the transmitted

11
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signal goes through a flat fading channel (with gain t0) which also introduces
Additive White Gaussian Noise (AWGN) n, so the received signal becomes z =
t0y + n. A block diagram of this problem can be found in Fig. 2.1.

ENCODER ESTIMATOR
x

KK

y

n

z

t0

t̂0

Figure 2.1: Block diagram of the flat fading channel (gain) estimation problem.

2.2 An Overview of Watermarking Techniques

Multibit digital watermarking aims at embedding a message m into a host sig-
nal x, yielding the watermarked signal y; in order to provide security against
attacks, such embedding typically depends on a secret key K, which is shared by
embedder and decoder. The watermark w , y − x is constrained to meet some
cap on the embedding distortion σ2

W , that is often derived from imperceptibility
requirements.

In the simplest case, the signal at the decoder input z is modeled after some
additive noise channel n; therefore, z , y + n. The decoder estimates m from
z and the key K and provides an estimate m̂. We consider the scenario where
the watermarking system is typically designed to achieve the largest possible
rate, maybe subject to additional complexity constraints. Fig. 2.2 illustrates the
general block-diagram of the multibit digital watermarking problem.

ENCODER DECODER

x

KK

y

n

z
m

m̂

Figure 2.2: Block diagram of multibit digital watermarking.

Watermarking schemes differ in the way how they compute the watermark w.
One well-known instance is Additive Spread Spectrum (Add-SS) [13], where w

is generated independently of the host x; therefore, x interferes the decoding of
m [18]. In order to mitigate the interference, ISS [38] subtracts part of the host
projection onto the direction of the watermark; specifically, linear ISS computes
the watermark as

w =

(

βm− λ
< x,u >

‖u‖2
)

u,
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where β and λ are distortion controlling parameters, < ·, · > stands for the
scalar product, u is a projecting vector which is generated from K independently
of x. In order to verify the distortion constraint on w, for the binary case

(i.e., m ∈ {0, 1}) then β =
√

Lσ2
W−λ2σ2

X

||u||2 . Pérez-Freire et al. proved in [46] that

the maximum achievable rate of binary ISS is strictly larger than that obtained
for Add-SS, although the channel capacity corresponding to a null host is not
achieved; in other words, ISS only provides partial host rejection with respect to
Add-SS.1 This relationship between Add-SS and ISS is also relevant for the gain
estimation problem, as the gain estimation counterpart of ISS (that is, PDD) also
shows a performance improvement with respect to the gain estimation counterpart
of superimposed pilots, due to this partial host rejection.

On the other hand, Quantization Index Modulation (QIM) watermarking [8]
generates the watermarked signal by quantifying the host with a quantizer in-
dexed by the embedded message, i.e., y = Qm(x), so w = Qm(x)−x. Although
QIM entirely removes the host interference, a modified version, named DC-QIM,
is also proposed in [8] to achieve a tradeoff with the embedding distortion. When
this scheme is applied, the watermarked signal is no longer at the quantizer cen-
troid, but in the segment that connects it with the original host vector, the exact
location depending on an optimization parameter explained below. Therefore, in
DC-QIM a fraction of the quantization error, named self-noise, is added to the
quantizer centroid, i.e.,

y = Qm(x) + (1− α)[x−Qm(x)], (2.1)

and consequently w = α[Qm(x)− x], where α ∈ (0, 1] is the so-called distortion
compensation parameter. The larger α, the smaller the self-noise, i.e., the closer
y will be to a quantization centroid, at the cost of a larger embedding distortion.

Costa, based on channel capacity arguments [10], proposed to use αCosta =
σ2
W

σ2
W+σ2

N
,

which for our channel case should be modified to αCosta =
t20σ

2
W

t20σ
2
W+σ2

N
. We note

that other designs for α, based on different target functions, can be found in
the literature (e.g., [18]). We also note that QIM is simply a particular case
of DC-QIM where α = 1. The most extended implementation of DC-QIM in
the watermarking literature corresponds to a message-dependent quantizer that
is a shifted version of a prototype lattice quantizer, i.e., Qm(x) = QΛ(x − d −
dm) +d+dm, where QΛ(·) is the minimum-distance lattice quantizer, Λ denotes
the prototype lattice, d (typically known as dither) is a pseudorandom vector
dependent onK which is uniformly distributed on the fundamental Voronoi region
of Λ, and dm is message-dependent. Erez and Zamir [21] proved that there exists
a sequence of lattices such that the maximum rate achievable for the Gaussian
case when DC-QIM uses those lattices asymptotically (as L goes to infinity)
approaches the capacity of an AWGN channel for no host interference (i.e., x =

1Full host rejection would be achieved by making λ = 1, but this would entail an overly
large distortion for most applications.
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Figure 2.3: Comparison of fX and fY , when σ2
X = 1, ∆ = 1, d = 0.25, and

α = 0.75.

0). This means that complete host rejection and optimal performance can be
achieved with structured codes instead of the random ones used by Costa to
prove his celebrated Dirty Paper Coding theorem [10]. In fact, practical schemes
that approach Erez and Zamir’s result have been proposed [20].

As we pointed out above, for the achievable rates of Erez and Zamir’s lattice
construction to approach the channel capacity it is necessary that the dimen-
sionality L goes to infinity [21]. Even for large finite values of L the lattice
quantization of the host sequence has a significant computational cost. For this
reason, in most of practical applications Λ = ∆ZL (i.e., a uniform scalar quan-
tizer) is used. Fig. 2.3 illustrates the effect of the watermark embedding on the
pdf of the watermarked signal for the scalar case.

Summarizing, in terms of achievable rates, DC-QIM is superior than ISS,
which in turn performs better than Add-SS; this ordering shows the worth of
host-rejecting in watermarking, and highlights quantization-based techniques as
the proper tools for achieving host rejection. As discussed in Chap. 1, a natural
question is whether channel estimation can also benefit from these host-rejection
methods. To show that this is so constitutes the main contribution of this thesis.

Finally, we would like to mention that some works in the watermarking lit-
erature [4, 51] studied the watermark decoding of quantization-based schemes
when the received signal is a noisy scaled version of the transmitted one, i.e.,
z = t0y + n. In those cases, the primary target was not to provide an estima-
tor of the scaling factor (as opposed to our previous work in [17]), but instead
decode the embedded message. Watermarking quantization-based schemes are
extremely sensitive to scaling, as it produces a codebook desynchronization prob-
lem. Our proposed method takes advantage of such weakness; it is known that
random variables following a distribution sharply dependent on the parameter to
be estimated often provide better estimates than those for which the dependence
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is smoother [34].

2.3 Proposed Approach to the Gain Estimation

Problem

In the previous chapter we have shown the parallelism in the development of
watermarking and channel estimation techniques. As pointed out, superimposed
pilots can be considered to be the channel estimation counterpart of Add-SS, and
PDD the counterpart of ISS. Perhaps paradoxically, in the estimation literature
there seems to be no correspondence to DC-QIM, that is, no quantization-based
channel estimation method is currently known. Thus, the present PhD thesis
comes to fill this existing gap, by proposing a DPCE method.

We thus propose to generate y by using a distortion compensated quantizer,
i.e.,

y = Q(x) + (1− α)[x−Q(x)], (2.2)

where Q(·) stands for a general quantizer, which will be typically based on the use
of a lattice quantizer QΛ(·). We will focus on the case where a dithered uniform
scalar quantizer with step-size ∆ is used, so

y = Q∆(x− d) + d+ (1− α)[x−Q∆(x− d)− d], (2.3)

where, Q∆ is short for Q∆ZL . Furthermore, from the uniform distribu-
tion of D on the fundamental Voronoi region of Λ, it follows that σ2

W =
α2∆2

12
. A sufficient condition for the second design constraint in Sect. 2.1 to

hold (i.e., that the estimation method can only slightly modify the trans-
mitted signal) is that the Host-to-Quantizer Ratio (HQR), defined as HQR

,
12σ2

X

∆2 be much larger than 1 (HQR ≫ 1). Note that σ2
W ≤ ∆2/12,

and, consequently, the former is indeed a sufficient condition. We will
also find it useful to define the Document-to-Watermark Ratio (DWR) (de-

fined as
σ2
X

σ2
W
), Document-to-Noise Ratio (DNR) (defined as

σ2
X

σ2
N
), and the

Watermark-to-Noise Ratio (WNR) (defined as
σ2
W

σ2
N
). Furthermore, following the

watermarking terminology, the term (1−α)[x−Q∆(x−d)−d] will be referred to

as self-noise. The variance of the self-noise is (1−α)2∆2

12
. It is important to remark

that the only difference between (2.1) and (2.2) is that now the quantizer is not
indexed by the embedded message, as in our problem we are no longer interested
in embedding a hidden message, but only in estimating the scaling factor t0.

2

2Notice, however, that our method can easily accommodate the embedding of such informa-
tion, which may be interesting for some applications.
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After presenting how the host is modified in order to estimate the gain of
the channel, it is worth discussing the intrinsic limitations of our technique. For
example, recalling the applications of channel estimation described in Sect. 1.2, it
is reasonable to think that there are forensic applications in which one can modify
an image in advance using our algorithm, in order to estimate a possible scaling
attack afterwards. However, it is obvious that one cannot control the explosions
on the surface with enough accuracy to be able to apply our scheme in petroleum
exploration.

2.4 Work Hypotheses

We will consider two different practical scenarios, which will be described by the
following quantities:

• Self-Noise-to-Channel-Noise Ratio (SCR), which quantifies the rela-
tionship between the variance of the self-noise and the variance of the noise
introduced by the channel when the scaling factor is t, both measured at

the receiver, i.e., SCR(t) , (1−α)2t2∆2

12σ2
N

.

• Total-Noise-to-Quantizer Ratio (TNQR), which is the ratio between
the total noise variance (self-noise after scaling, and channel noise) and the
second moment of the scaled quantizer when the scaling factor is t, i.e.,

TNQR(t) ,
(1−α)2t2∆2/12+σ2

N

t2∆2/12
. Note that a realistic condition for correct

centroid decoding (and consequently for good scaling estimation) is that
TNQR(t0) < 1.

• Total-Noise-to-Host Ratio (TNHR), which is the ratio between the
total noise variance at the receiver (self-noise and channel noise) and the
variance of the received host when the scaling factor is t, i.e., TNHR(t) ,
(1−α)2t2∆2/12+σ2

N

t2σ2
X

.

Although the three quantities we have just introduced are obviously functions
of the scaling factor t (most of times we will evaluate them at the real scaling
factor t0), for the sake of notational simplicity, and whenever there is not risk of
confusion, we will avoid to make explicit that dependence.

Then, with SNR used here to describe the set of hypotheses as the ratio
between second moment of the scaled quantizer and the addition of the variances
of the self-noise and the channel noise, the two considered scenarios are:

• High-SNR: characterized by HQR ≫ 1, SCR(t0) ≪ 1, and TNQR(t0) ≪
1, meaning that the host is finely quantized, the self-noise is much smaller
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than the noise introduced by the channel, and the addition of both noise
components is much smaller than the quantization step-size. Be aware that
the first and third inequalities imply TNHR(t0) ≪ 1.

• Low-SNR: characterized by HQR ≫ 1, SCR(t0) ≪ 1, TNQR(t0) ≫ 1,
and TNHR(t0) ≪ 1, meaning, similarly to the previous case, that the host
is finely quantized, and the self-noise is much smaller than the noise intro-
duced by the channel. Furthermore, in this scenario the addition of both
noise components is larger than the quantizer step-size, although it is much
smaller than the host signal.
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Chapter 3

Maximum-Likelihood Estimator

In order to obtain the estimate of the scaling factor t0, we use the ML criterion
which seeks the most likely value of t given a vector of observations z when there
is no a priori knowledge about the distribution of the scaling factor, i.e., the ML
estimator can be obtained as

t̂0(z) = argmax
t

fZ|T,K(z|t,d)

= argmax
t

L
∏

i=1

fZ|T,K(zi|t, di)

= argmin
t

−
L
∑

i=1

log
(

fZ|T,K(zi|t, di)
)

= argmin
t

L(t, z), (3.1)

where in the previous expression fZ|T,K(z|t,d) and fZ|T,K(zi|t, di) stand for the
joint distribution of Z and the distribution of Z, respectively, given the scaling
factor t and the dither sequence d. The independence of the samples of the
received watermarked sequence z allows us to simplify the expression by the
second equality. In the third equality, the ML estimator is rewritten after using
the monotonically increasing property of the logarithm, and L(t, z) denotes the
cost function to optimize in the fourth equality.

In many applications requiring parameter estimation, MLE is selected because
it is a systematic approach and also due to its interesting properties [60]:

• The MLE is consistent, the solution of (3.1) converges in probability to t0
as L → ∞.

• It is asymptotically efficient, the value of the variance of t0− t̂0(z) tends to
the CRB as L → ∞.

• The MLE asymptotically follows a Gaussian distribution with mean t0 and
variance the CRB.

19
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The CRB is the lower bound of the variance of the unbiased estimators; this will
be studied more deeply in Chapter 4.

3.1 Pdf of the Observations and

Approximations

The pdf of Z = t0Y +N given the scaling factor t0 and the dither d is calculated,
where Y models the Distortion Compensated Dither-Modulation (DC-DM) wa-
termarked signal using uniform scalar quantizers and N ∼ N (0, σ2

N) denotes the
noise of the channel. First, the pdf of Y given d can be expressed as

fY |K(y|d) =
∞
∑

i=−∞
pI|K(i|d)fS|K,I(y|d, i), (3.2)

where pI|K(i|d) denotes the probability mass function of the active centroid index
i for known d, and fS|K,I(y|d, i) denotes the pdf of Y given d and i, i.e., the
distribution of the self-noise of the ith centroid for known d. These two functions
can be mathematically expressed as

pI|K(i|d) =
∫ i∆+∆

2
+d

i∆−∆
2
+d

fX (τ) dτ, (3.3)

fS|K,I(y|d, i) =











1
pI|K(i|d)(1−α)

fX

(

y−α(i∆+d)
(1−α)

)

if i∆− (1−α)∆
2

+ d ≤ y

≤ i∆+ (1−α)∆
2

+ d
0 otherwise,

where in the previous expressions X denotes the random variable modeling the
host, ∆ denotes the step-size of the used scalar uniform quantizer Q∆(·), and α
stands for the distortion-compensation parameter.

The pdf of R = t0Y can be determined from the pdf of Y by applying the
well-known scaling of a continuous random variable property [43] (i.e., if A = cB,
then fA(a) = fB(a/c)/c) as

fR|T,K(r|t0, d) =
fY |K

(

r
t0
|d
)

t0

=
1

t0

∞
∑

i=−∞
pI|K(i|d)fS|K,I

(

r

t0

∣

∣

∣
d, i

)

.

Finally, the resulting pdf of the addition of two independent random variables
can be calculated as the convolution (operation denoted by ∗) of their respective
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pdfs. Using this, the pdf of Z is expressed as

fZ|T,K(z|t0, d) = fR|T,K(z|t0, d) ∗ fN(z) (3.4)

=
1

t0

∞
∑

i=−∞
pI|K(i|d)fS|K,I

(

z

t0

∣

∣

∣
d, i

)

∗ fN(z). (3.5)

After particularizing the pdf of Z given t0 and d for zero-mean Gaussian
distributed hosts, we have found that the obtained expression of the distribution
of Z, which is not shown here, is difficult to handle. In order to deal with this, we
propose the approximations of the pdf of these signals based on the hypotheses
described in Sect. 2.4 of the previous chapter. Therefore, we divide the analysis
of the pdf of Z for Gaussian distributed hosts into the two considered scenarios:
the low-SNR case and the high-SNR case.

3.1.1 Low-SNR Case

In order to obtain the approximation for the pdf of Z for the low-SNR case, we
first consider that under HQR ≫ 1, the host will be asymptotically uniformly
distributed inside each quantization bin, so the distribution of the self-noise will
be the same for each considered centroid, implying that the used centroid and
the self-noise are independent, allowing us to write

fY |K(y|d) ≈ fU |K(y|d) ∗ fS(y),

where U is the continuous random variable modeling the active centroid, and S
models the self-noise that follows a uniformly distribution in [−(1− α)∆/2, (1−
α)∆/2]; note that in this scenario this distribution does not depend on the index
of the centroid.

The function fU |K(u|d) can be written as fU |K(u|d) = hI(u)
∑∞

k=−∞ δ(u −
k∆− d), where hI(u) is defined as

hI(u) =

∫ u+∆/2

u−∆/2

e
− τ2

2σ2
X√

2πσX

dτ = fX(u) ∗ rect
( u

∆

)

, (3.6)

where in the previous expressions, the integral is replaced by a convolution of the
pdf of X , which follows a Gaussian distribution, and a rectangular function in the
interval [−∆/2,∆/2] and amplitude 1 (i.e., rect

(

x
∆

)

). By using the convolution,
the Fourier transform of (3.6) can be seen to be

HI(f) = e−2(πσXf)2 ·∆sinc (∆f) ,

where sinc(x) , sin(πx)/(πx).
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Therefore, the Fourier transform of the approximation of fU |K(u|d) is

FU |K(f |d) = HI(f) ∗
(

e−j2πfd 1

∆

∞
∑

i=−∞
δ

(

f − i

∆

)

)

=
(

e−2(πσXf)2sinc (∆f)
)

∗
(

e−j2πfd
∞
∑

i=−∞
δ

(

f − i

∆

)

)

.

The pdf of the R = t0Y can be approximated by

fR|T,K(r|t0, d) =
fU |K(

r
t0
|d)

t0
∗ 1

(1− α)∆t0
rect

(

r

(1− α)∆t0

)

.

Therefore, the pdf of Z can be obtained as in (3.4), whose corresponding Fourier
transform is

FZ|T,K(f |t0, d) = FR|T,K(f |t0, d) · FN(f)

≈
(

(

e−2(πσX t0f)2sinc (∆t0f)
)

∗
(

e−j2πfdt0

∞
∑

i=−∞
δ(f − i

t0∆
)

))

×sinc ((1− α)∆t0f) e
−2(πσNf)2 . (3.7)

In order to simplify FZ|T,K(f |t0, d) further, we will exploit the facts that
σ2
X ≫ ∆2/12, due to HQR ≫ 1, and that σ2

N ≫ (1 − α)2∆2t20/12, due to
SCR(t0) ≪ 1, implying that in both cases the exponential is much sharper than
the sinc it is multiplying to. Therefore, it will make sense to provide a local
approximation of the sinc around its maximum; having that target in mind, we
will use the second order Taylor series expansion of log(sinc(ax)) around x = 0
(valid whenever |x|≪ 1/a), given by log (sinc (ax)) ≈ −π2a2x2

6
to approximate the

sinc function by sinc (ax) ≈ e
−π2a2x2

6 . In addition to this approximation, by using
TNQR(t0) ≫ 1, one can accurately just keep i = −1, 0, 1 in the sum in (3.7).
These approximations allow us to write

FZ|T,K(f |t0, d) ≈
(

(

e
−2(πt0f)2

(

σ2
X+∆2

12

)

)

∗
(

e−j2πfdt0

1
∑

i=−1

δ(f − i

t0∆
)

))

×e
−2(πf)2

(

σ2
N+

(1−α)2∆2t20
12

)

,

where the corresponding inverse transform is

f low-SNR′
Z|T,K (z|t0, d) ≈

e
− z2

2

(

σ2
N

+

(

(1+(1−α)2)∆2

12
+σ2

X

)

t20

)

√

2π
(

σ2
N +

(

(1+(1−α)2)∆2

12 + σ2
X

)

t20

)











1

+2e

2π2

(

−

(

∆2

12
+σ2

X

)

(

σ2
N+

(1−α)2∆2t20
12

))

∆2
(

σ2
N

+

(

(1+(1−α)2)∆2

12
+σ2

X

)

t2
0

)

cos



2π





(

∆2

12 + σ2
X

)

t0z

∆
(

σ2
N +

(

(1+(1−α)2)∆2

12 + σ2
X

)

t20

) − d

∆



















,
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and since HQR ≫ 1, ∆2/12 can be neglected in comparison with σ2
X , yielding

f low-SNR
Z|T,K (z|t0, d) ≈ e

− z2

2(σ2
N

+σ2
X

t2
0)

√

2π
(

σ2
N + σ2

Xt20
)











1 + 2e
−

2π2σ2
X

(

σ2
N+

(1−α)2∆2t20
12

)

∆2(σ2
N

+σ2
X

t2
0)

× cos

(

2πσ2
Xt0z

∆
(

σ2
N + σ2

Xt20
) − 2πd

∆

)











. (3.8)

By applying TNHR(t0) ≪ 1 to (3.8) in order to neglect σ2
N in comparison

with t20σ
2
X , a more simplified approximation of the pdf of Z is obtained

f low-SNR,2
Z|T,K (z|t0, d) ≈

e
− z2

2t2
0
σ2
X

√

2πt20σ
2
X






1 + 2e

−
2π2

(

σ2
N+

(1−α)2∆2t20
12

)

∆2t20 cos

(

2πz

∆t0
− 2πd

∆

)






.

(3.9)

3.1.2 High-SNR Case

Since HQR ≫ 1 holds, pI|K(i|d) used in (3.2) and defined in (3.3) can be accu-
rately approximated by

pI|K(i|d) ≈
∆e

− (i∆+d)2

2σ2
X

√

2πσ2
X

.

As stated above, using HQR ≫ 1, one can assume that the self-noise S is
uniformly distributed. Based on this and since S and N are independent, the
pdf of S +N can be obtained as the convolution of the pdf of a random variable
uniformly distributed in [t0(i∆ − (1 − α)∆/2 + d), t0(i∆ + (1 − α)∆/2 + d)],
corresponding to the scaled self-noise, and the pdf of N ; thus, fZ|T,K(z|t0, d) can
be approximated as

fZ|T,K(z|t0, d) ≈
∞
∑

i=−∞

pI|K(i|d)
t0(1− α)∆

∫ t0(i∆+(1−α)∆/2+d)

t0(i∆−(1−α)∆/2+d)

e
− (z−τ)2

2σ2
N

√

2πσ2
N

dτ.

Using SCR(t0) ≪ 1, the result of the convolution can be approximated, using the
same reasoning in the transform domain as in the previous section, by a Gaussian
distribution with variance the addition of the variances of the scaled self-noise
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and the channel noise. Using this approximation, the pdf of Z given t0, the dither
d, and the centroid index i, can be expressed as

fZ|T,K,I(z|t0, d, i) ≈
e

− (z−t0i∆−t0d)
2

2

(

σ2
N

+
(1−α)2∆2t20

12

)

√

2π
(

σ2
N +

(1−α)2∆2t20
12

)

.

Under TNQR(t0) ≪ 1, one can accurately approximate the reconstruction point
i∆ by Q∆(z/t0−d); therefore, the approximation of the pdf of Z can be expressed
as
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. (3.10)

3.1.3 Experimental Results
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(a) α = 0.25 and d = ∆/3
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(b) α = 0.75 and d = ∆/5

Figure 3.1: Pdf of Z and its approximations. DWR = 20 dB, WNR = 0 dB, and
t0 = 0.5. For (a): HQR = 6.25, SCR(t0) = 2.25, TNQR(t0) ≈ 8.13 × 10−1, and
TNHR(t0) = 1.3 × 10−1. For (b): HQR ≈ 5.63 × 10, SCR(t0) ≈ 2.78 × 10−2,
TNQR(t0) ≈ 2.31, and TNHR(t0) = 4.11× 10−2.

Figs. 3.1 and 3.2 show three examples of the true pdf of Z and our approxi-
mations.



Chapter 3. Maximum-Likelihood Estimator 25

The two examples of Fig. 3.1 were obtained for DWR = 20 dB, WNR = 0
dB, and t0 = 0.5. In the left pane α = 0.25, while on the right one α = 0.75. It
is worth pointing out that the proposed low-SNR approximations are tight in the
presented scenarios, although only the four hypotheses used to obtain that ap-
proximation (i.e., HQR ≫ 1, SCR(t0) ≪ 1, TNQR(t0) ≫ 1, and TNHR(t0) ≪ 1)
can be simultaneously fulfilled for the right pane. Although the used hypotheses
to obtain it are not verified in these two cases (i.e., HQR ≫ 1, SCR(t0) ≪ 1, and
TNQR(t0) ≪ 1), the high-SNR approximation performs rather well for α = 0.25
case. In Fig. 3.2 a typical high-SNR scenario is proposed; namely, DWR = 20
dB, WNR = 3 dB, α = 0.75, and t0 = 3. The resemblance between the actual
pdf of Z and its approximation fhigh-SNR

Z|T,K (z|t0, d) is high, which is coherent with
the verification of the corresponding hypotheses for that case. In addition, as one
can expect, the low-SNR approximations show worse performance in this case,
even taking negative values.
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Figure 3.2: Pdf of Z and the its approximations shown in this manuscript. DWR
= 20 dB, WNR = 3 dB, α = 0.75, t0 = 2 and d = ∆/5. HQR ≈ 5.63 × 10,
SCR(t0) ≈ 8.87× 10−1, TNQR(t0) ≈ 1.33× 10−1, and TNHR(t0) = 2.36× 10−3.

3.1.3.1 KLD of the pdf Approximations

In order to measure the adequacy of our approximations of the pdf of Z, the
Kullback-Leibler Divergence (KLD) [11] is used as a measure of the distance be-
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Figure 3.3: DWR = 20 dB, WNR = 0 dB, and t0 = 0.5.

tween two distributions, in this case between the actual distribution and our
approximations. The obtained results are analyzed taking into account the ful-
fillment of the hypotheses.

Figs. 3.3-3.5 show a set of pairs of figures: the KLD averaged with respect to
the dither vs α for different values of DWR, WNR and t0 on the left pane, and
their corresponding curves of the HQR, SCR, TNQR, and TNHR in the right
pane. The average KLD is obtained as

KLD ,
1

∆

∫ ∆
2

−∆
2

∫ ∞

−∞
fZ|T,K(τ |t0, υ) log

(

fZ|T,K(τ |t0, υ)
fapprox
Z|T,K (τ |t0, υ)

)

dτdυ,

where in the previous expression approx denotes the approximation of the pdf
of Z: for low-SNR (3.8), for low-SNR verifying TNHR(t0) ≪ 1 (3.9), or for the
high-SNR cases (3.10). The aim of these average KLD curves is to quantify the
average accuracy of the approximations f low-SNR

Z|T,K (z|t0, d), f low-SNR,2
Z|T,K (z|t0, d), and

fhigh-SNR
Z|T,K (z|t0, d) for the considered distribution of D.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

α

K
LD

 (
dB

)

 

 

(3.8)
(3.9)
(3.10)

(a) KLD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−60

−40

−20

0

20

40

60

α

dB

 

 

HQR
SCR
TNQR
TNHR

(b) Hypotheses

Figure 3.4: DWR = 20 dB, WNR = 3 dB, and t0 = 2.
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Figure 3.5: DWR = 30 dB, WNR = 0 dB, and t0 = 0.5.

Before drawing conclusions from the average KLD figures, one must take into
account that:

• the larger α and DWR, the more reasonable it is to assume that hypothesis
HQR ≫ 1 holds.

• the larger α and the smaller t0, the more reasonable it is to assume that
SCR(t0) ≪ 1 holds.

• for a given WNR, the larger the DWR, the more reasonable the
TNHR(t0) ≪ 1 is.

Figs. 3.3 and 3.5 show the average KLD as function of α for WNR = 0
dB, t0 = 0.5, DWR = 20 and 30 dB, respectively. For α > 0.45, where the
hypotheses for the low-SNR case can be considered jointly fulfilled according to
their HQR, SCR(t0), TNQR(t0), and TNHR(t0) curves, one can see that the
average KLD curve for f low-SNR

Z|T,K (z|t0, d) is more accurate than the corresponding

curve for f low-SNR,2
Z|T,K (z|t0, d). In contrast, the performance of the approximation for

the high-SNR case fhigh-SNR
Z|T,K (z|t0, d) is poor as does not fulfill its corresponding

set of hypotheses.

In Fig. 3.4, the KLD curves are depicted for DWR = 20, WNR = 3 dB, and
t0 = 2. In this case, the low-SNR hypotheses are not verified, while for α ≥ 0.7
one can consider that the high-SNR hypotheses hold and, therefore, as one can
expect, its KLD is significantly smaller than for the low-SNR cases.
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3.2 Approximation of the Maximum Likelihood

Function

The pdf of Z given a scaling factor t and a dither sample di is required by MLE.
By using the generic expression (3.5) introduced at the beginning of Sect. 3.1,
the expression of L(t, z) becomes

L(t, z) = −
L
∑

i=1

log

(

1

t

∞
∑

l=−∞
pI|K(l|di)fS|K,I

(zi
t

∣

∣

∣
di, l
)

∗ fN(zi)
)

;

which, in general and as stated above, it is difficult to handle. In order to deal
with this issue, three approximations of the pdf of Z for Gaussian distributed
hosts for low-SNR and high-SNR scenarios have been proposed in the previous
section and they are used to obtain accurate and more tractable closed-form
approximations of the cost function.

3.2.1 Low-SNR Case

Considering Gaussian distributed hosts for low-SNR scenarios, the approximation
of L(t, z) is calculated from the corresponding approximation of the pdf of Z (3.8),
and also by using that log(1 + h) ≈ h for |h|≪ 1, approximation based on its
series expansion [1, p. 68], which will be valid if the ratio in the argument of the
second exponential function of that pdf verifies

2π2σ2
X

(

σ2
N + (1−α)2∆2t2

12

)

∆2 (σ2
N + σ2

Xt
2)

≫ 1;

thus, for values of t sufficiently close to t0 the inequalities HQR ≫ 1, SCR(t) ≪ 1,
and TNQR(t) ≫ 1 are satisfied, and L(t, z) can be approximated as

L(t,z) ≈ ‖z‖2
2
(
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) +
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X

t2) cos

(

2πσ2
Xtzi

∆
(

σ2
N + σ2

Xt2
) − 2πdi

∆

)

. (3.11)

Using Central Limit Theorem (CLT), we study the expectation of the ML cost
function in App. 3.A in order to gain insight into its properties for L → ∞:

1. E {L(t, Z)} only has a minimum for t/t0 > σN/(σXt0) (where σ2
N/(σ

2
Xt

2
0)

tends to zero under TNHR(t0) ≪ 1) that is located close to t0,
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2. for any σ2
N/(σ

2
Xt

2
0), there is an arbitrary η > 0, such that E {L(t, Z)} mono-

tonically decreases in η < t/t0 < 1; therefore, since σ2
N/(σ

2
Xt

2
0) → 0 then η

can be arbitrarily close to 0, E {L(t, Z)} monotonically decreases.

3. E {L(t, Z)} monotonically increases for t > t0.

The cost function (3.11) can be further simplified by applying TNHR(t0) ≪ 1,
yielding

L(t, z) ≈ ‖z‖2
2σ2

Xt
2
+

L

2
log
(

2πσ2
Xt

2
)

−
L
∑
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2e−
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12

)

∆2t2 cos
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2πzi
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− 2πdi
∆

)

, (3.12)

which corresponds to the cost function using (3.9).

3.2.1.1 Gaussian Distributed Z Approximation

It is worth noting that if the dither is unknown (or it is not used for estimation)
and HQR ≫ 1 holds, then Z can be approximated by a Gaussian distribution
Z ∼ N (0, t20(σ

2
X+σ2

W )+σ2
N ) (i.e., there is no structure in the pdf of Z). Therefore,

from the expression of MLE at the beginning of this chapter, it is straightforward
to obtain the ML estimator as

t̂0(z)var =

√

‖z‖2
L

− σ2
N

σ2
X + σ2

W

, (3.13)

which will be referred to as the variance-based estimator of t0 throughout this
thesis, name based on its variance matching nature. Due to its simplicity, this
estimator can be used to coarsely estimate t0, even in cases where the conditions
listed at the beginning of this section are not verified.

3.2.2 High-SNR Case

Using the approximation of the pdf of Z for zero-mean Gaussian distributed hosts
in high-SNR scenarios (3.10) calculated in Sect. 3.1.2, the cost function can be
approximated as

L(t, z) ≈ L log

(

2πσ2
X

∆2
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+
‖z‖2
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Xt

2
+ L log

(
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12
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+
‖(z − td) mod (t∆)‖2

σ2
N + (1−α)2t2∆2

12

, (3.14)
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where a factor of 1/2 multiplying the four components was removed. For the
sake of notational simplicity, we denote the previous expression as L(t, z) in the
sense that the result of the optimization using this expression and the original
approximation cost function is the same. In addition, the term L log ((2πσ2

X)/∆
2)

is neglected due to its independence of t, obtaining

L(t, z) ≈ ‖z‖2
σ2
Xt

2
+ L log

(

2π

(

σ2
N +

(1− α)2t2∆2

12

))

+
‖(z − td) mod (t∆)‖2

σ2
N + (1−α)2t2∆2

12

,

(3.15)
the previous comment regarding the use of L(t, z) is also applied here.

Similarly to the low-SNR case, we are interested in studying the asymp-
totic properties of the ML cost function (e.g., the location of the global min-
ima/maxima, etc.). If we assume for a certain channel gain t sufficiently close to
t0 the inequalities HQR ≫ 1, SCR(t) ≪ 1, and TNQR(t) ≪ 1 are satisfied, then
the expectation of the cost function, calculated in App. 3.B, can be approximated
as

E {L(t, z)} ≈ L+ L log
(

2πσ2
N

)

+ L
(t0 − t)2σ2

X + σ2
N

σ2
N

.

It is straightforward to verify that the third term only has a minimum with
respect to t for t > 0 at t0.

3.2.3 Discussion and Examples

By comparing the approximations of L(t, z) given in (3.11), (3.12), and (3.15),
one can notice that these three expressions share a common structure: the first
and second terms are related to the envelope of the pdf of Z, and the third term
takes into account the structure of the pdf of Z induced by the embedding.

As an illustrative example, Fig. 3.6 shows the representations of the proposed
ML cost function approximations for WNR = 0 dB, α = 0.75, and L = 102. The
left-most case corresponds to DWR = 20 dB and t0 = 0.5, that is selected as
an example of a low-SNR scenario where (3.11) and (3.12) clearly show better
performance than (3.15). In Fig. 3.6.b with DWR = 40 dB and t0 = 2, which
can be considered a high-SNR scenario, the high-SNR approximation to the ML
cost function shows good accuracy; in addition, it is worth noting that the low-
SNR approximations to the ML cost functions also have the minimum close to
t0, i.e., they are accurate.

Although ML estimation shows interesting properties, as those enumerated
above, also it presents some drawbacks. For example, as the target functions can
have several local maxima or minima, well-known optimization algorithms cannot
be systematically applied; thus, the design of ad-hoc optimization algorithms is
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Figure 3.6: Representation of the three proposed approximations of L(t, z) for
WNR = 0 dB, α = 0.75, and L = 102.

required in many cases. In addition, it is also widely assumed that MLE requires
more computational resources than other estimation methods [57] (e.g., methods
based on moments).

3.3 Unknown Host and Channel Noise

Variances

So far we have worked on an ML-based approach, which requires the exact dis-
tribution of the host signal and the channel noise to be known at the estimator.
Nevertheless, in practical scenarios these requirements must be typically relaxed,
since although the kind of distribution of those signals can be reasonably assumed
to be known (e.g., the channel noise is customarily modeled as Gaussian), prior
knowledge of their variances may be not available. Consequently, in such case
the estimator can be designed by taking into account that the estimation prob-
lem is affected by some unwanted/nuisance parameters (i.e., the host and noise
variances). Following typical estimation procedures, the ML target function is
optimized with respect to those unwanted parameters, and then with respect to
the parameter of interest (in the current case, t) [55]. For the sake of simplicity,
we will focus the analysis in this section on the high-SNR target function.

Mathematically, in a first step we optimize the high-SNR scenario pdf of Z
given σ2

X , σ
2
N , and t with respect to σ2

X and σ2
N ; therefore, we use the complete

expression of that pdf, derived in the previous section (i.e., formula (3.14)).



32 3.4. Spread-Transform Dirty Paper Coding Estimation

Specifically, the considered ML target function is

L log
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The values of σ2
X and σ2

N optimizing that target function are (σ2
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∗
= ‖z‖2

Lt2
, and

(σ2
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∗
= ‖(z−td)mod(t∆)‖2

L
− (1−α)2t2∆2

12
, respectively. By replacing those values in

(3.16), one obtains a new target function, which no longer depends on σ2
X , nor

σ2
N ,

L log

(

2πe‖z‖2
∆2Lt2

)

+ L log
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2πe‖(z − td)mod(t∆)‖2
L

)

;

it is straightforward to see that the minimization of that function with respect
to t is equivalent to the minimization of

‖(z − td)mod(t∆)‖2
t2

,

i.e., the estimator will look for that scaling factor that minimizes the Euclidean
distance (normalized by the scaling factor) between observations and quantizer
centroids. In other words, whenever a priori knowledge of the statistics of the host
signal and the noise is not available, the estimation will only rely on the signal
structure introduced at the transmitter, i.e., the estimator will look for that
scaling factor that matches the patterns of the observations and the quantizer
centroids.

For the sake of comparison, it is worth mentioning that although the PDD-
based ML estimator depends on σ2

X and σ2
N , when one performs the optimization

of the ML target function with respect to the unwanted parameters, then the
estimation algorithm described in [29] is achieved.

3.4 Spread-Transform Dirty Paper Coding

Estimation

As it was discussed in the previous section, the proposed estimator when a priori
information on the host and noise variances are not available, exploits the struc-
ture introduced by the quantizer at the embedding. However, in those cases where
the TNQR(t0) is very large, that structure will be lost. This is a well-known prob-
lem in watermarking, where one of the most extended solutions is the so-called
Spread-Transform Dither Modulation (ST-DM) [8]. This technique is based on
projecting the L dimensions of the considered signals onto LST (LST ≤ L) dimen-
sions. By doing so, the ratio ∆2/σ2

N is increased by a factor L/LST, obtaining a
smaller TNQR(t0), and consequently enhancing the signal structure.
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Namely, the watermark is embedded in a projected version of x, xST = V Tx,
where V is an L×LST orthonormal matrix (this matrix can be easily generated,
for example by applying the Gram-Schmidt orthogonalization algorithm [36] to
a randomly generated matrix). Then, the watermarked signal in the projected
domain is computed (similarly to (2.2)) as yST = Q(xST)+(1−α)[xST−Q(xST)],
and y = x + V (yST − xST). Note that the watermark distortion per dimension

of x is now σ2
W = LSTα2∆2

12L
, so for a fixed σ2

W the quantization step ∆ is increased
with respect to the case L = LST.

Other advantages of the proposed ST-DM-based estimation are: 1) even if
the distributions of the host and the noise are not Gaussian, due to the CLT
they will asymptotically converge to Gaussian for large values of L and the most
extensively used designs of V (e.g., matrices generated by {−1,+1} uniform ran-
dom generators), 2) due to the small cost of projecting, and the reduction of the
dimensionality of the observations fed to the ML estimator, the computational
cost is reduced.
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Appendix

3.A Analysis of E{L(t, Z)} for Low-SNR

Scenarios

The objective function L(t, z) for low-SNR, defined in Sect. 3.2.1, can be approx-
imated as

L(t,z) =
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;

this approximation makes it possible to obtain of a closed form of its expectation,
which is written as
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∆2

= E{L0(t, Z)}+ E{L1(t, Z)},

where in the previous expression E{L0(t, Z)} = (σ2
N + σ2

Xt
2
0)/(2 (σ

2
N + σ2

Xt
2)) +

1/2 log [2π (σ2
N + σ2

Xt
2)] and E{L1(t, Z)} denotes the remaining term.

In order to analyze the maxima/minima of E {L(t, Z)}, we separately analyze
E{L0(t, Z)} and E{L1(t, Z)}. For both functions, we prove asymptotically as
HQR ≫ 1, SCR(t0) ≪ 1, TNQR(t0) ≫ 1, and TNHR(t0) ≪ 1 hold that they
have a minimum with respect to t close to t0, they increase for t > t0, and they
decrease for t < t0. Therefore, it can be assured that E {L(t, Z)} only has a
minimum asymptotically close to t0.

35
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On one hand, the first derivative with respect to t of E{L0(t, Z)} is calculated,
obtaining

σ4
Xt(t

2 − t20)

(σ2
N + σ2

Xt
2)

2 ,

where the previous expression only has a positive root at t0 that corresponds to a
minimum, as one can verify that this expression is positive for t > t0 and negative
for t < t0.

On the other hand, in order to analyze E{L1(t, Z)}, − log(−(·)) is applied to
that expression and the term − log(2) dismissed to yield

−
2π2σ2

X

(

−σ2
N+ 1

12
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X t20

)

∆2
,

so its first derivative with respect to t is

π2σ2
X

(

(1− α)2∆2σ2
N t
(

σ2
N + σ2

Xt2
)

− 12
(

σ4
Nσ2

Xt0 + σ6
Xt3t0(−t+ t0) + σ2

Nσ4
Xt
(

2t2 − t20
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3∆2 (σ2
N + σ2

X t2)
3 .

Therefore, the local maxima/minima of the previous expression with respect to
t will be located at the solutions of

g(t) , (1− α)2∆2σ2
N t
(

σ2
N + σ2

Xt
2
)

−12
(

σ4
Nσ

2
Xt0 + σ6

Xt
3t0(−t + t0) + σ2

Nσ
4
Xt
(

2t2 − t20
))

= 0. (3.18)

Since the polynomial of the previous expression is fourth degree, by applying
the fundamental theorem of algebra [62], one can guarantee that there are four
complex solutions. In order to identify the solutions of (3.18), the following
properties can be used

• g(0) = −12π2σ4
Nσ

2
Xt0, and

g(2σ2
N/(σ

2
Xt0)) =

2 (−48σ6
Nσ

4
Xt

2
0 + 6σ4

Nσ
6
Xt

4
0 + (1− α)2∆2σ6

N (4σ2
N + σ2

Xt
2
0))

σ4
Xt

3
0

,

that asymptotically takes positive values as −48σ6
Nσ

4
Xt

2
0 can be neglected

compared to 6σ4
Nσ

6
Xt

4
0 by applying TNHR(t0) ≪ 1. There is at least a

sign change of g(t) in [0, 2σ2
N/(σ

2
Xt0)]; therefore, there is at least one root

within this interval. By applying the TNHR(t0) ≪ 1, one can guarantee
that there is a minimum of E{L1(t, Z)} asymptotically close to t/t0 = 0, as
2σ2

N/(σ
2
Xt

2
0) tends to 0.

• As stated in the previous paragraph, g(2σ2
N/(σ

2
Xt0)) takes positive values;

and, on the other hand, g(σN/σX) = 2σ5
N ((1− α)2∆2 − 12σ2

X) /σX is nega-
tive as (1−α)2∆2 can be neglected compared to 12σ2

X by invoking HQR ≫ 1.
So there is at least a sign change of g(t) in [2σ2

N/(σ
2
Xt0), σN/σX ]; therefore,
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there is at least a maximum of the third element of the target function
within this interval. By applying TNHR(t0) ≪ 1, a maximum is asymp-
totically close to t/t0 → 0. An analogous analysis can be carried out for
negative values of t taking into account that

g(−2σ2
N/(σ2

X t0)) = − 2

σ4
Xt30

(

(1− α)2∆2σ6
N

(

4σ2
N + σ2

Xt20
)

−6
(

32σ8
Nσ2

X + 8σ6
Nσ4

Xt20 − 3σ4
Nσ6

Xt40
))

,

is, using TNHR(t0) ≪ 1, negative and g(−σN/σX) = −2(1−α)2∆2σ5
N/σX+

24σ5
NσX is positive as the HQR ≫ 1 holds.

• Finally, g(t0) = σ2
N ((1− α)2∆2 − 12σ2

X) t0 (σ
2
N + σ2

Xt
2
0) is negative under

HQR ≫ 1, while,

g(t0(1 + 2σ2
N/(σ2

X t20))) = σ2
N

(

σ2
N + σ2

X t20
)

×
(

12σ6
X t40 + (1− α)2∆2

(

8σ4
N + 6σ2

Nσ2
Xt20 + σ4

X t40
))

(

σ4
X t30
) ,

is positive; therefore there is at least a root of (3.18) in [t0, t0(1 +
2σ2

N/(σ
2
Xt

2
0))] (note that with this, the four roots of (3.18) are identified).

By applying TNHR(t0) ≪ 1, one can guarantee that there is a minimum
asymptotically close to t0.

Therefore, one can guarantee that, under the four hypotheses of the low-SNR case
presented in Chap. 2, there is a minimum of the third term of (3.17) asymptot-
ically at t/t0 = 0, two maxima asymptotically close to t/t0 = 0 and a minimum
asymptotically close to t0. Specifically, the corresponding disjoint intervals of the
roots of the third term of (3.17), arranged in increasing order of t, are: a maxi-
mum in [−σN/σX ,−2σ2

N/(σ
2
Xt0)], a minimum in [0, 2σ2

N/(σ
2
Xt0)], a maximum in

[2σ2
N/(σ

2
Xt0), σN/σX ], and a minimum [t0, t0(1 + 2σ2

N/(σ
2
Xt

2
0))]. A graphical ex-

ample of these four intervals containing the roots of g(t) is shown in Fig. 3.7 for
DWR = 20 dB, WNR = 0 dB, α = 0.5, and t0 = 0.7.

Since E{L0(t, Z)} has only one minimum located at t0 and E{L1(t, Z)} has
only a minimum in [σN/σX ,∞), one can state that E {L(t, Z)} has only a mini-
mum for t > σN/σX , which asymptotically corresponds to t0. Moreover, one can
state that, asymptotically when the four hypotheses hold, this expectation mono-
tonically decreases for σN/σX < t < t0 and monotonically increases for t > t0
within this interval.
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Figure 3.7: Example of g(t). The corresponding intervals where the four roots
are located are shown. DWR = 20 dB, WNR = 0 dB, α = 0.5, and t0 = 0.7.

3.B Expectation of the Cost Function for the

high-SNR Case

The expectation of the cost function for (3.15) can be approximated by

E {L(t, z)} ≈ L
(σ2

X + α2∆2/12)t20 + σ2
N

σ2
Xt

2
+ L log

(

2π
(

σ2
N + (1− α)2t2∆2/12

))

+L
(t0 − t)2σ2

X + (t− αt0)
2∆2/12 + σ2

N

σ2
N + (1− α)2t2∆2/12

,

where the assumption L → ∞ is used to apply the CLT in the first and third
terms of the expectation of the cost function to substitute them by power rela-
tions, i.e., the first term by L((σ2

X + σ2
W )t20 + σ2

N) and the third term by using
the approximation (3.19) explained in App. 3.C. This expression can be further
simplified obtaining

E {L(t, z)} ≈ L+ L log
(

2πσ2
N

)

+ L
(t0 − t)2σ2

X + σ2
N

σ2
N

,

where the closeness of t and t0 is used in addition to SCR(t) ≪ 1 to neglect
(1 − α)2t2∆2/12 and (t − αt0)

2∆2/12 compared to σ2
N in the second and third
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terms. In addition HQR ≫ 1 is invoked to neglect α2∆2/12 compared to σ2
X in

the first term, and simultaneously use HQR ≫ 1 and TNQR(t0) ≪ 1 to drop
σ2
N compared to σ2

Xt
2
0 also in the first term.

3.C Modulo-Lattice Reduction of the Received

Signal

In this appendix we analyze the quantization of the received signal by a scaled
version of the lattice used at embedding; indeed, we will consider the case where
the scaling factor of the lattice, which we will denote by t, might be different from
the gain of the flat fading channel the transmitted signal has gone through, i.e.,
t0. Based on basic properties of the modulo-lattice reduction, it is easy to check
that (z − td)mod(tΛ) is equal to

[
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]
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=
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]
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=

[
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(x− d)modΛ
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(x− d)modΛ
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]

mod(tΛ)

=
[

(t0 − t)x+ (t− αt0)
[

(x− d)modΛ
]

+ n
]

mod(tΛ). (3.19)

This sequence of equalities highlights the strong dependence of the modulo-
lattice reduction of the received signal with respect to the difference between
the considered scaling factor t and the real flat fading channel scaling factor
t0, as (t0 − t) multiplies to x, whose variance is much larger that the second
moment of the considered lattice. Therefore, if the distribution of the host signal
is smooth (e.g., Gaussian) even for small values of |t0 − t| the distribution of
the quantization error will quickly converge to the uniform distribution in the
fundamental Voronoi region of Λ. Indeed, this behavior is the ultimate reason
for the decoding issues analyzed in [4] and [51]; however, in this thesis this rapid
evolution of the quantization error distribution with respect to t0 − t is an asset
that enables it improve the estimator performance.
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Chapter 4

Theoretical Analysis of DPCE

In this chapter, a theoretical analysis is carried out in order to obtain the funda-
mental limits of DPCE and also to understand how its asymptotic performance
depends on the scheme parameters (e.g., DWR, WNR, α, etc.).

In Sect. 4.1, the theoretical analysis is conducted following an estimation-
theoretic approach. Specifically, as in many estimation works (e.g., [52], [24],
etc.), the CRB is studied, since it determines a lower bound on the variance
of the error of any unbiased estimator of t0. Approximations of the CRB are
introduced for the proposed approximate pdfs of Z, i.e., for the low-SNR and high-
SNR cases. It is worth pointing out that, as indicated above, the ML estimator
is asymptotically efficient when L tends to infinity; therefore, by comparing the
performance of the ML estimator with the CRB, one can evaluate the efficiency of
our proposed estimators (this performance comparison is presented exhaustively
in Chapter 5).

In Sect. 4.2, we analyze the scaling estimation problem from an information-
theoretic perspective. Specifically, we compare the performance of the proposed
scheme with that achieved by Add-SS/SIT in terms of the mutual information
between between Z and T given the secret key K focusing our analysis, for the
sake of simplicity, on the single letter (i.e., L = 1) case. Since mutual information
measures the information that Z contains about T , the rationale supporting the
use of this metric is that the larger the mutual information, the more information
available to estimate the gain. Although in the rest of the work t is deterministic,
throughout that section T is supposed to follow a Rayleigh distribution with
mode σT (note that this distribution is widely used for the multiplicative part of
flat-fading channels [39]).
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4.1 Estimation Theory: Cramér-Rao Bound

Given an unbiased t0 estimator t̂0(z), Var
{

t̂0(z)
}

≥ 1/I(t0) [34]. I(t0) is known
as the Fisher information and its inverse is called the Cramér-Rao Bound (CRB).
The CRB can be calculated as

CRB =
1

I(t0)
=

(

−E

{

∂2

∂t20
log fZ|T ,K(z|t0,d)

} )−1

=

(

−LE

{

∂2

∂t20
log fZ|T ,K(z|t0, d)

} )−1

; (4.1)

the third equality of the previous expression results of taking into account that
the elements of z and d are independently distributed (the elements of d are also
identically distributed).

As indicated above, the actual pdf of Z is difficult to handle mathematically
and, thus, we have proposed three approximations of its pdf (two for low-SNR sce-
narios and one for high-SNR scenarios). For the same reasons, we calculate the
CRB using these pdf approximations.

4.1.1 Low-SNR Case

The Fisher information is calculated using the approximation of the pdf of Z
f low-SNR
Z|T,K (z|t0, d) (3.8) obtained in Sect. 3.1.1 as

I(t0) ≈ −LED

{

EZ|T,K

{
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∂t20
log f low-SNR

Z|T,K (z|t0, d)
}}

;

in the previous expression ED{·} denotes the expectation with respect to the
distribution of the dither sequence, and EZ|T,K{·} stands for the expectation
with respect to Z for a given gain t0 and dither d. From (3.8)

log
(

f low-SNR
Z|T,K (z|t0, d)

)

= log







e
− z2

2(σ2
N

+σ2
X

t20)
√

2π (σ2
N + σ2

Xt
2
0)







+ log









1 + 2e
−

2π2σ2
X

(

σ2
N+

(1−α)2∆2t20
12

)

∆2(σ2
N

+σ2
X

t2
0) cos

(

2πσ2
Xt0z

∆(σ2
N + σ2

Xt
2
0)

− 2πd

∆

)









= log
(

f low-SNR,a
Z|T,K (z|t0, d)

)

+ log
(

f low-SNR,b
Z|T,K (z|t0, d)

)

.

The previous expression is divided into two components: one corresponding to the

logarithm of the scaled host and noise distribution log
(

f low-SNR,a
Z|T,K (z|t0, d)

)

and
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the other component corresponding to the logarithm of the effect of the DPCE

technique log
(

f low-SNR,b
Z|T,K (z|t0, d)

)

. For the sake of simplicity, the calculation of

the CRB based on that approximated pdf is also split in these two halves.

4.1.1.1 log
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)

To calculate the part of the Fisher information corresponding to
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In order to obtain the expectation of the previous expression, we calculate
E {Z2|T = t0, K = d} using f low-SNR

Z|T,K (z|t0, d) (3.8) as an approximation of the pdf
of Z, yielding
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where, in the previous expression HQR ≫ 1 was used to simplify the argument
of the exponential function. By using this result in (4.2), one approximates the
expectation of (4.2),
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and the expectation with respect to D of the previous expression can be straight-
forwardly calculated, obtaining

∫ ∆/2

−∆/2

1

∆





∫ ∞

−∞

∂2 log
(

f low-SNR,a
Z|T,K (τ |t0, κ)

)

∂t20
f low-SNR
Z|T,K (τ |t0, κ)dτ



 dκ

≈ − 2σ4
Xt

2
0

(σ2
N + σ2

Xt
2
0)

2
. (4.3)

4.1.1.2 log
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)

The verification of the first three hypotheses of the low-SNR case (i.e., HQR ≫ 1,
SCR(t0) ≪ 1, TNQR(t0) ≫ 1) entails a large negative value of the argument of

the exponential of log
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; thus, as one can approximate log(1 +
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can be approximated by

log
(

f low-SNR,b
Z|T,K (z|t0, d)

)

≈ 2e
−

2π2σ2
X(σ2

N+(1−α)2∆2t20/12)
∆2(σ2

N
+(σ2

X)t20) cos

(

2πσ2
Xt0z

∆(σ2
N + σ2

Xt
2
0)

− 2πd

∆

)

.

(4.4)

The expectation with respect to D and Z of the second derivative of (4.4)
with respect to t0 is calculated in App. 4.B, and can be written as
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4.1.1.3 Complete CRB Approximation

The expectation with respect to Z and D of the second derivative with respect to
t0 of the logarithm of f low-SNR

Z|T,K (z|t0, d) can be obtained by adding (4.3) to (4.5).
The corresponding Fisher information approximation can be simplified by taking
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into account that HQR ≫ 1, SCR(t0) ≪ 1, and TNQR(t0) ≫ 1, obtaining

Ilow-SNR(t0) ≈ −LE
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In the previous expression, Ilow-SNR(t0) is divided into two parts. One part

Ialow-SNR(t0),L
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Xt
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(σ2
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Xt
2
0)

2 ,

corresponds to the to the Fisher information of the case when the involved sig-
nals are approximately Gaussian distributed, (i.e., the inverse of the CRB (4.40)
presented in App. 4.A). The other part Iblow-SNR(t0) corresponds to the Fisher
information due to the structure of the signal produced by the embedding algo-
rithm.

4.1.1.3.1 CRB for f low-SNR,2
Z|T,K (z|t0, d)

The CRB corresponding to f low-SNR,2
Z|T,K (z|t0, d) (3.9) is calculated based on the

f low-SNR
Z|T,K (z|t0, d) CRB approximation obtained in the previous section and addi-

tionally considering TNHR(t0) ≪ 1(i.e., by neglecting σ2
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obtaining
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. (4.7)

As in (4.6), the first element of the previous expression is the corresponding
Fisher information of the variance-based estimator of t0, while the second term
corresponds to the Fisher information part of the estimation due to the signal
embedding.
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4.1.2 High-SNR Case

For high-SNR scenarios, the minus logarithm of (4.1) is calculated using the pdf
approximation of Z (3.10) considering, in the same way as (3.19) was developed in
App 3.C, that (z − td) mod (t∆) = [(t0 − t)x+ (t− αt0) [(x− d) mod ∆] + n]
mod (t∆), as

− log
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fhigh-SNR
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)

− 2 log(∆)

]

.

In order to obtain the Fisher information, the second derivative of the previ-
ous expression is calculated with respect to t and subsequently evaluated at t0.
Specifically, jointly assuming that t and t0 are close and thus TNQR(t) ≪ 1, the
modulo-t∆ reduction of the first term in (4.8) can be neglected, and thus that
expression can be written as

− log
(

fhigh-SNR
Z|T,K (z|t0, d)

)

≈ 1

2

[

((t0 − t)x+ (t− αt0) [(x− d) mod ∆] + n)2

σ2
N + (1− α)2t2∆2/12

+ log
(

2π
(

σ2
N + (1− α)2t2∆2/12

))

+
((x+ w)t0 + n)2

σ2
Xt

2
+ log

(

2πσ2
X

)

− 2 log(∆)

]

.

The first derivative of the previous expression with respect to t is

−
∂ log

(

fhigh-SNR
Z|T,K (z|t0, d)

)

∂t

≈ 1

2

(

− 2 ((t0 − t)x+ (t− αt0)w + n)
(

σ2
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)

(
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)2

+
2(1− α)2∆2/12t

σ2
N + (1− α)2t2∆2/12

− 2 ((x+ w)t0 + n)2

σ2
X t3

)

,

and the second derivative with respect to t is

−
∂2 log

(

fhigh-SNR
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(z|t0, d)
)
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≈ 1

2
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σ4
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(
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12
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N

[
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12
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2)2

+
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.
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Calculating the expectation of the previous expression with respect to X , W ,
and N , one obtains

E

{

−
∂2 log(fhigh-SNR

Z|T,K
(z|t0,d))

∂t2

}

≈
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;

by evaluating this expression at t = t0 and multiplying the result by L, the Fisher
information approximation is obtained

I ′high-SNR(t0) ≈ L

(

(

σ4
N

(

σ2
X + α2∆

2

12
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2
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σ2
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)

t20 + σ2
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Xt40

)

= L

(

I ′,ahigh-SNR(t0) + I ′,bhigh-SNR(t0) + I ′,chigh-SNR(t0)

)

. (4.9)

This formula is studied in order to get a larger insight. The term I ′,ahigh-SNR(t0) is
simplified by taking into account that HQR ≫ 1 and TNQR(t0) ≪ 1 as

I ′,ahigh-SNR(t0) ≈
L
(

σ2
X

(

σ4
N + (1− α)4(∆

2

12
)2t40 + 2(1− α)2∆

2

12
σ2
N t

2
0

))

(

σ2
N + (1− α)2∆

2

12
t20
)3

=
Lσ2

X

σ2
N + (1− α)2∆

2

12
t20
, (4.10)

going to infinity under the verification of the three hypotheses of the high-
SNR case (i.e., HQR ≫ 1, SCR(t0) ≪ 1, TNQR(t0) ≪ 1). The term I ′,bhigh-SNR(t0)
in (4.9)

I ′,bhigh-SNR(t0) ,L
(1− α)2∆2/12σ2

N − (1− α)4(∆2/12)2t20
(σ2

N + (1− α)2∆2/12t20)
2

,

it can be lower-bounded as

L
(1− α)2∆2/12σ2

N − (1− α)4(∆2/12)2t20
(σ2

N + (1− α)2∆2/12t20)
2

≥ L
−(1 − α)4(∆2/12)2t20

(σ2
N + (1− α)2∆2/12t20)

2

≥ L
−(1 − α)4(∆2/12)2t20

((1− α)2∆2/12t20)
2 =

−L

t20
;
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similarly, it can be upper-bounded as

L
(1− α)2∆2/12σ2

N − (1− α)4(∆2/12)2t20
(σ2

N + (1− α)2∆2/12t20)
2

≤ L
(1− α)2∆2/12σ2

N

(σ2
N + (1− α)2∆2/12t20)

2

≤ L
(1− α)2∆2/12σ2

N

2(1− α)2∆2/12σ2
N t

2
0

=
L

2t20
.

Finally, based on the verification of HQR ≫ 1 and TNQR(t0) ≪ 1, the remaining
term of (4.9) can be approximated as

I ′,chigh-SNR(t0) ,L
3
((

σ2
X + α2∆2

12

)

t20 + σ2
N

)

σ2
Xt

4
0

≈ 3L

t20
.

Therefore, under the hypotheses of this scenario and since t0 > 0, the Fisher
information will asymptotically converge to (4.10) as HQR ≫ 1, SCR(t0) ≪ 1,
and TNQR(t0) ≪ 1 due to the fact that the I ′,bhigh-SNR(t0) and I ′,chigh-SNR(t0) can be
neglected comparatively,

Ihigh-SNR(t0) ≈
Lσ2

X

σ2
N + (1−α)2

α2 σ2
W t20

. (4.11)

For a given σ2
X and σ2

N , the previous expression is maximized with respect to α
by setting α = 1, i.e., removing the interfering effect of the watermark in the
estimation. In this case, the obtained approximation of the Fisher information is
LDNR, which corresponds to the Fisher information approximation of the case
when y is known by the estimator. However, it is worth noting that Ihigh-SNR(t0) ≈
LDNR is also obtained as long as SCR(t0) ≪ 1, regardless the value of α.

4.1.3 Numerical Results

In the left pane of Figs. 4.1 and 4.2, the CRB vs. t0 curves using the CRB
approximations for low-SNR and high-SNR cases introduced in this thesis are
shown; while in the right pane, the values taken by HQR, SCR(t0), TNQR(t0),
and TNHR(t0) are represented. In addition, the CRBs obtained numerically and
using the variance-based estimator are also depicted.

By the analysis of the evolution of the CRB curves with respect to t0 in these
figures, three different intervals of t0 can be differentiated in relationship with the
pdf of Z:

• For very low values of t0, the channel noise prevails over the scaled host, i.e.,
σ2
N > t20σ

2
X ; therefore, the channel noise severely interferes in the estimation.

Since t0 reduces the ratio σ2
N/(t

2
0σ

2
X) and, thus, such interference, the CRB

decreases with t0.
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Figure 4.1: In (a), CRB vs. t0 curves with our CRB approximations for low-
SNR cases (the inverse of (4.6) and for TNHR(t0) ≪ 1 (4.7)) and for high-
SNR cases (the inverse of (4.11)) are shown. In addition, the curves for the t0
variance-based estimator (4.40) calculated in App. 4.A, and the CRB numerically
calculated (CRB) are also depicted. DWR = 30 dB, WNR = 0 dB, and α = 0.25.
In (b), the corresponding values of the hypotheses are shown.

• For larger values of t0, the scaled host dominates the estimation; however,
there is no structure in the pdf of Z because the power of the channel
noise is much larger than the power of the scaled watermark; therefore,
the estimation approximately only depends on the value t0 and the CRB
increases with it.

• Then, the CRB reaches a local maximum and starts decreasing with t0 when
the induced structure of the pdf of Z appears to improve the estimation.

• Finally, after the CRB gets a local minimum, its value will increase if the
effect of the modularization can not be discarded.

For low values of t0, the CRB curves of our approximations using
f low-SNR
Z|T,K (z|t, d) almost perfectly match the numerically obtained CRB curves as

HQR ≫ 1, SCR(t0) ≪ 1, and TNQR(t0) ≫ 1 are approximately verified for
small values of t0 (t0 ∈ [0, 0.2] for α = 0.25 and t0 ∈ [0, 0.75] for α = 0.75).
For the CRB curve based on the approximation f low-SNR,2

Z|T,K (z|t, d), the width of
these intervals, where the approximation is tight, is reduced in its lower endpoint
due to the required fulfillment of TNHR(t0) ≪ 1; specifically, for both α = 0.25
and α = 0.75 cases TNHR(t0) ≪ 1 holds approximately for t0 ≥ 0.1 (note that
TNHR(t0) decreases with t0). It is worth pointing out that in these examples,
if t0 takes low values, the CRB of the DPCE case will tend to the CRB of the
variance-based estimator; this is reflected in the proposed CRB approximations
for the low-SNR case as the second term in both approximations (4.6) and (4.7)
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Figure 4.2: In (a), CRB vs. t0 curves with our CRB approximations for low-
SNR cases (the inverse of (4.6) and for TNHR(t0) ≪ 1 (4.7)) and for high-
SNR cases (the inverse of (4.11)) are shown. In addition, the curves for the t0
variance-based estimator (4.40) calculated in App. 4.A, and the CRB numerically
calculated (CRB) are also depicted. DWR = 30 dB, WNR = 0 dB, and α = 0.75.
In (b), the corresponding values of the hypotheses are shown.

tends to zero, just remaining the part due to the variance-based estimator of t0
that is calculated in App. 4.A.

For large values of t0 and α = 0.25, the CRB approximation 1/Ihigh-SNR(t0)
is closer to the numerically obtained curve of the CRB than 1/Ilow-SNR(t0) and
1/Ilow-SNR,2(t0). For the α = 0.75 scenario, the low-SNR and the high-SNR CRB
approximations approximately match the actual CRB curve for large values of t0;
however, as TNQR(t0) decreases with t0 for larger values of t0, the high-SNR CRB
approximation gets tighter than the other approximations.

In Fig. 4.3, the CRB curves and our approximations are shown as a function
of t0 for different values of DWR. As expected, whenever TNQR(t0) takes large
values and, thus, there is no structure in the pdf of Z (this does not occurs
for t0 ≤ 0.1 for DWR = 20 dB), the CRB is approximately independent of
the value of the DWR. In addition, the structure appears almost for the same
value of t0 (i.e., around t0 = 0.3); however, the achieved values of CRB for
larger t0 depend on DWR as one can deduce from om the expression of the high-
SNR approximation to the Fisher information in (4.11): the larger the value of the
DNR, the smaller the CRB. It is worth noting, accordingly to the the verification
of the hypotheses, that for large values of t0, the curves for the high-SNR case
are better approximations than the low-SNR ones.

Fig. 4.4 is similar to Fig 4.3, but fixing the value of the DWR to 40 dB,
modifying the value of the WNR = −3, 0, 3 dB, and α = 1. As above, if there
is no structure in the distribution of Z, for low values of t0, then the CRB will
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Figure 4.3: CRB vs. t0 numerically obtained (solid lines), using the low-SNR CRB
approximations (dashed lines for the inverse of (4.6) and dashdot lines for the
inverse of (4.7)), and the high-SNR CRB approximation (dotted lines based on
(4.11)). WNR = 0 dB , α = 0.5, and L = 103.

not depend on the value of WNR. The value of t0 for which there is structure
in the pdf of Z depends on the WNR: the larger WNR, the smaller the required
value of t0. For large values of t0, the CRB decreases with WNR as one can easily
deduce from (4.11). Note that in comparison with the previous figure, the CRB
asymptotically reaches the minimum for t0 → ∞ (approximately, 1/(LDNR));
while in the previous figure, after reaching a local minimum, the CRB increases
with t0 again. This is due to the fact that in this case there is no self-noise (α = 1)
while in Fig. 4.3 there is, which interferes in the estimation in addition to the
channel noise.

The curves of the CRB as a function of the value of t0 are shown in Fig. 4.5
for DWR = 30 dB, WNR = 0 dB, L = 103, and α = 0.5, 0.75, 1, αCosta. In this
figure only 1/Ilow-SNR,2(t0) is depicted for the low-SNR case (i.e., 1/Ilow-SNR(t0) is
not shown).

From the analysis of the numerical CRB with respect to α, one can conclude
that the structure of the pdf of Z arises for larger values of t0 as the value of
α is increased, and also achieves a larger asymptotic precision whenever t0 takes
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Figure 4.4: CRB vs. t0 numerically obtained (solid lines), using the low-SNR CRB
approximations (dashed lines using (4.6) and dashdot lines for (4.7)), and the
high-SNR CRB approximation (dotted lines for the inverse of (4.11)). DWR
= 40 dB , α = 1, and L = 103.

large values. Therefore, there is a clear trade-off between the presence of the
structure of the pdf of Z and the asymptotic value with large values of t0. As
stated above, the value α = αCosta was introduced due to its performance in
digital watermarking. According to the shown results, the best performance is
not achieved for this value of α = αCosta (as one might guess because of its
optimality in digital watermarking) and, thus, this suggests that there is room
for improvement in the performance of DPCE techniques with respect to α.
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Figure 4.5: Cramér-Rao Bound vs. t0 numerically obtained (CRB), using the
low-SNR CRB approximation based on (4.7) (LSNR), and the high-SNR CRB
approximation using (4.11) (HSNR). DWR = 30 dB , WNR = 0 dB, α =
0.5, 0.75, 1, αCosta, and L = 103.
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4.2 Information Theory: Mutual Information

As stated at the beginning of this chapter, the values taken by the gain of the
channel are modeled by a Rayleigh distributed random variable T whose pdf is
defined as:

fT (t) =







te
− t2

2σ2
T

σ2
T

, if t ≥ 0

0 , elsewhere
.

It is worth recalling that the differential entropy of a continuous random variable
B is defined as [11]

h(B) = −
∫ ∞

−∞
fB(β) log(fB(β))dβ;

therefore, the differential entropy of T is given by

h(T ) = 1 + log(σT/
√
2) + γ/2,

where γ stands for the Euler’s constant, i.e., γ , limn→∞
[

(
∑n

k=1
1
k
)− log(n)

]

.

For the sake of simplicity, we will focus on the scenario where the considered
signals are scalar, so the mutual information between Z and T given K, i.e.
I(Z;T |K), will be used to quantify the information about T acquired from the
observation of Z by an agent aware of the secret key K.

This analysis will deal with two scenarios:

• The receiver knows the inserted symbol and the secret key (corresponding
to the scenario where a pilot symbol is used).

• The receiver does not know the embedded symbol but indeed knows the
secret key (traditional data hiding problem).

First, both cases are theoretically analyzed by assuming a noiseless scenario.
Then, the channel noise is introduced in the framework for each case and the
mutual information is approximated by taking advantage of the mathematical
tractability of the proposed closed-form expressions of the pdfs of Z developed in
Sect. 3.1.

4.2.1 Inserting Pilot Symbol

The mutual information between Z and T when the embedded symbol B is known
can be expressed as

I(Z;T |K,B) = h(Z|K,B)− h(Z|T,K,B), (4.12)
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where in the previous expression h(Z|K,B) stands for the differential entropy of
Z given K and B, while h(Z|T,K,B) similarly denotes the differential entropy
of Z knowing K, B, and also T , which can calculated by

h(Z|T,K,B) =

∫ ∞

0

fT (τ)h (Z|T = τ,K,B) dτ. (4.13)

4.2.1.1 No Channel Noise

In absence of the channel noise, Z can be expressed as Z = T · Y ; therefore, the
expression (4.13) can be simplified

h(Z|T,K,B) =

∫ ∞

0

fT (τ)h(τY |K,B)dτ ;

moreover, since h(tY |K,B) = h(Y |K,B)+log(t) [11], we can equivalently express
the mutual information as

I(Z;T |K,B) = h(Z|K,B)− h(Y |K,B)−
∫ ∞

0

log(τ)fT (τ)dτ

= h(Z|K,B)− h(Y |K,B)− 1

2

(

log(2σ2
T )− γ

)

. (4.14)

For both Add-SS/SIT and DPCE, we were not able to achieve a closed-form
expression for I(Z;T |K,B), there is not a closed-formula for the exact pdf of Z;
however, the asymptotic values of I(Z;T |K,B) when DWR goes to ∞ dB and to
−∞ dB can indeed be analyzed. Let us mention that we are aware that the set
of applications of the case DWR → −∞ dB is smaller than DWR → ∞ dB case
due to the embedding distortion; however, we still find it interesting to study in
order to obtain the complete asymptotic characteristics of the proposed problem.

4.2.1.1.1 Additive Spread Spectrum and Superimposed Training

For the analyzed Add-SS embedding [12] and SIT techniques [58], Y can be
expressed as

Y = X + (−1)B+1S,

where, on one hand, S models the so-called spreading sequence in Add-SS, which
is a deterministic function of K; therefore, for the sake of notational simplicity we
will write K = s implying that s is the only key-dependent component in Y . On
the other hand, (−1)B+1S models the superimposed training sequence following
the SIT approach; therefore the obtained results are also valid for SIT. We will
assume, without loss of generality, that the embedded bit is B = 1, yielding the
following pdf for Y

fY |K,B(y|s, 1) =
1

σx

√
2π

e
− (y−s)2

2σ2
x ,
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and consequently h(Y |K,B) = 1
2
log(2πeσ2

X).

In order to calculate I(Z;T |K,B), fZ|K,B(z|s, 1) is also needed. This distri-
bution can be obtained as the marginal distribution of Z from the joint pdf of Z
and T (fZ,T |K,B(z, t|s, 1))

fZ|K,B(z|s, 1) =
1

σ2
TσX

√
2π

∫ ∞

0

e
− w2

2σ2
T e

− (z/w−s)2

2σ2
X dw. (4.15)

DWR→ ∞ dB

For large values of DWR, it is reasonable to assume that pdf of Y given K
can be approximated, dropping the mean value s, as

fY |K(y|s) =
1

σX

√
2π

e
− y2

2σ2
X ,

so one can approximate (4.15) as

fZ|K,B(z|s, 1) ≃
1

σ2
TσX

√
2π

∫ ∞

0

e
− w2

2σ2
T e

− (z/w)2

2σ2
X dw =

e
− |z|

σT σX

2σXσT

,

i.e., the pdf of Z can be approximated by a Laplacian distribution with variance
2σ2

Xσ
2
T , being the corresponding differential entropy

h(Z|K,B) = log(2eσTσX).

Thus, using (4.14) with the previous expression under the high DWR assumption,
I(Z;T |d) can be approximated by

I(Z;T |K,B) ≃ 1

2
(1 + γ − log (π)) , κ ≃ 0.216. (4.16)

DWR→ −∞ dB

In this case, the distribution of Y is very narrow compared with the value of s
and, thus, the pdf of Y can be approximated, in order to calculate fZ|K,B(z|s, 1),
by a delta function centered at ±s, i.e., δ(y ± s). Consequently, the distribution
of Z is the distribution of T scaled by |s|, and possibly inverted, i.e., for z > 0

fZ|K,B(z|s, 1) ≃
ze

− z2

2s2σ2
T

s2σ2
T

1

σX

√
2π

∫ ∞

−s

e
− η2

2σ2
X dη ≃







ze
− z2

2s2σ2
T

s2σ2
T

, if s > 0

0 , otherwise
.
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Similarly, whenever z < 0 one can approximate

fZ|K,B(z|s, 1) ≃







−ze
− z2

2s2σ2
T

s2σ2
T

, if s < 0

0 , otherwise
.

Be aware that the obtained function for z > 0 and s > 0, or z < 0 and s < 0,
corresponds to a Rayleigh distribution with parameter sσT . This allows one to
approximate the entropy of Z given B and a particular value of K as,

h(Z|K = s, B) ≃ h(T ) + log(|s|) = 1 + log(σT /
√
2) + γ/2 + log(|s|),

so

h(Z|K,B) ≃ 1 + log(σT/
√
2) + γ/2 +

∫ ∞

−∞
fK(s) log(|s|)ds.

From the last formula, (4.14), and the previously calculated h(Y |K,B),
I(Z;T |K,B) can be approximated as

I(Z;T |K,B) ≃ 1− log(2) + γ − 1

2

∫ ∞

−∞
fK(s) log

(

2πe
σ2
X

|s|2
)

ds.

As a particular case of the previous formula we can study the schemes where the
spreading sequence is just binary; concretely, wherever P (K = −σW ) = P (K =
+σW ) = 1

2
, the last formula can be rewritten as

I(Z;T |K,B) ≃ 1− log(2) + γ − 1

2
log (2πeDWR) . (4.17)

4.2.1.1.2 Dirty Paper Coding

Recalling (2.2) introduced in Sect. 2.3, Y , obtained using a distortion compen-
sated quantizer, can be expressed as

Y = X + α [Q∆ (X −∆(B/M)−D)− (X −∆(B/M)−D)] ,

where in the previous expression Q∆(·) denotes a scalar uniform quantizer with
step-size ∆, and B takes values in {0, · · · ,M − 1}. We will focus on the binary
case, i.e., M = 2, and the dither vector D, which is a deterministic function of
the secret key K, is assumed to be uniformly distributed in [−∆/2,∆/2], i.e.,
D ∼ U(−∆/2,∆/2). Furthermore, for the sake of notational simplicity, and
without loss of generality, we will assume that B = 0. Similarly to the Add-SS
and SIT cases, we will write K = d when meaning that the considered value of
K yields the dither d. In this way

fY |K,B(y|d, 0) =























∑∞
i=−∞

1
1−α

fX

(

y−α(i∆+d)
1−α

)

,

if |y − d− i∆|< (1− α)∆
2

0, otherwise

.
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Moreover, the probability density function of Z can be obtained as

fZ|K,B(z|d, 0) =
1

σ2
T

∫ ∞

0

e
− τ2

2σ2
T fY |K,B(z/τ |d, 0)dτ. (4.18)

DWR→ ∞ dB

When DWR → ∞ dB, it is well-known that one can accurately model
W ∼ U (−α∆/2, α∆/2). Therefore, h(Y |K,B) can be calculated by using the
properties of the differential entropy, yielding

h(Y |K,B) = h(Y |B)− I(Y ;K|B) = h(Y )− h(K|B) + h(K|Y,B)

≃ h(X)− log(∆) + log((1− α)∆) (4.19)

= h(X) + log(1− α),

where in (4.19), we are considering that h(K) = h(K|B), K ∼ U(−∆/2,∆/2)
and due to the DWR → ∞ dB approximation, h(Y ) ≃ h(X) and h(K|Y,B) ≃
log((1− α)∆).

Now, focusing on h(Z|K,B), it can be seen that

fZ|K,B(z) ≃
e
− |z|

σXσT

2σTσX

,

so

h(Z|K,B) = log(2eσTσX).

Finally, we have that

I(Z;T |K,B) ≃ 1

2

(

1 + γ − log(π)− log((1− α)2)
)

. (4.20)

DWR→ −∞ dB

If DWR → −∞ dB, D becomes a critical parameter. Its study will be divided
in three different cases: D = 0, D = ±∆/2, and 0 < D < ∆/2 (equivalent to
−∆/2 < D < 0).

• On one hand, if D = 0 and the value of ∆ goes to ∞ (trying to achieve
DWR→ −∞ dB), almost all the probability of X is concentrated in the
Voronoi region of the zero centroid. Therefore, y ≃ x − αx, the minimal
DWR is 1/α2 (thus, in this case DWR→ −∞ dB cannot be achieved) and
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fY |K,B(y|0, 0) = 1/(1 − α)fX (y/(1− α)). Furthermore, fZ|K,B(z|0, 0) can
be approximated as

fZ|K,B(z|0, 0) ≃
e
− |z|

σT (1−α)σX

2(1− α)σXσT

,

which is obtained by following the same approach of Add-SS/SIT for DWR
→ ∞ dB.

As a result, it is easy to see that

I(Z;T |K = 0, B = 0) ≃ 1

2
(1 + γ − log(π)) = κ.

• On the other hand, if D = ∆/2 and DWR goes to −∞ dB (increasing the
size of the quantization step ∆), fY |K,B(z|∆/2, 0) can be approximated by

fY |K,B(y|∆/2, 0) ≃















1
1−α

fX

(

y−α∆/2
1−α

)

, if y ≥ α∆/2

1
1−α

fX

(

y+α∆/2
1−α

)

, if y < −α∆/2

0, otherwise

,

so the corresponding differential entropy will be

h(Y |K = ∆/2, B = 0) =
1

2
log
(

2πeσ2
X

)

+ log (1− α) .

Note that h(Y |K = ∆/2, B = 0) does not depend explicitly on ∆, and its
dependence on α is just a shift by log(1−α). Regarding h(Z|K = ∆/2, B =
0), operating in a similar way to Sect. 4.2.1.1.1, it can be seen that

h(Z|K = ∆/2, B = 0) ≃ h(T ) + log(2) + log

(

α∆

2

)

= 1 + log

(

σT√
2

)

+
γ

2
+ log(α∆).

Be aware that in this case h(Z|K = ∆/2, B = 0) depends on α and
∆ through log(α∆). Taking into account all these considerations about
h(Y |K = ∆/2, B = 0) and h(Z|K = ∆/2, B = 0), it is straightforward to
see that when K = ∆/2 and DWR→ −∞ dB I(Z;T |K = ∆/2, B = 0)
will be described by a family of parallel curves obtained for the different
values of α, and it will go to infinity as ∆ is increased, or equivalently, as
the DWR is decreased. Formally,

I(Z;T |K = ∆/2, B = 0) ≃ 1− log(2) + γ − 1

2
log

(

2πe
(1− α)2σ2

X

α2∆2

)

.

Therefore, we can state that with K = ∆/2 and B = 0, the DWR can
decrease boundlessly (be aware that the distortion will also increase bound-
lessly, which is generally not possible in real applications) and, at the same
time, increase I(Z;T |K = ∆/2, B = 0).
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• In the scenario where D is in (−∆/2, 0) ∪ (0,∆/2) and B = 0, most of
probability of Y corresponds to the centroid of B = 0 which is the closest
one to the origin, i.e., at αd; hence, the pdf of Y is a shift and scaled version
of the pdf of X ,

fY |K,B(y|d, 0) ≃
1

1− α
fX

(

y − αd

1− α

)

,

and therefore h(Y |K = d, B = 0) = 1
2
log (2πeσ2

X) + log(1− α).

In order to calculate the pdf of Z, the pdf of Y is approximated by
fY |K,B(y|d, 0) ≃ δ(y − αd) and thus the distribution of Z becomes a scaled

version of the original Rayleigh distribution, i.e., fZ|K,B(z|d, 0) ≃ fT (z/(αd))
αd

;
where the corresponding differential entropy is h(Z|K = d, B = 0) ≃
1 + log(σT/

√
2) + γ/2 + log(|αd|).
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Figure 4.6: I(Z;T |K,B) vs. DWR curves for both Add-SS (solid line without
symbols) and DPCE cases for different α with σX = 1 and σT = 1. S follows
an equiprobable binary antipodal distribution. In the DPCE case, the cases with
d = 0 (solid lines with symbols) and d = ∆/2 (dotted lines with symbols) are
also depicted for B = 0. In addition, several asymptotic values are represented
(dashdot lines without symbols).

Finally, the mutual information when D ∈ (−∆/2, 0) ∪ (0,∆/2) and DWR
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goes to −∞ dB is

I(Z;T |K = d, B = 0) ≃ 1 + γ − log(2)− log

(

(1− α)

α

σX

|d|

)

− 1

2
log(2πe).

(4.21)
Since D is uniformly distributed in [−∆/2,∆/2]; therefore, the mutual
information between Z and T given K and B is obtained using the previous
expression averaging with respect to D as

I(Z;T |K,B) ≃ 1 + γ − log(2)− log

(

(1− α)σX

α

)

−
[

1

∆

∫ ∆/2

−∆/2

log
1

|τ |dτ
]

−1

2
log(2πe)

= 1 + γ − log(2)− log

(

(1− α)σX

α

)

−
[

1 + log

(

2

∆

)]

−1

2
log(2πe)

= γ − 1

2
log(2πe)− log

(

4σX(1− α)

α∆

)

= γ − 1

2
log(2πeDWR) + log

( √
3

2(1− α)

)

. (4.22)

4.2.1.1.3 Numerical Results

Fig. 4.6 depicts I(Z;T |K,B) as a function of the DWR, for both Add-SS and
DPCE (for K = 0 and K = ∆/2, B = 0, and different values of α) scenarios with
the following parameters: σX = 1 and σT = 1. Moreover, the asymptotic values
when DWR → −∞ dB and DWR → ∞ dB are also represented. In Fig. 4.7
the mutual information curves for different dither sequences (without ∆/2 and
0) and the corresponding approximations for the DPCE are represented when
DWR→ −∞ dB. Furthermore, Fig. 4.8 shows I(Z;T |K,B) when the Add-SS
embedding technique is used with the DWR→ ±∞ dB approximations.

By analyzing Figs. 4.6-4.8, we can observe that the theoretical and the nu-
merical results almost perfectly match, showing the accuracy of our analysis.

Focusing on the asymptotic case DWR→ ∞ dB, the curves show that the
DPC-based technique outperforms the Add-SS/SIT approach. Theoretically, this
can be verified in their mutual information approximations (4.20) for DPC-based
techniques and (4.16) for Add-SS/SIT, where that obtained for our technique is
the mutual information for Add-SS/SIT plus the term − log((1−α)2) that takes
positive values if α > 0 (note that for α = 0, there is not watermark) due to
α ≤ 1 and, therefore, log((1−α)2) is negative. These results indicate that for our
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Figure 4.7: I(Z;T |K = d, B = 0) vs. DWR curves using DPCE embedding
for different α and dither sequences with σX = 1 and σT = 1. The solid lines
correspond to the empirically obtained values of I(Z;T |K = d, B) for d = −0.2∆
and dashdot lines when d = 0.4∆; the dotted lines are the approximation (4.21)
when DWR→ −∞ dB for d = −0.2∆ and dashed lines if d = 0.4∆.
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Figure 4.8: I(Z;T |K = s, B) vs. DWR curves (solid lines) for Add-SS/SIT
embedding and the DWR→ ±∞ dB approximations. S follows a equiprobable
binary antipodal distribution.



64 4.2. Information Theory: Mutual Information

technique α should take the largest possible value in order to obtain the largest
mutual information value in the noiseless case.

Now we consider the asymptotic case DWR→ −∞ dB. By comparing their ex-
pressions, (4.17) for Add-SS/SIT and (4.22) for DPC-based estimation techniques,
and according to Figs. 4.6-4.8, if the dither sequence is uniformly distributed in
[−∆/2,∆/2], then the DPC-based estimation will outperform Add-SS/SIT. This
conclusion can be easily reached by comparing the corresponding expressions
for mutual information. If log(

√
3/(1 − α)) > 1, then DPCE will outperform

Add-SS/SIT which is verified for α > 1−
√
3/e ≈ 0.36 (in shown curves α takes

values larger than this bound). Again, the mutual information for our technique
indicates that α must take the largest possible value, which is coherent with
the noiseless case for digital watermarking, where the optimal α → 1 whenever
WNR→ ∞.

4.2.1.2 With Channel Noise

By assuming that the distribution of Z is mainly due to variability of X and
T (i.e., neglecting the influence of the watermark and the channel noise on that
distribution, which is reasonable under the HQR ≫ 1 and TNHR(t0) ≪ 1 as-
sumptions) one can write, both for Add-SS/SIT and our DPC-based approach,

fZ(z) ≈
∫ ∞

0

te−t2/(2σ2
T )

σ2
T

e−z2/(2t2σ2
X)

√

2πt2σ2
X

dt =
e−|x|/(σT σX)

2σTσX
,

i.e., Z is Laplacian distributed with zero-mean and variance 2σ2
Tσ

2
X ; consequently,

its differential entropy is

h(Z|K,B) ≈ 1 + log(2σTσX). (4.23)

4.2.1.2.1 Additive Spread Spectrum and Superimposed Training

Under the hypotheses HQR ≫ 1 and TNHR(t0) ≪ 1, the scenario is analogous
to the noiseless case with DWR → ∞ dB introduced above; thus, if T = t, then
h(Z|T = t,K) = 1

2
log(2πet2σ2

X), whose average over fT (t) is

h(Z|T,K,B) ≈ log(2) +
1

2

[

1− γ + log(πσ2
Tσ

2
X)
]

.

Consequently, the mutual information between Z and T for superimposed pilots
is

I(Z;T |K,B) = h(Z|K,B)− h(Z|T,K,B) ≈ 1

2
[1 + γ − log(π)] = κ. (4.24)

Note that for superimposed pilots the considered mutual information does not
depend on the host signal variance σ2

X , the channel variance σ2
N , or σ

2
T .
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4.2.1.2.2 Dirty Paper Coding

In order to obtain the closed-form expressions for I(Z;T |K,B) in scenarios with
channel noise, the approximations to the pdf of Z obtained in Sect. 3.1 are used
for the two analyzed scenarios: low-SNR and high-SNR. In order for the analysis
to be valid, the hypotheses for the deterministic gain of each case must be verified
in the intervals of the support set of T whose probability is not negligible.

Low-SNR Case

For the sake of simplicity, we use in our analysis the simplest approximation
of the pdf of Z for low-SNR cases (3.9) obtained assuming that HQR ≫ 1,
SCR(t0) ≪ 1, TNQR(t0) ≫ 1, and TNHR(t0) ≪ 1.

To approximate h(Z|T,K,B), first h(Z|T = t,K,B) is calculated using the
pdf approximation as

h(Z|T = t,K,B) = −
∫ ∞

−∞
f low-SNR,2
Z|T,K (z|t, d) log

(

f low-SNR,2
Z|T,K (z|t, d)

)

dz

= −
∫ ∞

−∞
f low-SNR,2
Z|T,K (z|t, d) log





e
− z2

2t2σ2
X

√

2πt2σ2
X



 dz

−
∫ ∞

−∞
f low-SNR,2
Z|T,K (z|t, d) log



1 + 2e−
2π2

(

σ2
N+

(1−α)2∆2t2

12

)

∆2t2 cos

(

2πz

∆t
− 2πd

∆

)



 dz.

(4.25)

The result of the first integral in (4.25) averaged with respect to D is
−1/2 log (2πσ2

Xt
2) − 1/2. The average with respect to D of the second integral

in (4.25) is 2 exp {−1/3π2(1− α)2 − (4π2σ2
N )/(∆

2t2)}, where we have used that
if |x|≪ 1 then log(1 + x) ≈ x. With these two approximations, (4.25) becomes

h(Z|T = t,K,B) ≈ 1

2

(

−4e−
1
3
π2(1−α)2− 4π2σ2

N
∆2t2 + log

(

2πσ2
Xt

2
)

+ 1

)

.

In order to obtain the conditional differential entropy, the previous expression is
averaged with respect to T as

h(Z|T,K,B) ≈
∫ ∞

0

fT (τ)
1

2

(

−4e−
1
3
π2(1−α)2− 4π2σ2

N
∆2τ2 + log

(

2πσ2
Xτ

2
)

+ 1

)

dτ

≈ 1

2



−
8
√
2πe−

1
3
π2(1−α)2σNK1,B

(

2
√
2πσN

∆σT

)

∆σT
+ 2 log(σTσX)− γ + 1 + log(4π)



 ,

(4.26)
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where K1,B(·) stands for the modified Bessel function of the second kind [1, p.
376] and, in this case, it can be expressed in its integral form as

K1,B(z) , z

∫ ∞

1

e−zτ
√
τ 2 − 1dτ. (4.27)

Therefore, by subtracting (4.26) from (4.23), it is straightforward to obtain
the mutual information approximation for the low-SNR case as

I(Z;T |K,B) ≈ 1

2





8
√
2πe−

1
3
π2(1−α)2σNK1,B

(

2
√
2πσN

∆σT

)

∆σT
+ 1 + γ − log(π)





=
4
√
2πe−

1
3
π2(1−α)2σNK1,B

(

2
√
2πσN

∆σT

)

∆σT

+ κ. (4.28)

Since the argument of K1,B(·) is positive in the previous expression, it is straight-
forward to realize from (4.27) that K1,B(·) will also take positive values; thus

4
√
2πe−

1
3
π2(1−α)2σNK1,B

(

2
√
2πσN

∆σT

)

∆σT
> 0.

Therefore, I(Z;T |K,B) takes values larger than or equal to the ones obtained
for Add-SS/SIT, as one can conclude comparing (4.28) and (4.24). In addition,
the division into two summands of the mutual information (4.28) allows us to
identify that the term containing K1,B(·) corresponds to the contribution due to
the introduced structure in the distribution of Z by DPCE.

High-SNR Case

In the high-SNR scenario, we can approximate

h(Z|T = t,K) ≈ 1

2
log(2πeσ2

X)− log(∆)

+
1

2
log

(

2πe

[

σ2
N +

(1− α)2∆2t2

12

])

, (4.29)

where 1
2
log(2πeσ2

X) − log(∆) is the discrete entropy of the centroid used at the
embedder when HQR ≫ 1 and 1

2
log(2πe[σ2

N + (1 − α)2∆2t2/12]) stands for the
differential entropy of Z given the used centroid. Note that under the high-
SNR assumption SCR(t0) ≪ 1, so the sum of channel noise and self-noise can be
approximated as Gaussian, and TNQR(t0) ≪ 1, and consequently the modulo-
lattice reduction of the total noise can be neglected.
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Figure 4.9: I(Z;T |K,B = 0) vs. DWR employing Add-SS/SIT techniques when
the embedded bit is known and S follows an equiprobable binary antipodal dis-
tribution for different values of WNR (expressed in dB). The dashdot line corre-
sponds with the approximation for DWR → ∞ dB. The dashed line corresponds
to the noiseless case when DWR → −∞ dB. σX = 1 and σT = 1.
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The expression in (4.29) can be averaged over T , yielding

h(Z|T,K) ≈ 1

2
log(2πeσ2

X)− log(∆)

+
1

2

(

−e
6σ2

N
(α−1)2∆2σ2

T Ei

(

− 6σ2
N

(α− 1)2∆2σ2
T

)

+ 2 log(σN ) + 1 + log(2π)

)

;

where, Ei(x) , −
∫∞
−x
(e−t/t)dt stands for the exponential integral function [1, p.

228]. Therefore, the mutual information in this case can be approximated as

I(Z;T |K) ≈ 1

2
e

6σ2
N

(α−1)2∆2σ2
T Ei

(

− 6σ2
N

(α− 1)2∆2σ2
T

)

+ log

(

∆σT

πσN

)

; (4.30)

the limit of the previous expression when the value of WNR (defined as in Chap. 2)
goes to the infinity for a finite value of σT is

lim
WNR→∞

I(Z;T |K) =
1

2

(

log(6) + γ − log(π2)− log((1− α)2)
)

. (4.31)

This expression is compared with the counterpart for the case without the channel
noise (4.20) showing the same increasing tendency with α discussed above. In
addition, the result of subtracting (4.31) from (4.20) is 1/2(1−(log(6)−log(π))) ≈
0.176 which is the gap between the two approximations for this asymptotic case.

4.2.1.2.3 Numerical Results

Fig. 4.9 shows empirical curves of the mutual information when the
Add-SS/SIT technique is used for several scenarios with channel noise. In addi-
tion, the approximation for DWR→ ∞ dB is depicted and the approximation in
absence of channel noise is also depicted for DWR→ −∞ dB. It can be shown that
the empirical curves asymptotically converge to the respective approximations.

Figs. 4.10 and 4.11 depict the curves of I(Z;T |K,B) obtained numerically for
our algorithm considering the noisy scenario. As one could guess, the larger the
value of WNR and DWR, the closer these curves to their corresponding approx-
imations of the noiseless scenario. Moreover, the approximations of the mutual
information for the analyzed cases are also depicted. In both cases, the approxi-
mations get tighter by increasing α in their hypotheses verification scenarios. The
approximation for high-SNR cases when WNR goes to infinity (4.31) indicates, in
accordance to the numerical results with noise, the mutual information increases
with α (note that the value taken by α cannot be 1).
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Figure 4.10: I(Z;T |K = 0, B = 0) vs. DWR curves using DPCE and α = 0.5
numerically obtained (solid lines), with the approximation for low-SNR cases
(4.28) (dotted lines), and (4.30) for high-SNR cases (dashdot lines). The dashed
line corresponds with the noiseless case for DWR→ ∞ dB.
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Figure 4.11: I(Z;T |K = 0, B = 0) vs. DWR curves using DPCE and α = 0.85
numerically obtained (solid lines), with the approximation for low-SNR cases
(4.28) (dotted lines), and (4.30) for high-SNR cases (dashdot lines). The dashed
line corresponds with the noiseless case for DWR→ ∞ dB.
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Focusing on the curves for WNR = −20 dB, one can see that the mutual
information tends to κ (i.e., approximately 0.2162); as discussed above, this veri-
fies that the mutual information is always larger for DPCE than for Add-SS/SIT
when DWR→ ∞ dB, being only equal when WNR tends to −∞ dB.

4.2.2 No Pilot Symbols

In this section, the mutual information between Z and T is studied assuming
that the secret key is known, but the embedded bit is not known. In this case,

I(Z;T |K) = h(Z|K)− h(Z|T,K),

where the previous expression is not conditioned by B as (4.12) does.

4.2.2.1 No Channel Noise

If there is not channel noise, I(Z;T |K) can be expressed as

I(Z;T |K) = h(Z|K)− h(Y |K)−
∫ ∞

0

log(τ)fT (τ)dτ

= h(Z|K)− h(Y |K)− 1

2

(

log(2σ2
T )− γ

)

.

As in Sect. 4.2.1.1, we have not been able to find a closed-formula for
I(Z;T |K); however, an analysis of both techniques (Add-SS and DPCE) when
DWR→ ±∞ dB is carried out next.

4.2.2.1.1 Additive Spread Spectrum and Superimposed Training

For the sake of comparison, the Add-SS/SIT techniques described in
Sect. 4.2.1.1.1 are used in this section. Considering that B = 0 and B = 1
are equiprobable, the pdf of Y is

fY |K(y|s) =
1

2σx

√
2π

e
− (y−s)2

2σ2
x +

1

2σx

√
2π

e
− (y+s)2

2σ2
x . (4.32)

Concerning the pdf of Z,

fZ|K(z|s) =
1

2

1

σ2
TσX

√
2π

[

∫ ∞

0

e
− w2

2σ2
T e

− (z/w−s)2

2σ2
X dw +

∫ ∞

0

e
− w2

2σ2
T e

− (z/w+s)2

2σ2
X dw

]

.
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DWR→ ∞ dB

When DWR → ∞, Y can be approximated by a zero-mean Gaussian dis-
tribution, as |z/w|≫ |s| with probability asymptotically close to 1. Therefore,
fZ|K(z|s) can be approximated by,

fZ|K(z|s) ≃
1

2

1

σ2
TσX

√
2π

[

∫ ∞

0

e
− w2

2σ2
T e

− (z/w)2

2σ2
X dw +

∫ ∞

0

e
− w2

2σ2
T e

− (z/w)2

2σ2
X dw

]

=
e
− |z|

σT σX

2σTσX

,

where fZ|K(z|s) becomes a Laplacian distribution. Thus, the entropies of Y and
Z are respectively

h(Y |K = s) ≃ 1

2
log(2πeσ2

X),

h(Z|K = s) ≃ log(2eσTσX),

and the resulting mutual information between Z and Y is

I(Z;T |K = s) ≃ h(Z)− h(Y )− 1

2

(

log(2σ2
T )− γ

)

=
1

2
(1 + γ − log(π)) = κ;

note that this expression is equal to (4.16). Be aware that in this case h(Y |K = s),
h(Z|K = s), and I(Z;T |K = s) are all independent of the particular value of K
(as it will negligible compared to z/t), so one could equivalently consider h(Y |K),
h(Z|K), and I(Z;T |K).

DWR→ −∞ dB

If DWR → −∞ dB, the two peaks of fY |K(y|s) (centered at ±s) are far
enough to consider that the tails of each bell of the distribution do not overlap,
thus h(Y |K = s) ≃ h(X) + log(2). Moreover, in order to calculate the pdf of
Z, a similar reasoning to that in Sect. 4.2.1.1.1 can be used, obtaining that Z is
nothing but T scaled by ±s, i.e.

fZ|K(z|s) ≃
{

fT (z/|s|)
2|s| if z ≥ 0

fT (−z/|s|)
2|s| otherwise

.

Using this assumption,

h(Z|K = s) ≃ 1 + log

(

σT√
2

)

+
γ

2
+ log(2) + log(|s|),
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yielding

I(Z;T |K = s) = 1− log(2) + γ − 1

2
log

(

2πe
σ2
X

|s|2
)

.

Therefore,

I(Z;T |K) = 1− log(2) + γ −
∫ ∞

−∞
fK(s)

1

2
log

(

2πe
σ2
X

|s|2
)

ds,

and in the particular case where P (K = −σW ) = P (K = +σW ) = 1
2
, the last

formula can be rewritten as

I(Z;T |K) = 1− log(2) + γ − 1

2
log (2πeDWR) ,

coinciding with its equivalent expression in Sect. 4.2.1.1.1, i.e., (4.17).

4.2.2.1.2 Dirty Paper Coding

In order to calculate I(Z;T |K) when our DPC-based technique is used, fY |K(y|d)
is required; as we are assuming that the two possible symbols are equiprobable
and α ≥ 0.5, fY |K(y|d) can be written, for α ≥ 0.5, as

fY |K(y|d) =











∑∞
i=−∞

1
2

1
1−α

∑1
k=0 fX

(

y−α(i∆+d+k∆/2)
1−α

)

if |y − (i∆+ d+ k∆/2) |< (1− α)∆/2
0 otherwise

.

In order to obtain the pdf of Z, the expression (4.18) is used, replacing
fY |K,B(y|d, 0) by fY |K(y|d).

DWR→ ∞ dB

On one hand, if D follows a uniform distribution from −∆/2 to ∆/2, W can
accurately be approximated by U(−∆/2,∆/2). When K is known, h(Y |K) can
be calculated as

h(Y |K)) = h(Y )− I(Y ;K) = h(Y )− h(K) + h(K|Y )

≃ h(X)− log(∆) + log(∆(1− α)) + log(2) (4.33)

= h(X) + log (2(1− α)) ,

where in (4.33), since DWR→ ∞ is assumed, h(Y ) ≃ h(X). In addition,
h(K|Y ) ≃ log(∆(1 − α)) + log(2), these components are respectively due to
the uncertainty of the self-noise and the ignorance of the embedded symbol. The
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difference between the previous expression and (4.19) is log(2), as in the current
case two shifted versions of the estimation error of K given Y must be considered.

As in Sect. 4.2.1.1.2, if DWR→ ∞ dB, Z can be approximated by a
zero-mean Laplacian distribution with standard deviation

√
2σTσX and, thus,

h(Z|K) ≃ log(2eσTσX). Using both h(Y |K) and h(Z|K) approximations, the
mutual information between Z and T knowing the secret key K is

I(Z;T |K) ≃ 1

2
(1 + γ − log(π))− log(2(1− α)).

Notice that the previous expression and (4.20) just differ in the aforementioned
term log(2).

DWR→ −∞ dB

In this case, fZ|K(z|d) is calculated by the average of the distribution obtained
by embedding the symbol B = 1 and B = 0, when the dither vector is equal to
d, i.e., K = d. Here, there are at least two peaks in the pdf, whose distance
increases as the DWR goes to −∞ dB, and therefore I(Z;T |K) increases.

This scenario requires to divide the analysis into two cases:

• In the first one, the pdf of Y when K = 0 (also comprising the analogous
cases K = ±∆/2 ) is approximated by

fY |K(y|0) ≃
fX(y/(1− α))

2(1− α)
+
fX(

y−α∆/2
1−α

)

2(1− α)
U(y−α∆/2)+

fX(
y+α∆/2
1−α

)

2(1− α)
U(−y+α∆/2),

where in the previous expression U(·) denotes the Heaviside step function
and the differential entropy of Y is h(Y |K = 0) ≃ h(X)+log(2)+log(1−α).

In order to obtain the distribution of Z, the following approximation to the
pdf of Y is used

fY |K(y|0) ≃
δ(y − α∆/2)

4
+

δ(y + α∆/2)

4
+

1

2(1− α)
fX(y/(1− α)).

In this way, the resulting pdf of Z is

fZ|K(z|0) ≃
1

4α∆/2
fT

(

z

α∆/2

)

+
1

4α∆/2
fT

( −z

α∆/2

)

+
1

2

e
−|z|

(1−α)σT σX

2σTσX(1− α)
.

Assuming that the three components of the previous expression are not
overlapped, one can approximate the differential entropy of Z by

h(Z|K = 0) ≃ 1

2

(

1 + log(σT /
√
2) + γ/2 + log(α∆) + log(2)

)

+
1

2
(log(2eσXσT ) + log(1− α) + log(2)) .
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Finally, the mutual information between Z and Y when K = 0 (and also
K = ±∆/2) is

I(Z;T |K = 0) ≃ 1

2
+

3γ

4
+

1

2
log

(

α∆

(1− α)

)

− log(8π2)

4
− log(σX)

2
.

• However, if D is in (−∆/2, 0)∪ (0,∆/2), the pdf of Y can be approximated
by

fY |K(y|d) ≃







fX( y−αd
1−α

)

2(1−α)
+

fX(
y−αd−α∆/2

1−α
)

2(1−α)
if −∆

2
< d < 0

fX( y−αd
1−α

)

2(1−α)
+

fX( y−αd+α∆/2
1−α

)

2(1−α)
if 0 < d < ∆

2

,

the differential entropy of Y h(Y |K = d) ≃ log(2πeσ2
X)/2+log(2)+log(1−

α).

Moreover, since the two peaks of the pdf of Y are very narrow compared to
∆, we can apply the same considerations of the previous case to calculate
the distribution of Z, i.e., the pdf of Z can approximated by a scaled version
of the pdf of T , namely

h(Z|K = d) ≃ 1 + log(σT /
√
2) + γ/2 + log(2) +

1

2

(

log(α2|d|·||d|−∆/2|)
)

.

Therefore, the mutual information becomes

I(Z;T |K = d) =
1

2
+ γ − log(1− α)− log(πσ2

X)

2
+

log
(

1
8
α2|d|·||d|−∆/2|

)

2
.

Since the logarithm is a monotonically increasing function, the first deriva-
tive of the argument of the logarithm function of the fifth addend of the
previous expression with respect to d for 0 < d < ∆/2, where this argument
is a continuous function, is obtained to study how this parameter affects the
mutual information. The first derivative is α2(∆−4d)/16; it has one root at
d = ∆/4 and it straightforward to demonstrate that the second derivative
with respect to d is negative; therefore, I(Z;T |K = d) has a maximum
at d = ∆/4 if d ∈ (0,∆/2). A similar analysis for d ∈ (−∆/2, 0) reveals
I(Z;T |K = d) has a maximum at d = −∆/4, being intuitively consistent
with the symmetry of the problem for this scenario.

Finally, I(Z;T |K = d) is integrated over the distribution of K in order to
obtain I(Z;T |K), yielding

I(Z;T |K) ≃ −1

2
+ γ − log(1− α)− 1

2
log

(

32πσ2
X

α2∆2

)

.

Although the mutual information expressions were independently obtained in
this section, it is worth pointing out that in some cases they can be systematically
obtained from the expressions derived in Sect. 4.2.2.1. The basic idea behind
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this systematic approach is that given a random variable U , if one can write
its pdf as fU(u) = fU1(u)/2 + fU2(u)/2, i.e., as the equiprobable mixture of two
pdfs, where the support sets of fU1 and fU2 are disjoint, then it is easy to see
that h(U) = h(U1)/2 + h(U2)/2 + log(2). In the scenarios where this property
is asymptotically verified, it is also possible to calculate the expressions of the
mutual entropy without knowing the inserted symbol from the expressions when
the inserted pilot is known.

4.2.2.1.3 Numerical Results

Fig. 4.12 shows I(Z;T |K) as a function of the DWR and the approximations of
I(Z;T |K) for DWR→ ±∞ dB. Note that this figure matches with Fig. 4.8 as
it was expected from the analysis. Furthermore, these curves show independence
with respect to the actual value of σT , verifying what the approximations pointed
out.
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Figure 4.12: I(Z;T |K) vs. DWR curves (solid lines) for different σT using
the analyzed Add-SS/SIT technique with the corresponding approximations for
DWR→ ∞ dB (dashed line) and for DWR→ −∞ dB (dashdot line). σX = 1
and S following an equiprobable binary antipodal distribution.

On the other hand, Fig. 4.13 depicts I(Z;T |K = d) as a function of the value
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of DWR for several values of α and different values of d, as well as the approxi-
mation of I(Z;T |K) when the DWR goes to infinity. As it was previously stated,
when the DWR goes to infinity I(Z;T |K) differs from I(Z;T |K,B) (plotted in
Fig. 4.6) by log(2).
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Figure 4.13: I(Z;T |K = d) vs. DWR curves for different α and d (solid lines for
representing d = −0.3∆, while dashed lines for d = 0.5∆) using DPCE with their
approximations for DWR→ ∞ dB (dashdot lines) with σX = 1 and σT = 1.

Fig. 4.14 shows the experimental and the approximation curves of I(Z;T |K =
d) when DWR → −∞ dB. It is worth pointing out that, as discussed above,
I(Z;T |K = d) reaches the maximum if d = ∆/4, i.e., the positive and the
mirrored Rayleigh pdfs are scaled by the same factor (i.e., α∆/4).

4.2.2.2 With Channel Noise

Under the same considerations stated in the case of embedding pilot sequences
with channel noise described in Sect. 4.2.1.2, i.e., in order to analyze the distribu-
tion of Z, one can discard the influence of the watermark and the channel noise.
Therefore, as approximated above, one can model Z as a Laplacian distribution
with zero-mean and variance 2σ2

Tσ
2
X ; thus, h(Z|K) can be approximated by

h(Z|K) ≈ 1 + log(2σTσX). (4.34)
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Figure 4.14: I(Z;T |K = d) vs. DWR experimental curves (solid lines), the
corresponding approximations (dotted lines) when DWR goes to −∞ dB using
DPCE with the following parameters: α = 0.5, σX = 1 and σT = 1.
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4.2.2.2.1 Additive Spread Spectrum and Superimposed Training

Under the hypotheses of high-SNR and from the distribution of Y for Add-SS/SIT
(4.32), the pdf of Z given t can be approximated by

1

2σxt
√
2π

e
− (y−s)2

2σ2
xt2 +

1

2tσx

√
2π

e
− (y+s)2

2σ2
xt2 ;

therefore, assuming that the two Gaussian pdfs centered at±s are not overlapped,
it is straightforward to approximate the differential entropy of Z given t as

h(Z|T = t,K) ≈ log(2) +
1

2

(

2πet2σ2
X

)

,

and by averaging with respect to the distribution T , the conditional differential
entropy can be approximated as

h(Z|T,K) ≈ log(2) +
1

2

[

1− γ + log(πσ2
Tσ

2
X)
]

.

Therefore, the mutual information between Z and T knowing K in this scenario
as the result of subtracting the previous expression from (4.34) is

Iimposed(Z;T |K) ≈ 1

2
[1 + γ − log(π)] = κ.

4.2.2.2.2 Dirty Paper Coding

As in Sect. 4.2.1.2.2, the approximations of the pdf of Z are used in order to
obtain a closed-form expression of I(Z;T ) when the secret key is known but, in
this case, the embedded symbol is unknown. In this scenario, the position of the
active centroids of the pdf of Y is separated by ∆/2 instead of ∆ as whenever the
embedded symbol is known at the estimator. This difference is taken into account
to properly modify the approximations of the required pdfs. Note that also the
hypotheses must be adapted; specifically, the definition of TNQR(t0) is modified
considering that the distance of contiguous centroids is divided by 2 and, thus,
the second moment of the lattice is ∆2/(12 · 4).

Low-SNR Case

It is straightforward to adapt the pdf of Z obtained for the low-SNR case (3.9)
in Sect. 3.1.1 by taking into account that, under the defined hypotheses, only the
structured part of the pdf (i.e., the part within the outer parentheses) is affected
by dividing by two the distance between active centroids, obtaining

f low-SNR,2
′

Z|T,K
(z|t, d) ≈ e

− z2

2t2σ2
X

√

2πt2σ2
X






1 + 2e

−
2π2

(

σ2
N+

(1−α)2∆2t2

12

)

(∆/2)2t2 cos

(

2πz

∆/2t
− 2πd

∆/2

)






.
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By following the same approach done in the corresponding analysis carried out
in Sect. 4.2.1.2.2, the approximation of h(Z|T,K) becomes

h(Z|T,K) ≈ −
8
√
2πe

1
3
(−4)π2(1−α)2σNK1,B

(

4
√
2πσN

∆σT

)

∆σT
+ log(σTσX)

+
1

2
(−γ + 1 + log(4) + log(π)).

And since, as reasoned above, h(Z|K) can be approximated considering that
Z follows a Laplacian distribution, the mutual information between Z and T
without inserting pilot symbols can be approximated by

I(Z;T |K) ≈
8
√
2πe

1
3
(−4)π2(1−α)2σNK1,B

(

4
√
2πσN

∆σT

)

∆σT
+

1

2
(1 + γ − log(π))

=
8
√
2πe

1
3
(−4)π2(1−α)2σNK1,B

(

4
√
2πσN

∆σT

)

∆σT
+ κ. (4.35)

High-SNR Case

In order to take into account that the separation between contiguous active
centroids of the distribution of Y is reduced by 2 in the high-SNR case, the
entropy of Z given t can be approximated by

h(Z|T = t,K) ≈ 1

2
log(2πeσ2

X)− log(∆/2)

+
1

2
log

(

2πe

[

σ2
N +

(1− α)2∆2t2

12

])

, (4.36)

where the difference between the previous expression and (4.29) is the change of
log(∆/2) by log(∆) in the discrete entropy of the used centroid at the embedder.
Then, (4.36) is averaged over the distribution of T to obtain the conditional
differential entropy h(Z|T,K)

h(Z|T,K) ≈1

2

(

−e
6σ2

N
(1−α)2∆2σ2

T Ei

(

− 6σ2
N

(1 − α)2∆2σ2
T

)

+ 2 log(σN ) + 1 + log(2π)

)

− log

(

∆

2

)

+
1

2
log
(

2πeσ2
X

)

;

thus, the mutual information between Z and T can be approximated for this case
as

I(Z;T |K) ≈ 1

2

(

e
6σ2

N
(1−α)2∆2σ2

T Ei

(

− 6σ2
N

(1− α)2∆2σ2
T

)

)

+ log

(

∆σT

2πσN

)

. (4.37)
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4.2.2.2.3 Numerical Results
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Figure 4.15: I(Z;T |K) vs. DWR using Add-SS/SIT when the embedded bit is
unknown, σT = 1 and S follows an equiprobable binary antipodal distribution.
The dashdot line corresponds to the noiseless case when DWR → ∞ dB, while
the dashed line corresponds to DWR → −∞ dB.

Fig. 4.15 shows empirical curves of the mutual information when Add-SS/SIT
is used in several scenarios with noise when a pilot is not embedded. In addition,
the approximations for DWR → ±∞ dB of the noiseless case are depicted. It
can be shown that the empirical curves asymptotically converge to the respective
approximations for DWR → ∞ and in accordance to DWR → −∞ dB if WNR
→ ∞, which corresponds to the noiseless case.

Fig. 4.16 and Fig. 4.17 depict I(Z;T |K) obtained numerically vs. DWR for
several values of WNR using DPCE considering the noisy scenario for α = 0.5
and α = 0.95, respectively. In addition to the approximation for DWR→ ∞ of
the noiseless case, the approximations of the mutual information calculated in
this section are also shown.
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By analyzing these two figures, one can realize that, confirming the intuition,
the larger the value of WNR, the closer the numerical results to the corresponding
approximation of the noiseless scenario. Apart from this, our approximations get
close to the numerical results whenever the corresponding hypotheses hold. On
these scenarios, one can state that the introduced approximations require large
values of DWR; in addition, on one hand, the low-SNR approximation needs
WNR ≤ 0 dB; while, on the other hand, the high-SNR approximation requires
large values of WNR.
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Figure 4.16: I(Z;T |K = 0) vs. DWR curves using DPCE and α = 0.5 when the
embedded symbol is unknown when I(Z;T |K = 0) obtained numerically (solid
lines), with the approximation for low-SNR cases (4.35) (dotted lines), and (4.37)
for high-SNR cases (dashdot lines). The dashed line corresponds to the noiseless
case for DWR→ ∞ dB.

Focusing on the curves for WNR = −10 dB of Fig 4.16, one can see that the
mutual information tends to κ when DWR → ∞; this verifies that the mutual
information for DPCE is always, as long as α > 0.5, larger than or equal to that
of Add-SS/SIT when DWR→ ∞ dB, being only equal if WNR tends to −∞ dB
or α = 0.5 since in that case there is not structure in the pdf of Z.
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Figure 4.17: I(Z;T |K = 0) vs. DWR curves using DPCE and α = 0.9 when the
embedded bit is unknown obtained numerically (solid lines), with the approxi-
mation for low-SNR cases (4.35) (dotted lines), and (4.37) for high-SNR cases
(dashdot lines). The dashed line corresponds to the noiseless case for DWR→ ∞
dB.
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Appendix

4.A Analysis of the Gaussian Distributed Z

Approximation

Assuming that the dither sequence d is unknown, X is a zero-mean Gaussian
distributed random variable, and DWR takes large values, the pdf of Z can
be approximated assuming that the involved signals are Gaussian distributed,
yielding

fGauss
Z|T (z|t0) ≈

e
− z2

2((σ2
X

+σ2
W )t20+σ2

N)
√

2π ((σ2
X + σ2

W ) t20 + σ2
N )

. (4.38)

4.A.1 Cramér-Rao Bound

It is worth calculating the CRB corresponding to this scenario for the sake of
comparison with other methods introduced in this work. The CRB is calculated
as

CRB = −



E







∂2 log
(

fGauss
Z|T (z|t)

)

∂t2











−1

= −



LE







∂2 log
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fGauss
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)

∂t2











−1

, (4.39)

where the second equality in (4.39) can be set because the components of Z are
i.i.d.. The second derivative of the logarithm of the pdf of Z with respect to t0 is
obtained

∂2 log
(

fGauss
Z|T (z|t0)

)
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=
(σ2
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(
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2
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3 ,
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and its expectation becomes

E







∂2 log
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fGauss
Z|T (z|t0)

)

∂t20







= − 2 (σ2
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W )
2
t20

(σ2
N + (σ2
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2 .

Using the previous expression in (4.39),

CRB
′
Var =

(σ2
N + (σ2

X + σ2
W ) t20)

2

2L (σ2
X + σ2

W )
2
t20

.

This expression can be simplified considering that σ2
X ≫ σ2

W obtaining

CRBVar =
(σ2

N + σ2
Xt

2
0)

2

2Lσ4
Xt

2
0

. (4.40)

In addition, if t20σ
2
X ≫ σ2

N , then

CRBVar ≈
t20
2L

.
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4.B Expectation of the Second Derivative of

log
(

f low-SNR,b
Z|T,K (z|t, d)

)

The second derivative of (4.4) with respect to t is given by
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Therefore, using the previous expression, the expectation of the second derivative
can be expressed as
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Chapter 5

Practical Estimation Algorithms

As discussed in Sect. 3.2.3, the proposed ML-based cost-functions ((3.11) and
(3.12) for the low-SNR case, and (3.15) for the high-SNR case) show several local
maxima/minima. This makes standard optimization algorithms unsuitable. In
addition, the application of brute-force techniques is computationally prohibitive.
To tackle this issue, a set of ad-hoc estimation algorithms is proposed in order to
obtain accurate estimations with affordable computational resources.

As illustratively shown in Fig. 5.1 for t0 ≥ 0, the proposed estimation tech-
niques can be described in a modular way. First, based on the characteristic of
the cost functions, an optimization search-interval [t−, t+] is calculated. Then,
the search-interval is sampled based on the statistical properties of the objective
function obtaining a candidate set T . Given this set of candidate values, a local
optimization is carried out, yielding a set of locally optimal solutions T ∗; t̂0(z) is
finally selected as that element of T ∗ that minimizes the cost function. For each
of these procedures, we propose several alternatives, which should be selected
according to the requirements of the specific application scenario. In the end of
this section, the performance of our techniques is analyzed and discussed with
the support of extensive simulations.
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ML estimation approximated as:

t̂0(z) = argmint≥0 L(t, z)

Calculate Search-interval
[t−, t+]

Sample [t−, t+]

obtaining T

Local optimization of L(t, z)

using T to obtain T ∗

t̂0(z) ≈ argmint∈T ∗ L(t, z)

Figure 5.1: Modular Outline of the Ad-hoc Estimation Algorithm.
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5.1 Search-Interval

Assuming that t0 ≥ 0, we propose to obtain [t−, t+] following a statistical ap-
proach (this interval is denoted by [tV−, t

V
+]), following a deterministic approach

(which is denoted by [tD−, t
D
+]), or by the intersection of these two intervals (i.e.,

[t−, t+] = [tV−, t
V
+] ∩ [tD−, t

D
+]).

5.1.1 Statistical Interval

In order to obtain [tV−, t
V
+], the unbiased variance-based estimator of t20 is used

t̂20(z)var =
‖z‖2/L− σ2

N

σ2
X + α2∆2/12

, (5.1)

which is the ML-estimator straightforwardly obtained using (4.38) from App. 4.A.
For a value of L large enough, by using the CLT, the distribution of t̂20(z)var can be
accurately approximated by a Gaussian distribution centered at t20 with variance
2(t20(σ

2
X + α2∆2/12) + σ2

N)
2/(L(σ2

X + α2∆2/12)2). The limits of the interval are
obtained using this approximation as
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X + α2∆2/12)

2

)

,

where in the previous expression, ǫ > 0 guarantees that both (tV−)
2 and (tV+)

2 take
positive values; in addition, K2 ≥ 0 determines the width of [(tV−)

2, (tV+)
2] and also

the probability that t20 lies on this interval; this probability can be approximated
by P (t20 ∈ [(tV−)

2, (tV+)
2]) ≈ erf(K2/

√
2) if t̂20(z)var ≈ t20. [t

V
−, t

V
+] is obtained as the

positive square roots of the endpoints of [(tV−)
2, (tV+)

2]. It is worth noting that in
this problem P

(

t0 ∈ [tV−, t
V
+]
)

= P
(

t20 ∈ [(tV−)
2, (tV+)

2]
)

.

5.1.2 Deterministic Interval

The cost function is lower bounded by a function L2(t, z), which is defined in
App. 5.A. In this section, for the sake of notational simplicity L2(t, z) denotes
the corresponding function Llow-SNR

2 , Llow-SNR,2
2 , or Lhigh-SNR

2 depending on the
used pdf of Z to obtain it. An initial guess of the gain tinitial is used (which is
usually obtained applying a less complex estimator) to calculate [tD−, t

D
+] based on

the inequality L(tinitial, z) ≥ L(t̂0(z), z) ≥ L2(t̂0(z), z) as

tD− = argmin
t:t≤tL

|L(tinitial, z)− L2(t, z)| (5.2)

tD+ = argmin
t:t≥tL

|L(tinitial, z)− L2(t, z)|, (5.3)
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where tL is the location of minimum of L2(t, z) for t ≥ 0, and is calculated in
App. 5.A, where the increasing/decreasing tendency of L2(t, z) with respect to t
for the low-SNR and high-SNR cases is also studied. For the low-SNR case and
the high-SNR case with α ∈ [0, 1), the minimization problems defined in (5.2)
and (5.3) have one and only solution since, on one hand, L2(t, z) is continuous
and decreases in t ∈ [0, tL) and limt→0 L2(t, z) = ∞; on the other hand, L2(t, z)
is continuous and increases for finite t > tL going to ∞ as t → ∞. However for
the high-SNR α = 1 case, L2(t, z) decreases for t ≥ 0; therefore, there exists a
unique value of t where L2(t, z) crosses L(tinitial, z), corresponding to tD−, while
tD+ is set to ∞.

To the best of author’s knowledge, there is no closed-form expression for
[tD−, t

D
+]; however, a numerical method, like bisection, can be used.

5.2 Candidate Set

Given [t−, t+], the candidate set T is obtained by sampling the search-interval
based on the properties of the used cost function. We would like to define T
with a cardinality as small as possible, as the computational cost of the proposed
procedure will increase with the cardinality of that candidate set. Nevertheless,
simultaneously we would like to be able to guarantee that the result of running
the proposed procedure is indeed the ML estimate. As stated at the beginning
of this section, we will focus on the calculation of T assuming that t0 ≥ 0.
However, if t0 < 0, due to the symmetry of the problem with respect to t0 = 0,
the estimation algorithm is easily modified in order to take this case into account
by setting T , T + ∪ −T +, where in this expression T + denotes the candidate
set obtained for positive values of t0.

5.2.1 Sampling Based on DC-QIM’s Modulo-Lattice

Reduction

From (3.12) and (3.15), it is clear that the main problem concerning the opti-
mization of both target functions comes from their respective last terms, which
are ultimately related to the modulo-lattice reduction of DC-QIM. Indeed, if a
good estimate of the centroid used at the embedder were available, then the mod-
ulo operation could be mainly neglected and the gain estimation would be much
simpler; from a more intuitive point of view, that would mean that we would be
in the main lobe of the target function.

In order to find a point for which the modulo reduction is ineffective, we first
notice that when the two following conditions hold simultaneously: 1) high-SNR
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constraint, 2) t is close to t0, then

(Z − tD)mod(tΛ) ≈ Z − tQ(X), (5.4)

as the modulo-lattice reduction of the total noise (i.e., equation (3.19) in
App. 3.C) will be negligible.1

In such case, recalling that z = t0y +n, and using (2.2) and the law of large
numbers, for large L we can write

||(z − td)mod(tΛ)||2/L ≈ (t0 − t)2σ2
X + (t− αt0)

2∆2/12 + σ2
N,ξ(t, t0). (5.5)

We emphasize that for (5.4) to be valid, t must be close to t0. In fact, when
we consider values of t away from t0, the term (t0 − t)x in (3.19) makes (5.4)
(and consequently the presented variance approximation) no longer valid, as the
effect of modulo-lattice reduction starts to be significant; indeed, when t is far
from t0 the distribution of (Z − tD)mod(tΛ) will converge to a random variable
uniformly distributed in the fundamental Voronoi region of tΛ, and consequently
||(Z− tD)mod(tΛ)||2/L will converge to the second moment of tΛ, i.e., t2∆2/12.

This property could be useful for generating the elements of T : to detect
whether t belongs to the main lobe of the target function, one might think of
checking whether ||(Z−tD)mod(tΛ)||2/L is smaller than t2∆2/12 in a statistically
significant sense. Unfortunately, this criterion would not be suitable, as it turns
out that for small values of t, ξ(t, t0) will be always larger than t2∆2/12.

In order to solve this issue, we propose a criterion based on the increments
of ξ(t(l + 1), t(l)) with respect to ξ(t(l), t(l)) with t(l), t(l + 1) ∈ T . To this end,
given t(l), we hypothesize that t0 = t(l) and consider that for t(l+ 1) sufficiently
close to t(l), (5.5) will hold with t = t(l + 1). Thus, we establish a threshold
to ξ(t(l + 1), t(l))− ξ(t(l), t(l)) proportional to the second moment of the scaled
lattice, namely, K1t

2(l+1)∆2/12, which allows us to compute the next sampling
point t(l + 1). The condition can be rewritten as

ξ(t(l + 1), t(l)) = ξ(t(l), t(l)) +K1t
2(l + 1)∆2/12. (5.6)

It can be shown that for K1 sufficiently small, the solution in t(l+1) to (5.6) when
t(l) ≤ t0 ≤ t(l + 1) is such that ξ(t(l + 1), t0) < t2(l + 1)∆2/12; this guarantees
that the main lobe of the target function is not missed. Furthermore, condition
(5.6) can be satisfied for small values of t(l+1), so the above problem with using
ξ(t(l + 1), t(l)) alone disappears.

In practice, there is an obvious tradeoff in the selection of K1 used in (5.6).
The larger K1 is, the more likely is that the main lobe is missed due to the

1A similar reasoning is followed for (3.12), where the argument of the cosine, which is also
proportional to Z− tQ(X), must be taken into account. Therefore, the same candidate set will
be used for the low-SNR target function.
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stochastic nature of (z − td)mod(tΛ). This is more so for smaller L, as the
approximation ||(z − td)mod(tΛ)||2/L ≈ ξ(t, t0) is less accurate. On the other
hand, the smaller K1, the larger the cardinality T , and therefore, the complexity.

The solution to (5.6) is

t(l + 1) =
t(l)

(

α∆2/12 + σ2
X +∆/

√
12
√

∆2/12 ((1− α)2 +K1(2α− 1)) +K1σ2
X

)

σ2
X + ∆2(1−K1)

12

,

(5.7)

where t(1) = t−, and the stopping condition is t(l) ≥ t+. We remark that
although the proposed sampling strategy guarantees that at least a point in T is
in the target function main lobe, it is conservative, in the sense that the search
interval is finely sampled.

5.2.1.1 Adaptation for Unknown Variances

We consider now the case where both σ2
X and σ2

N are unknown, and moreover,
to illustrate its use, we assume STDM (Sect. 3.4) in which projection of the L
components onto LST dimensions is carried out. With these considerations, the
search interval and the candidate set T must be modified accordingly. The new
search interval is defined by:

• t− = ǫ∗, where ǫ∗ > 0 is a predefined threshold.

• t+ =
√

‖z‖2/(LSTα2∆2/12), where we have taken into account the estimate
given in (5.1) that can be bounded as follows

‖z‖2/L− σ2
N

σ2
X + α2∆2 LST

12L

≤ ‖z‖2/L
α2∆2 LST

12L

=
‖z‖2/LST

α2∆2/12
,

and where

E{‖Z‖2}
L

= t20σ
2
X + t20α

2∆2LST

12L
+ σ2

N .

Concerning the candidate set, we exploit the monotonically decreasing nature
of the right hand side of (5.7) with respect to σ2

X (analyzed in App. 5.B), and the
fact that for |t(l)|< t0, ‖z‖2/(Lt2(l)) is an upper-bound on σ2

X , and consequently
the sampling criterion that results after replacing σ2

X by ‖z‖2/(Lt2(l)) in (5.7) is
valid (albeit conservative).
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5.2.2 Sampling Based on the Mean of L(t, z) of the
low-SNR Case

In order to derive another sampling criterion of the search-interval, we take ad-
vantage of the introduced approximations of the pdf of Z for the low-SNR case
(i.e., (3.8) and (3.9)), which allow us to straightforwardly obtain the distribu-
tion of L(t, z), due to its good mathematical tractability, by applying the CLT
assuming that L → ∞ and that each component of Z is independent given t0.

The proposed approach to obtain T is based on the expectation of L(t, Z)
E {L(t, Z)} using f low-SNR

Z|T,K (z|t, d) defined Sect. 3.1.1. Let us mention that in
App 5.D, another method is outlined based on comparing the approximation
of the distribution of L(t, Z) whenever t is close t0, with the approximation of
the target function if t and t0 are not close.

The expression of E {L(t, Z)} after some algebraic manipulations and the
calculation of its expectation with respect to the dither, as detailed in App. 3.A,
becomes

E {L(t, Z)} ≈ σ2
N + σ2

Xt
2
0
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By using E {L(t, Z)}, some interesting properties can be determined on the
asymptotic behavior of the cost function with L → ∞, such as the number
of stationary points, the position of the maxima/minima, etc.

As discussed in Sect. 3.2.1, E {L(t, Z)} for the low-SNR case only has a min-
imum at t0 asymptotically as the hypotheses of the low-SNR case hold. In order
to reach the minimum of the target function, one can argue that a gradient de-
scent method taking as starting point t− or t+ can be used for large enough L;
however, this solution is computational costly since this algorithm could require
to perform a large number of iterations.

Our approach to deal with this issue is based on ∂E {L(t, Z)} /(∂t); indeed,
the maxima/minima of the first derivative with respect to t are obtained in order
to guarantee a faster convergence of a gradient descent algorithm. Since the CRB
(which the inverse of the Fisher information defined in (4.6)) is the lower bound
(which is asymptotically achieved when L → ∞) of the variance of the proposed
ML estimator, the CRB can be used as a reference for the asymptotic properties
of the estimator of t0. As discussed in Sect. 4.1.1.3, there are two different parts
of the CRB: one that has a behavior related to the variance-based estimator, and
another that reduces the latter and that is due to the structure introduced by
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the embedding. In order to analyze ∂E{L(t, Z)}/∂t we will focus on the term
induced by such structure.

The difference between t(l + 1) and t(l) of T is defined in this method as the
difference between the maximum and the minimum of the first derivative with
respect to t of the term of (5.8) due to the structure of the pdf of Z, term which
is denoted by M
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These minimum and maximum are calculated in App. 5.C, where the minimum
are denoted by tl(t0) and tr(t0) respectively, and they are mathematically ex-
pressed as

tl(t0) =
9σ2

N

σ2
Xt0

+ t0 −
∆t0
2πσX

tr(t0) =
9σ2

N

σ2
Xt0

+ t0 +
∆t0
2πσX

. (5.10)

Obviously, t0 is not known in advance; however as in the method described
in the previous section, in order to obtain T , t0 is assumed known to carry out
the following recursive algorithm corresponding to the lth iteration: first, it is
assumed that lth element of T is the lower endpoint of the interval as tl(t0) = t(l),
then the t0 for the current iteration of the sampling algorithm is calculated from
(5.10) (since tl(t0) is assumed to be known), and finally with this obtained t0,
the (l + 1)th element of T is calculated as t(l + 1) = tr(t0). In the generation
algorithm of T , the first element of T is t(1) = t−, and this algorithm stops if
t(l) > t+.

5.2.2.1 Adaptation for Unknown Variances

Similarly to the discussion in Sect. 5.2.1.1, the search-interval is defined as
[ǫ∗,
√

‖z‖2/(Lα2∆2/12)] with ǫ∗ > 0. On one hand, it is assumed that σ2
N can

be neglected in comparison to t20σ
2
X if TNHR(t0) ≪ 1 holds to compute t(i) ∈ T

and, thus, the term 9σ2
N/(σ

2
Xt0) of the two expressions of (5.10) is discarded. On

the other hand, σ2
X is upper-bounded by ‖z‖2/(t(i)2L).

5.3 Local Optimization

After the search interval is defined [t−, t+], and sampled in order to obtain the
candidate set T , local optimizations are carried out to obtain T ∗, and select the
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global minimum of the target function from those local solutions. It is worth
pointing out that different techniques were studied in this thesis (e.g., Decision-
aided, Bisection method, Newton method, approximation of the distribution of
the cost function at t0, etc.) as well as combinations of them. The best results
were obtained using the Decision-Aided technique and the Bisection method.

5.3.1 Decision-Aided Optimization

Based on the criterion used for defining the sampling strategy in Sect. 5.2.1,
i.e., that at least one of the values in T yields a good estimate of the embedder
centroid, the estimate of t0 will be improved by applying a local optimization
algorithm. Formally, we compute

cj = Q∆ (zj/t− dj) + dj,

j = 1, . . . , L, for each t ∈ T . Then, the Minimum Mean Square Error (MMSE)
criterion is used for estimating t0 from c and z, i.e.,

t∗ , argmin
ξ
‖z − ξc‖2;

it is easy to check that the solution to this decision-aided optimization is t∗ =
zTc/‖c‖2. This procedure is performed for each t ∈ T , T ∗ contains the t∗ values.
Finally, the proposed approximated ML estimate is

t̂0(z) = argmin
t∈T ∗

L(t, z).

The reduced computational cost arises as one of the advantages of this tech-
nique, as the target function is only evaluated once per initial candidate point
of T , the calculation of c and t∗ have low computational requirements, and the
overall computational resources required by this method do not depend on the
desired precision (i.e., there is no threshold used to control a tradeoff between
the number of required computations and the precision).

5.3.2 Optimization Based on the Bisection Method

We propose another approach for looking for t̂0(z) based on the Bisection Method.
Given two consecutive elements of T , the sign of the first derivative with respect
to t of the cost function is evaluated at t(i) and t(i+1) to decide if there is a local
maximum/minimum within the interval [t(i), t(i+ 1)]; if their signs are different
a bisection algorithm is used to obtain a candidate estimate t∗(i) of the actual
scaling factor. The following pseudocode defines this algorithm
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Algorithm 1 Bisection Method-Based Optimization

for i = 1 to |T |−1 do
tlo = t(i);
tup = t(i+ 1);
s0 = sign (∂L(tlo, z)/(∂t));
s1 = sign (∂L(tup, z)/(∂t));
if (s0 != s1) then

while (true) do
dist = tup - tlo;
s0 = sign (∂L(tlo, z)/(∂t));
s1 = sign (∂L(tlo + dist/2, z)/(∂t));
if s0 = s1 then

tlo = tlo + dist/2;

else
tup = tup − dist/2;

end
if (tup − tlo) < ǫB then

t∗(i) = tlo;
Lvalue(i) = L(t∗(i), z);
break

end
end

else
if (L(tlo, z) > L(tup, z)) then

t∗(i) = tup;
Lvalue(i) = L(t∗(i), z);

else
t∗(i) = tlo;
Lvalue(i) = L(t∗(i), z);

end
end

end
i∗ = argmini Lvalue(i);
t̂0(z) = t∗(i);

The main advantage of this technique is that it guarantees to achieve a local
minimum. The parameter ǫB of the previous pseudocode frame defines the stop-
ping condition of the algorithm which plays a key role in the computational load
and precision of the method. Due to the modulo operation, the first derivative
with respect to t of the cost function of the high-SNR case cannot be expressed in
a closed-form expression; therefore, the derivative is approximated by computing
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it numerically.

5.4 Performance Comparison

In this section, we compare the performance of the DPC-based estimators pro-
posed in this work Dirty Paper Coding Estimation for Low-SNR Case (DPCEL),
Dirty Paper Coding Estimation for High-SNR Case (DPCEH), the variance-
based estimator denoted by Var and defined as (3.13) in Sect. 3.2.1.1, and the
PDD algorithm [29]. The performance is analyzed by taking into account the
accuracy, measured in terms of MSE, and the complexity of the algorithms,
quantified by means of the average run time.
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Figure 5.2: MSE vs. t0 curves for the proposed techniques. The Bisection
method technique for the Low-SNR (DPCEL-B) and for the High-SNR (DPCEH-
B), and the Decision-Aided technique for the Low-SNR (DPCEL-A) and for the
High-SNR (DPCEH-A). DWR = 30 dB (solid line), DWR = 40 dB (dotted line),
WNR = 0 dB, α = αCosta, and L = 103. The corresponding numerically ob-
tained CRB curves (CRB), the variance-based estimator curve (Var), and the
Partially-Data-Dependent Superimposed Training curves (PDD) are also shown.

For the computation of the statistical interval we use ǫ = ǫ∗ = 10−2 and
K2 = 10. The parameters of the used local optimization techniques areK1 = 10−2
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for the Decision-Aided technique, while for the Bisection method K1 = 1 and
ǫB = 10−4.

Concerning PDD [29], the estimation is based on projecting z onto a single
dimension, and the so-called self-interference factor η (the value of η determines
the power allocated for host interference cancellation) takes the value that min-
imizes the MSE; this optimization over η was implemented by using exhaustive
search in [1−

√

L/DWR, 1] ∩ 10−2N (recall that 1−
√

L/DWR is the minimum
value of η for which after partially canceling the host interference there is some
remaining power available for transmitting the watermark).

5.4.1 Known Variances
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Figure 5.3: MSE vs. t0 curves for the proposed techniques. The Bisection
method for Low-SNR (DPCEL-B) and for High-SNR (DPCEH-B), and the
Decision-Aided technique for low-SNR (DPCEL-A) and for high-SNR (DPCEH-
A). DWR = 30 dB (solid line), DWR = 40 dB (dotted line), WNR = 0 dB, α = 1,
and L = 103. The corresponding numerically obtained CRB curves (CRB), the
variance-based estimator curve (Var), and the Partially-Data-Dependent Super-
imposed Training curves (PDD) are also shown.

In this section, the experiments were carried out assuming σ2
X and σ2

N are
known. By default, to compute the search-interval the intersection of the two
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proposed techniques (i.e., those used to calculate the statistical and deterministic
intervals) is used, and the interval is sampled based on the DC-QIM Modulo-
Lattice Reduction (introduced in Sect. 5.2.1). For the sake of simplicity, for
DPCEL the cost function (3.12) is utilized.

5.4.1.1 Dependence on DWR

First of all, we compare the performance of the proposed DPCE-based strategy
with respect to the variance-based estimator and PDD. In order to do so, the
MSE as a function of t0 for DWR = 30, 40 dB and WNR = 0 dB is shown in
Fig. 5.2, where L = 103, t0 > 0, and α = αCosta.
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Figure 5.4: MSE vs. t0 curves for the proposed techniques. The Bisec-
tion method for low-SNR (DPCEL-B) and for high-SNR (DPCEH-B), and the
Decision-Aided technique for low-SNR (DPCEL-A) and for high-SNR (DPCEH-
A). DWR = 40 dB, WNR = −3 dB (solid lines), WNR = 0 dB (dotted lines),
WNR = 3 dB (dashdot lines), α = αCosta, and L = 103. The corresponding nu-
merically obtained CRB curves (CRB), the variance-based estimator curve (Var),
and the Partially-Data-Dependent Superimposed Training curves (PDD) are also
depicted.

The behavior of CRB with t0 can be summarized as follows: 1) for those values
of t0 where there is no structure in the distribution of Z, the CRB curves increase



102 5.4. Performance Comparison

with t0 until reaching a maximum (e.g., it is located at t0 ≈ 0.2 for DWR = 40 dB
and WNR = 0 dB); 2) for those values of t0 where the structure of Z arises , the
CRB decreases with t0; 3) for large values of t0, the CRB converges to the inverse
of (4.11). We can check that DPCE results for both target functions (namely,
(3.12) and (3.15)) show a good agreement with the corresponding CRB for large
values of t0 (i.e., in the high-SNR scenario) and large DWR, with (3.15) yielding
a slightly better performance; note that the proposed scheme takes advantage of
the host variance in order to improve the estimator performance, i.e., the larger
the DWR, the smaller the MSE (at the price of increasing the computational
cost). On the other hand, for small values of t0 (i.e., in the low-SNR scenario),
the performance achieved by using (3.12) and decision-aided optimization does
not agree with the CRB, as the constraints HQR ≫ 1 and SCR(t0) ≪ 1 are not
verified; however, the Bisection method obtains better results than the decision-
aided optimization (even for DPCEH). This difference in the performance of
the proposed local optimization techniques is explained by, on one hand, that
the estimated position of the centroids for the decision-aided optimization is not
accurate, which makes that the obtained t∗(i) are not good estimates of t0 and, as
a consequence, substantial estimation errors are produced. On the other hand, for
the Bisection method the search to obtain each t∗(i) is limited by two consecutive
elements of T , therefore the error is bounded showing better performance than
the other local optimization technique.

Contrarily to the observed monotonically decreasing nature of the MSE with
respect to the DWR for the DPCE proposal, the MSE of PDD is monotonically
increasing with DWR (as in that case the host signal interferes the estimate). For
DWR = 30 dB, σ2

W is large enough to make possible the PDD host interference
cancellation, while this is not the case for DWR = 40 dB. It is worth pointing
out that the gain achieved by DPCE (for both low-SNR and high-SNR target
functions) with respect to PDD is larger than 20 dB.

Fig. 5.3 is the counterpart of Fig. 5.2 but fixing α = 1 instead of α = αCosta.
Although in this case the comments for the high-SNR case remain, in the low-
SNR case (where it can be assumed that HQR ≫ 1 and SCR(t0) ≪ 1 hold),
DPCEL techniques outperform DPCEH independently of the local optimization
technique. This difference appears because the sampling of [t−, t+] is much finer
when α = 1, consequently |T | is larger, and the search of t0 for the Bisection
method is not so constrained.

5.4.1.2 Dependence on WNR

Fig. 5.4 is analogous to Fig. 5.2 but DWR = 40 dB with WNR = −3, 0, 3 dB.
Here, the CRB curves evolve with t0 like it was described in the previous section:
they increase with t0 until reaching a maximum (when the pdf of Z has no
structure) and then decay until seemingly reaching an asymptotic minimum (also
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Figure 5.5: MSE vs. t0 curves for the proposed techniques. The Bisec-
tion method for low-SNR (DPCEL-B) and for high-SNR (DPCEH-B), and the
Decision-Aided technique for low-SNR (DPCEL-A) and for high-SNR (DPCEH-
A). DWR = 40 dB, WNR = −3 dB (solid lines), WNR = 0 dB (dotted lines),
WNR = 3 dB (dashdot lines), α = 1, and L = 103. The corresponding numer-
ically obtained CRB curves (CRB), the variance-based estimator curve (Var),
and the Partially-Data-Dependent Superimposed Training curves (PDD) are also
depicted.

with the value 1/(DWR·WNR·L)). Both DPCEL and DPCEH show a decreasing
tendency with t0 and improve the variance-based estimator for approximately
t0 ≥ 0.4 for WNR = −3 dB. This crossing value of t0 is reduced with WNR as
the structure in the pdf of Z appears earlier. As in the previous section, for low-
SNR scenarios, the techniques using the Bisection method show good results,
while those obtained with the Decision-Aided technique differ from the CRB.
In addition, the convergence of the obtained MSE curves to the CRB curves
improves by increasing the value of WNR. As in the previous example, PDD (its
MSE curves for WNR = −3, 0, 3 dB show almost the same performance) obtains
the worst performance in this case.

The same scenario is considered in Fig. 5.5 with α fixed to 1. In this case, the
difference caused by the appearance of structure in the pdf of Z is clearer. For
example, by focusing on the CRB, one can state that the structure of the pdf of
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Figure 5.6: MSE as a function of t0 for the proposed techniques. The Bisec-
tion method for low-SNR (DPCEL-B) and for high-SNR (DPCEH-B), and the
Decision-Aided technique for low-SNR (DPCEL-A) and for high-SNR (DPCEH-
A). DWR = 40 dB, WNR = 0 dB, α = 1, L = 102 (solid lines), L = 5 ·102 (dotted
lines), L = 103 (dashdot lines), and L = 5 · 103 (dashed lines). The correspond-
ing numerically obtained CRB curves (CRB), the variance-based estimator curve
(Var), and the Partially-Data-Dependent Superimposed Training curves (PDD)
are also shown.

Z approximately appears at about t0 = 0.4 for WNR = 3 dB, and t0 = 0.8 if
WNR = −3 dB.

5.4.1.3 Dependence on L

Fig. 5.6 depicts MSE×L as a function of t0 for L = 102, 5 · 102, 103, 5 · 103 in
order to analyze the convergence of DPCE with respect to L, i.e., the efficiency
of our estimators. On one hand, focusing on DPCEL, one can see the tendency
of the performance of our algorithm to convergence to the CRB as L is increased
although, as stated above, in the high-SNR scenarios, there is a little gap in
comparison with DPCEH. DPCEH shows good results for the high-SNR scenarios,
i.e., whenever there is structure in the pdf of Z; therefore, the algorithm cannot
converge to the CRB even for increasing L if there is no structure, as one can
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check in this figure that the performance shows an MSE abrupt decay for DPCEH
around t0 = 0.9.

5.4.1.4 Different Search-Interval and Sampling Criterion

By examining the results for the search-interval comparison shown in Fig. 5.7,
one can realize that there is a difference in the small values of t0 for the DPCEL
case. Specifically, at t0 = 0.1 there is a loss of 10 dB in the MSE; therefore, one
can conclude that for DPCEL in low-SNR cases, the deterministic interval can
improve the estimator in terms of MSE.
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Figure 5.7: MSE vs. t0 curves for the proposed techniques. The Decision-Aided
technique for low-SNR (DPCEL-A) and for high-SNR (DPCEH-A) using the
intersection of intervals of the two proposed methods and using only the statistical
interval (with suffix -St in the legend). DWR = 30 dB (solid line), DWR = 40 dB
(dashed line), WNR = 0 dB, α = 1, and L = 103. The corresponding numerically
obtained CRB curves (CRB) are also shown.

A comparison among the DPCE estimators for the proposed search-interval
sampling techniques is shown in Figs. 5.8-5.9 for α = αCosta and α = 1, respec-
tively. From these results, one can deduce that they are practically the same
regardless of the sampling method, and that the behavior is coherent with those
discussed above for these scenarios.
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Figure 5.8: MSE vs. t0 curves for the proposed techniques. The Bisection
method for low-SNR (DPCEL-B) and for high-SNR (DPCEL-B) using the sam-
pling based on the DC-QIMModulo-Lattice Reduction and the sampling based on
the mean of L(t, z) (suffix -E in the legend) DWR = 40 dB, WNR = −3 dB (solid
lines), WNR = 0 dB (dotted lines), WNR = 3 dB (dashdot lines), α = αCosta,
and L = 103. The corresponding numerically obtained CRB curves (CRB), the
variance-based estimator curve (Var), and the Partially-Data-Dependent Super-
imposed Training curves (PDD) are also depicted.
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Figure 5.9: MSE vs. t0 curves for the proposed techniques. The Bisection
method for low-SNR (DPCEL-B) and for high-SNR (DPCEL-B) using the sam-
pling based on the DC-QIM Modulo-Lattice Reduction and the sampling based
on the mean of L(t, z) (suffix -E in the legend) DWR = 40 dB, WNR = −3 dB
(solid lines), WNR = 0 dB (dotted lines), WNR = 3 dB (dashdot lines), α = 1,
and L = 103. The corresponding numerically obtained CRB curves (CRB), the
variance-based estimator curve (Var), and the Partially-Data-Dependent Super-
imposed Training curves (PDD) are also depicted.
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5.4.1.5 DPCEL using (3.11) and (3.12)

So far in this section, we have applied (3.12) for DPCEL (we use the approxi-
mation to the pdf of Z in (3.9)). This is convenient as (3.12) is mathematically
simpler than (3.11). Here, we compare the performance of the two DPCEL cost
functions in Fig. 5.10 for α = αCosta (in the left pane of the figure) and α = 1 (in
the right pane of the figure) using the Bisection method. As expected (as (3.12)
is a simplification of (3.11)), when the hypotheses HQR ≫ 1, SCR(t0) ≪ 1, and
TNQR(t0) ≫ 1 are verified, (3.11) shows equal or better performance than (3.12).
The difference becomes obvious when the TNHR(t0) ≪ 1 is not verified (e.g., for
small values of t0 when DWR = 20 dB in Fig. 5.10 (b)). Besides that, it is worth
mentioning that in high-SNR scenarios, there is a gap in the performance between
those versions of DPCEL (indeed, (3.11) outperforms (3.12)) that decreases with
DWR.
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Figure 5.10: MSE vs. t0 curves for the proposed techniques for low-SNR scenarios
using approximations (3.8) and (3.9). DWR= 20, 30, 35, 40 dB (solid lines, dotted
lines, dashdot lines, and dashed lines, respectively), WNR = 0 dB, and L = 103.
The numerically obtained CRB curves (CRB) are shown.
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Figure 5.11: MSE vs. |t0| for ST-DM estimation in the high-SNR case DPCEH-A
(dotted lines) and DPCE for unknown host and channel noise variances DPCEU
(solid lines) for different L/LST. DWR = 30 dB , WNR = 0 dB, α = 1, and
L = 103, 5 · 103.

5.4.2 Unknown Variance

In this section, we study the performance of the implementations of
the Dirty Paper Coding Estimation for Unknown Variances (DPCEU) (check
Sect. 3.3) using ST-DM-based estimation (proposed in Sect. 3.4). Throughout
this section, the sampling of the search-interval is carried out using the DC-
QIM Modulo-Lattice Reduction technique and the Decision-Aided technique is
employed for the local optimization.

In Fig. 5.11, MSE vs. |t0| curves for DPCEU are depicted for different values of
L/LST with DWR = 30 dB, WNR = 0 dB, L = 103, 5 ·103, and α = 1. The values
of t0 are estimated and take positive and negative values with equal probability.
For the sake of comparison, the corresponding MSE curves for ST-DM-based
DPCEH for this case are also shown. These results support the idea that by
using ST-DM-based estimation, one can control (through the value of LST) the
minimum value of |t0| that makes the structure of the pdf Z appear: the smaller
the value of LST, the smaller the value of |t0| showing the structure of the pdf
of ZST . However, the cost to pay is the reduction of the number of samples
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available to estimate and, therefore, a loss of accuracy of system (recall that the
CRB inversely depends on the number of observations).

According to the experiments carried out, the minimum value of |t0| to cor-
rectly estimate using DPCE is related to the value of TNQR (defined in Chap. 2
that measures the ratio between the scaled self-noise plus the channel noise and
the second moment of the scaled lattice). For example, the MSE curve for DPCEU
with L = 103 and LST = L approximately has a minimum at |t0|= 1, by project-
ing into LST = 5 · 102 dimensions the gain in terms of WNR is 3 dB; therefore,
the minimum |t0| to obtain the same TNQR would be located at 1/

√
2 ≈ 0.71,

as approximately occurs in the figure. In addition, since DPCEU estimates with
half of the samples, the MSE losses also approximately 3 dB for |t0|= 2. However
in the case L = 103 and L/LST = 10, if one wants to attain the same value of
TNQR as the L/LST = 1 case, the minimum value of |t0| should be located at
1/
√
10 ≈ 0.32 but the structure of the pdf of Z approximately appears at 0.41 in

the figure. This mismatch is due to the number of available samples for the ML
estimation, which in this case is not sufficient. In this way, by increasing the
value of LST but fixing L/LST = 10 as the curves for L = 5·103 and L/LST = 10 in
the figure, the minimum value of |t0| where the structure of the pdf of Z appears
is approximately at the predicted value for this L/LST.

By comparing the results for DPCEH and DPCEU, one can conclude that the
DPCEH MSE curves decay slightly faster than DPCEU and their performance
matches whenever the structure of the pdf Z appears; however, DPCEU does
not require to know σ2

X and σ2
N to be used but demands more computational

resources than DPCEH.

5.4.2.1 Analysis of TNQR
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Figure 5.12: MSE vs. |t0| for DPCEH considering different values of α, DWR
= 30 dB, and L = 103. (a) WNR = −3 dB; (b) WNR = 3 dB.
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The results obtained in the previous sections, as well as those shown in the
theoretical analysis carried out in Chap. 4, indicate that our estimation algorithm
outperforms other techniques (e.g., PDD, Add-SS, etc.) when the structure in the
pdf of Z appears. Here, we study the relation between the values taken by TNQR
and the appearance of structure in the distribution of the received sequence.

As an illustrative example, the curves of MSE as a function of the value of the
gain are shown in Fig. 5.12 for different values of α with DWR = 30 dB, WNR
= −3, 3 dB, and L = 103. From these plots (as well others that are not shown,
due to space limitations), the values of t0 where the MSE abruptly decays, which
is related to the appearance of structure in the received signal. We denote this
value by |t0,min| and by using them, TNQR(|t0,min|) is calculated and shown for
the case DWR = 30 dB in Fig 5.13 (similar results were obtained for DWR = 40
dB).

One can state that, according to these experiments, the obtained
TNQR(|t0,min|) does not vary significantly with DWR and WNR. In addition,
without considering α = 0.1 case, TNQR(|t0,min|) takes values between 1 and
1.25, with DPCE being able to take advantage of the induced structure in pdf;
in other words, the power of the scaled self-noise and the channel noise can be in
the same order of magnitude as the second moment of the scaled lattice.

Let us assume that for DPCEU, TNQRmust take values smaller than a critical
constant TNQRCrit in order to guarantee that the received signal has structure
in its pdf; therefore, |t0,min|= α/

√

(TNQRCrit − (1− α)2)WNR (TNQRCrit must
take values larger than or equal to 1 to obtain a real valued |t0,min|). In Fig. 5.14,
the evolution of these theoretical |t0,min| values with respect to α for TNQRCrit =
1.15 in comparison with the value experimentally obtained |t0,min| (denoted by
t0,exp) is shown for DWR = 30, 40 dB. These results indicate that |t0,min| is close
to t0,exp except for α = 0.1, 0.2. Since this discrepancy appears for both DWR
= 30 dB and DWR = 40 dB cases, one can conclude that this is not due to the
lack of fulfillment of HQR ≫ 1(notice that HQR = 20 dB for the DWR = 40
dB case) but SCR(t0) ≪ 1. From this discussion, we propose to assume that
HQR ≫ 1 and SCR(t0) ≪ 1 are fulfilled and fix the minimum value of TNQR to
guarantee the arising of the structure of the pdf of Z to 1.

By fixing this threshold on TNQR, one can calculate the LST in order to have
structure in the pdf of Z using the definition of TNQR as

LST = min

(

L,

⌊

t20LWNR(1− (1− α)2)

α2

⌋)

, (5.11)

where in the previous expression, the min function is used to assure that LST ≤ L.
In addition, one must be aware that, as previously indicated, the value LST has
to be large enough to guarantee that our ML-based estimation works properly.
In Fig. 5.15, an example of how to decrease the smallest value of t0 while keeping
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Figure 5.13: TNQR(|t0,min|) vs. α with the experimentally obtained |t0,min| for
DPCEH with DWR = 30 dB, WNR = −3, 0, 3 dB, and L = 103.
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structure in the pdf of Z is shown. For example, for WNR = −3 dB, the minimum
value of t0 to obtain a good estimate for DPCEU with is t0 ≈ 1.3 while for the
projected version is t0 ≈ 1.
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Figure 5.15: MSE vs. t0 for DPCEU and DPCEULST (using (5.11)) with DWR
= 40 dB, WNR = −3, 0, 3 dB (solid lines, dotted lines, and dashdot lines, respec-
tively), α = 1, and L = 103.
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5.4.3 Computational Requirements
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Figure 5.16: Time per estimate as a function of t0 for DPCEL and DPCEH for
DWR = 30 dB with WNR = 0 dB. DWR = 40 dB with WNR = −3, 0, 3 dB
(solid lines, dotted lines, and dashdot lines, respectively). α = 1, and L = 103.

In this section, the computational requirements of the DPCE are studied
as the average time needed per estimate of t0 using Monte Carlo runs. The
simulations were carried out in a Matlab R2013a Core-i5-2500 3 GHz with 16 GB
memory server.

In Fig. 5.16, a comparison is depicted of the time required for DPCEL and
DPCEH for DWR = 30 dB and WNR = 0 dB and DWR = 40 dB and WNR
= −3, 0, 3 dB with L = 103 and α = 1 using the statistical interval, sampling
based on modulo-lattice reduction, and the Decision-Aided technique. These
results show that the required time to process 103 observations to estimate t0 is
less than 6·10−2 s for any of the shown cases, indicating that our algorithms could
be used in applications with severe time constraints. In addition, DPCEL takes
slightly less time than DPCEH and it is worth noting that the required time
increases with DWR, as one could expect since the search-interval is sampled
more finely. The difference of the required time as function of the WNR for
DWR = 40 dB is negligible.

It is worth noting that the required time approximately does not depend on
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Figure 5.17: Time per estimate as function of t0 for DPCEL, DPCEH, [51],
variance-based estimator (Var), and PDD for DWR = 40 dB, WNR = 0 dB,
α = αCosta, and L = 103.
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the value of t0, although the width of the search-interval increases with t0. This
is explained because the cardinality of T does not depend on t0 if the obtained t−
is not

√
ǫ as it occurs in this situation. In this case the iterative sampling process

allows us to write
t−ζ

l ≥ t+,

where |T | is the lowest integer l verifying the previous inequality. In addition, in
this expression, ζ denotes the right term of (5.7) divided by t(l), i.e.,

ζ ,

(

α∆2/12 + σ2
X +∆/

√
12
√

∆2/12 ((1− α)2 +K1(2α− 1)) +K1σ2
X

)

σ2
X + ∆2(1−K1)

12

.

After using the properties of the logarithmic function, l can be expressed as

l ≥ log (t+/t−)

log (ζ)

≈
log

(√

(

1 +K2

√

2/L
)

/
(

1−K2

√

2/L
)

)

log (ζ)
,

where in approximation of the previous expression is assumed that t̂20(z)var ≈ t20
and both σ2

N and t20σ
2
W can be neglected compared to t20σ

2
X in the calculation of

t± of the statistical interval. It is obvious this approximation does not depend on
t0.

In Fig. 5.17, where the DPCE techniques use the configuration used in
Fig. 5.16, the time required for the ML brute force technique introduced in [51],
for the variance-based estimator and the PDD are also depicted. In this case, the
analyzed framework is defined by DWR = 40 dB, WNR = 0 dB, α = αCosta, and
L = 103. On one hand, the required time for [51] is almost 4 orders of magnitude
larger than for DPCE; therefore, its use for applications with time restrictions is
severely limited. On the other, DPCE techniques require more time (the largest
gap is located at t0 = 2, more than an order of magnitude) than the variance-
based estimator (note that a variance-based estimation is used to compute the
search-interval) but the obtained MSE for the variance-based estimator is outper-
formed by DPCE techniques if the structure of the pdf of Z arises. PDD requires
even less computational resources than Var, as PDD is based on first order statis-
tics, while the variance-based estimator needs the second order statistics of the
involved signals; however, the obtained MSE is worse than that achieved by the
variance-based estimator.

Fig. 5.18 depicts a comparison of the required time for different values of L.
For the L = 5 · 102, 103, 5 · 103 cases, the most time demanding for DPCEL and
DPCEH is L = 5 · 103 which requires more operations for each evaluated point
(this indicates that from a time perspective this effect dominates the reduction
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Figure 5.18: Time per estimate as function of t0 for DPCEL and DPCEH for
L = 102, 5 · 102, 103, 5 · 103. DWR = 40 dB, WNR = 0 dB, and α = 1.
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of the width of [t−, t+] with L), while L = 5 · 102, 103 require approximately the
same time. For L = 100, one can realize from this figure that the required time
increases with t0, instead of being approximately flat as for the other values of L.
This is a consequence of the dependence of the cardinality of the search-interval
since, for these cases, t− =

√
ǫ and the upper-bound increases with t0. Apart

from that, the cardinality of the search-interval is the largest, being almost 6
times the cardinality corresponding to L = 5 · 102 with t0 = 2.
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Figure 5.19: Time per estimate as function of t0 for DPCEL (solid lines) and
DPCEH (dashed lines) for DWR = 30 dB, WNR = 0 dB, α = 0.5, 0.75, 1, αCosta,
and L = 103.

Fig. 5.19 compares the time required by the DPCE techniques, also with
the same configuration of Fig. 5.16, for different values of α (namely, α =
0.5, 0.75, 1, αCosta) for DWR = 30 dB, WNR = 0 dB, and L = 103. The re-
quired time increases with α because for a given σ2

W if the value of α increases,
then ∆ will be reduced; therefore, the effect of the modulo reduction will increase
and, consequently, the sampling of the search-interval will be finer. As in Fig. 5.17
for α = αCosta, the required time varies as the value of α does. For example, for
DPCEH when t0 = 2, the corresponding value of α is 0.8, which is coherent with
the time required since it needs slightly more time than that for α = 0.75.

A comparison between the calculation of the search-interval considering
the intersection of the two methods proposed in Sect. 5.1 and only using the
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Figure 5.20: Time per estimate as function of t0 for DPCEL and DPCEH for
DWR = 40 dB and WNR = 0 dB obtaining the search-interval as intersection
of the deterministic and the statistical intervals (Intersection), and using the
statistical interval (Stat). α = 1, and L = 103.
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statistically-based approach defined in Sect. 5.1.1 is shown in Fig. 5.20. From
these results, a clear conclusion can be drawn: the deterministically-obtained ap-
proach limits the search-interval for low values of t0, i.e., whenever there is no
structure in the pdf of Z, while when the structure of the pdf of Z arises, the sta-
tistical method limits the required time. This is coherent with the fact that the
lower-bound of the cost function used for the deterministic interval is tight when
there is no structure in the pdf of Z, while the statistical method is independent
of the existence of such structure.

The left pane of Fig. 5.21 shows the comparison of the time required by
DPCEL with the Bisection method using for sampling the search-interval both
techniques proposed in Sect. 5.2. In this scenario, the obtained results indicate
that such techniques require about the same time to calculate an estimate of t0.
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Figure 5.21: Time per estimate as function of t0 for DPCEL. DWR = 40 dB and
WNR = −3, 0, 3 dB (solid lines, dotted lines, and dashdot lines, respectively) with
α = αCosta, and L = 103. For a) different sampling methods and b) Decision-
Aided technique with K1 = 10−2 (Aided) and Bisection method with K1 = 1 and
ǫ = 10−4 (Bis).

The right pane of Fig. 5.21 compares the time required by the Decision-Aided
technique and the Bisection method technique for DPCEL when DWR = 40
dB and WNR = −3, 0, 3 dB and α = αCosta. For both optimization algorithms,
the search-interval is obtained as the intersection of the two presented techniques;
then, the search-interval is sampled using the DC-QIM’s modulo-lattice reduction
algorithm for Decision-Aided technique and Bisection method.

In order to obtain good results, the Decision-Aided technique can use a larger
value of K1 than the Bisection method technique and, thus, the cardinality of T
is smaller; however, the time required to compute a local estimate when there
exists a maximum/minimum within an interval limited by two consecutive ele-
ments of T is much longer than the time required for calculating any t(i) ∈ T
using the Decision-Aided technique. This trade-off is better for the Bisection
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method for low values of t0 (i.e., whenever the cost function is smooth and there
is no structure in the pdf of Z); however, when the structure of the pdf of Z
appears this advantage disappears and, according to this figure, both techniques
approximately require the same time.

In Fig. 5.22, the time required using Spread-Transform (ST) for the cases
of DPCE for different ratios of L/LST, and where the variances of the involved
signals are either known or unknown. First, if the performance of the algorithm
for known variance and spreading is compared to the case where spreading is not
used (in Fig. 5.16), one can conclude that the increment of the required time is
significant, which is coherent with the increment of the number of computations
required to estimate; indeed, for this case is more than 3 times the required time.

Second, the analysis of the two sets of curves reveals that there is a ten-
dency in the required time to decrease with the ratio L/LST as the number of
projected observations LST is reduced. Besides, the unknown variance case re-
quires more computational resources than the variance-aware case specially be-
cause the search-interval is larger and since the value of σ2

X used to sample the
search-interval is upper-bounded, the cardinality of the candidate-set is also much
larger.
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= 30 dB, WNR = 0 dB, α = 1, and L = 103.



Appendix

5.A Analysis of L2(t, z)

The cost functions for the low-SNR case (3.11) and (3.12) are lower bounded by
using that the cosine function takes values less than or equal to one in order to
obtain respectively
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where the first derivative with respect to t of (5.12) is

L

t









−8π2σ2
Ne

−
2π2

(

(1−α)2∆2t2

12 +σ2
N

)

∆2t2

∆2t2
+ 1− ‖z‖2

σ2
Xt

2L









, (5.13)

where, by assuming that t is close to t0, the first term of the outer parentheses
can be neglected since the self-noise can be discarded compared to the chan-
nel noise because SCR(t) ≪ 1, and exp(−2π2σ2

N/(∆
2t2))σ2

N/(∆
2t2) ≈ 0 due to

TNQR(t) ≫ 1 holds for the low-SNR case. Based on this, for t > 0 the finite root
of the approximation of the first derivative of Llow-SNR,2

2 (t, z) with respect to t is
approximately at tL =

√

‖z‖2/(σ2
XL). In addition, since Llow-SNR,2

2 (t, z) is con-
tinuous, the simplified version of (5.13) tends to −∞ as t tends to zero, and takes
positive values for finite t > tL, one can state that for finite t ≥ 0, Llow-SNR,2

2 (t, z)
decreases until the unique finite minimum tL is reached and increases for finite
t > tL.

The cost function for the high-SNR case (3.15) is lower bounded by
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whose zeros with respect to t are obtained by using the equivalent problem of ana-
lyzing Lhigh-SNR

2 (t, z) with respect to t2. From the first derivative of Lhigh-SNR
2 (t, z)

with respect to t2, one can straightforwardly obtain the only positive root for α ∈
[0, 1) located at t2L = (‖z‖2+‖z‖

√

‖z‖2+(4Lσ2
Nσ

2
X)/((1− α)2∆2/12))/(2Lσ2

X);

therefore, it is simple to prove that Lhigh-SNR
2 (t, z) has a unique zero at t = tL.

Taking this into account and additionally considering that Lhigh-SNR
2 (t, z) is con-

tinuous, and Lhigh-SNR
2 (t, z) → ∞ as t → 0 or t → ∞, one can state that

Lhigh-SNR
2 (t, z) only has a minimum at tL, decreases for t ≥ 0 until t = tL, and

increases for t > tL.

In the high-SNR and α = 1 case, the first derivative of Lhigh-SNR
2 (t, z) with

respect to t is −‖z‖2/σ2
Xt

3 and Lhigh-SNR
2 (t, z) is continuous; thus, Lhigh-SNR

2 (t, z)
decreases with t for t ≥ 0. In addition, note that limt→0 L

high-SNR
2 (t, z) = ∞ and

limt→∞ Lhigh-SNR
2 (t, z) = 0.

5.B Analysis of (5.7) with Respect to σX

As described in Sect. 5.2.1, the elements t(l) of the candidate set T are iteratively
obtained as

t(l + 1) =
t(l)

(

α∆2/12 + σ2
X +∆/

√
12
√

∆2/12 ((1− α)2 +K1(2α− 1)) +K1σ
2
X

)

σ2
X + ∆2(1−K1)

12

.

(5.14)

The previous expression has a discontinuity at

σX = ±∆
√
K1 − 1

2
√
3

, (5.15)

which only takes real values for K1 ≥ 1. Taking this into account, it can be stated
that on one hand (5.14) is continuous for σX > 0 if K1 < 1 (verified in most of
the real scenarios); on the other hand if K1 ≥ 1, (5.14) is continuous for σX > 0
except at σX = ∆

√
K1 − 1/(2

√
3) and

lim
σX→(∆

√
K1−1/(2

√
3))

−
t(l + 1)/t(l) = −∞,

lim
σX→(∆

√
K1−1/(2

√
3))

+
t(l + 1)/t(l) = ∞.



Chapter 5. Practical Estimation Algorithms 125

The first derivative of (5.14) with respect to σX is

− 12∆σX
(

∆2(K1 − 1)− 12σ2
X

)2
√

∆2 ((2α − 1)K1 + (α− 1)2) + 12K1σ2
X

×
[

∆2
(

(4α − 3)K1 + 2(α − 1)2 +K2
1

)

+2∆(α+K1 − 1)
√

∆2 ((2α− 1)K1 + (α− 1)2) + 12K1σ
2
X + 12K1σ

2
X

]

. (5.16)

Assuming that
√

∆2 ((2α− 1)K1 + (α− 1)2) + 12K1σ
2
X is real (otherwise, the

candidate set T would take imaginary values) and takes positive values,

12∆σX/(∆
2(K1 − 1)− 12σ2

X)
2
also takes positive values (except for the disconti-

nuity); if the expression within brackets of (5.16) takes positive values, then (5.16)
will take negative values. Based on this, we focus our analysis in the expression
within brackets which can be rewritten as

√

∆2 ((2α− 1)K1 + (α− 1)2) + 12K1σ2
X

(

∆2(α+K1 − 1)2
√

∆2 ((2α− 1)K1 + (α− 1)2) + 12K1σ2
X

+
√

∆2 ((2α− 1)K1 + (α− 1)2) + 12K1σ2
X + 2∆(α+K1 − 1)

)

.(5.17)

By dismissing the square root of the previous expression since it takes real
and positive values, as indicated in the previous paragraph, a positive root with
respect to σX of the expression of the outer parentheses is located at σX = ∆

√
K1−1

2
√
3

(i.e., discontinuity of (5.14) for σX > 0 shown in (5.15)), therefore:

• For K1 < 1, there are not real roots of (5.14) with respect to σX ; therefore,
(5.14) is continuous and takes positive values for σX → ∞, then (5.14) takes
positive values for σX > 0. In addition, the first derivative of (5.14) with
respect to σX is negative.

• If 1 ≤ K1, there is a discontinuity of (5.14) at (5.15) for real values of σX ;
however, for values of σX different of (5.15), the three terms of the outer
parentheses of (5.17) take positive values and, therefore, the first derivative
(5.14) with respect to σX takes negatives values.

5.C Maximum/minimum of the Derivative of M

If the four hypotheses hold for t close to t0, the element of the expectation of
the cost function E {L(t, Z)} due to the structure M defined in (5.9) can be
approximated as

M ≈ −2e
−

π2(t((1−α)2∆2t2+6σ2
X(t−t0)

2)t20+6σ2
N(t3+2t2t0+5tt20+2t30))

3∆2t3t20 .
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In order to obtain the maxima/minima of the first derivative of the previous
expression with respect to t, its second derivative with respect to t is calculated

∂2M

∂t2
≈ −8π2e

−
π2(t((1−α)2∆2t2+6σ2

X(t−t0)
2)t20+6σ2

N(t3+2t2t0+5tt20+2t30))
3∆2t3t2

0

∆4t8t20

×
(

4π2
(

σ2
Xtt

2
0(−t + t0) + σ2

N

(

t2 + 5tt0 + 3t20
))2

+∆2t3t0
(

σ2
Xt(2t− 3t0)t

2
0 − σ2

N

(

2t2 + 15tt0 + 12t20
))

)

. (5.18)

The roots of the previous expression correspond to the roots of the expression
within the outer parentheses, i.e.,

(

4π2
(

σ2
Xtt

2
0(−t + t0) + σ2

N

(

t2 + 5tt0 + 3t20
))2

+∆2t3t0
(

σ2
Xt(2t− 3t0)t

2
0 − σ2

N

(

2t2 + 15tt0 + 12t20
))

)

. (5.19)

As stated above, it is assumed that t and t0 are close, we propose to approximate
that expression locally by its second order Taylor expansion around t0, yielding

324π2σ4
N t

4
0 −∆2t60

(

29σ2
N + σ2

Xt
2
0

)

+(t− t0)
(

−2∆2t50
(

53σ2
N + σ2

Xt
2
0

)

+ 72π2
(

7σ4
N t

3
0 − σ2

Nσ
2
Xt

5
0

))

+
1

2
(t− t0)

2
(

4∆2t40
(

−73σ2
N + σ2

Xt
2
0

)

+ 8π2
(

67σ4
N t

2
0 − 32σ2

Nσ
2
Xt

4
0 + σ4

Xt
6
0

))

.

(5.20)

A comparison between the expression within the outer parentheses of (5.18) and
its approximation is shown in Fig. 5.23, which illustrates the resemblance between
them.

Therefore, one can solve the following equation to determine the max-
ima/minima of M

324π2σ4
N t

4
0 −∆2t60

(

29σ2
N + σ2

Xt
2
0

)

+(t− t0)
(

−2∆2t50
(

53σ2
N + σ2

Xt
2
0

)

+ 72π2
(

7σ4
N t

3
0 − σ2

Nσ
2
Xt

5
0

))

+
1

2
(t− t0)

2
(

4∆2t40
(

−73σ2
N + σ2

Xt
2
0

)

+ 8π2
(

67σ4
N t

2
0 − 32σ2

Nσ
2
Xt

4
0 + σ4

Xt
6
0

))

= 0.

The previous equation can be simplified by employing HQR ≫ 1 and
TNHR(t0) ≪ 1, yielding

t40

(

−∆2σ2
Xt

4
0 + 4π2

(

9σ2
N + σ2

Xt0(−t + t0)
)2
)

= 0,

whose two solutions with respect to t are

tl(t0) ,
9σ2

N

σ2
Xt0

+ t0 −
∆t0
2πσX

tr(t0) ,
9σ2

N

σ2
Xt0

+ t0 +
∆t0
2πσX

.
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Figure 5.23: Comparison of (5.19) and its approximation (5.20) as a function of
t. DWR = 20 dB, WNR = 0 dB, α = 0.5, and t0 = 0.5.

It is worth pointing out that both tl(t0) and tr(t0) asymptotically tend to t0 as
HQR ≫ 1 and TNHR(t0) ≪ 1 are verified.

5.D Sampling Based on the Distribution of

L(t, z)

In order to derive a sampling criterion of the search-interval, we will take into ac-
count that, as it has been already mentioned, the local minima of (3.11) (obtained
in Sect. 3.2.1) are due to the term of induced structure, i.e.,

J(t, z) , −
L
∑

i=1

2e
−

2π2σ2
X

(

σ2
N+

(1−α)2∆2t2

12

)

∆2(σ2
N

+σ2
X

t2) cos

(

2πσ2
Xtzi

∆(σ2
N + σ2

Xt
2)

− 2πdi
∆

)

. (5.21)

Therefore, we will focus our analysis on finding the set T that can locate the
local minima of (5.21). It is worth pointing out that if the sampling of the search
interval guarantees the convergence of the local optimization algorithm to the
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local minima, then the local minima of L(t, z) will be also reached using the same
approach because the first and second terms, which are not considered in (5.21),
are smooth functions that can be included without changing the essence of the
procedure here presented.

In order to pinpoint the local minima of (5.21), we find it useful to have an
approximation to the pdf of J(t, z) when t0 is given, as well as such pdf for the
case where t is not close to t0. Here, the value t is considered not close to t0, if
the resulting quantizer step size using t produces a set of centroids that are not
compatible with the corresponding set of centroids for t0 (i.e., the embedder and
the estimator are not synchronized).

The CLT is used to get the distribution of J(t, z) assuming that L → ∞
and each component of Z is independent. If t and t0 are close, the distribution
of J(t,Z) is denoted by V . First, the expectation of V is obtained by using
f low-SNR
Z|T,K (z|t, d) as approximation to the pdf of Z

µV (t) ≈ L

∫ ∞

−∞
f low-SNR
Z|T,K (τ |t, d) (J(t, τ)) dτ,

which was calculated in App. 3.A. Then, we obtain

µV (t)

= −L2e

2π2σ2
X
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−
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(5.22)

As analyzed in Sect. 3.2.1, µV (t) has only a minimum, while its maxima are at
t = 0 and t → ∞, where it is null.

Secondly, the variance of V is approximated in App. 5.E by

σ2
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X((1−α)2∆2t2+12σ2
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2

;

(5.23)

therefore, the distribution of V can be approximated by N (µV (t), σ
2
V (t)).

As stated above, the distribution of J(t,Z) when t is not close to t0, which is
denoted by U , is required, which is approximated using the CLT by considering
that L → ∞. In this way, since t and t0 are not close, one can assume that the
embedder and the estimator are not synchronized; therefore, the distribution of
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the cosine function of J(t, z) in (5.21) can be modeled by a uniform distribution
in [−∆/2,∆/2], and, thus, µU(t) ≈ 0. Taking this into account in (5.23) by
neglecting its second term, σ2

U (t) can be approximated as

σ2
U (t) = L2e

−
π2σ2

X((1−α)2∆2t2+12σ2
N)

3∆2(σ2
N

+σ2
X

t2) .

Therefore, the distribution of U can be approximated by N (0, σ2
U(t)).

Given the distribution of V , the distribution of U , and the value of t0, the in-
terval of values of t guaranteeing that the local method converges to t0 is obtained
following a probabilistic approach. This approach is based on two thresholds func-
tions γU(t) and γV (t), for U and V respectively. On one hand γU(t) is defined as
the threshold that is exceeded by U with probability pγ,U , i.e.,

1−Q
(

γU(t)

σU(t)

)

= pγ,U ,

where throughout this section Q(·) denotes the Q-function defined as

Q(x) ,
1√
2π

∫ ∞

x

e−
u2

2 du.

On the other hand for V , γV (t) is defined as the function of t that indicates the
value that is not exceed by V with probability pγ,V , i.e.,

Q
(

γV (t)− µV (t)

σV (t)

)

= pγ,V .

γU(t) is negative and strictly decreases with t as shown in App. 5.F. Further-
more, in order to analyze the expression of γV (t)

γV (t) =
√
LσV (t)Q−1 (pγ,V ) + LµV (t), (5.24)

where Q−1(·) is the inverse of the Q-function defined above. We first focus on the
term depending on σV (t), where σ

2
V (t) is defined in (5.23), where we assume that

in the relevant application scenarios with t close to t0. The first component of
(5.23) is smoother than the other component of this variance, i.e., the negative of
the square of µV (t) (i.e., µ

2
V (t)). Specifically, µV (t) has been previously studied

showing that asymptotically only has a minimum at t = t0 and, thus, −µ2
V (t) only

has a minimum at t0 (due to the monotonically increasing nature of the square
function); therefore, since the square root of σ2

V (t) maintains its maxima/minima
(since the square root is also a monotonically increasing function for t ≥ 0),
one can accurately approximate that the first term of (5.24) has asymptotically
a minimum at t0. Coherently, the second component of (5.24), which contains
µV (t), only has a minimum at t = t0. Bearing this in mind, one can conclude
that γV (t) has a minimum at t = t0 when t is close to t0.
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Figure 5.24: Example of curves γU(t) (solid line) and γV (t) (dashed line) vs. t.
t0 = 0.75, DWR = 40 dB, WNR = 0 dB, α = 0.75, and L = 103.

Given this, one has to calculate where γU(t) and γV (t) cross each other to
identify the range of values of t, where it is possible to know with a given prob-
ability that t is close to t0. This can obtained as the solution of the following
equation with respect to t

γV (t) = γU(t). (5.25)

Note that for pγ,V ≤ 0.5, both functions cross for an arbitrarily large value of L
due to the linear dependency of the expectation of V with L while the standard
deviation linearly depends on

√
L. The overall probability of making a mistake

in the differentiation of V and U can be approximated by 1− (1−pγ,U )(1−pγ,V ).
Given a value of L, if pγ,U or/and pγ,V are decreased, and there exists a solution
for (5.25) (otherwise, L is not large enough), then obtained width of the range of
t will be also decreased.

Fig. 5.24 depicts γU(t) and γV (t) with t0 = 0.75, DWR = 40 dB, WNR = 0
dB, α = 0.75, and L = 103, where one can check that γU(t) and γV (t) cross at
two points. These points would constitute the endpoints of the interval where t
is close to t0.
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So far, it was assumed that the real t0 is known; however, this is the value that
is needed to be estimated. In order to generate the values of T , the following
process is carried out using one of the search intervals defined in the previous
section. First, it is assumed that t0 = t− and the algorithm described above
is used to obtain t(1), next t0 = t(1) and t(2) is obtained using our algorithm
iteratively. This process is repeated until t+ is exceeded by t(i).

5.E Derivation of σ2
V (t)

The variance of the third term of the cost function can be calculated as

σ2
V (t) = LE

{

(J(t, Z))2
}

− L (E {J(t, Z)})2 .

As the case of the expectation calculated in the previous appendix, the approxi-
mation of the pdf of Z used is f low-SNR

Z|T,K (z|t, d).

On one hand,
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and, on the other hand (E {J(t, Z)})2 can be accurately approximated by the
square of (5.22). Although d is given, we average over the dither to obtain the
expectation taking into account that Z is not an identically distributed random
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vector. The resulting expression of the variance of J(t,Z) is
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.

5.F Analysis of γU(t)

The threshold γU(t) is obtained as

γU(t) =
√
LσU(t)Q−1(1− pγ,U),

thus, in order to analyze the maxima/minima of γU(t) its first derivative with
respect to t is obtained

∂γU(t)

∂t
=

√
LQ−1(1−pγ,U)

4π2σ2
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2
Xt (12σ

2
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X((1−α)2∆2t2+12σ2
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3∆2(σ2
N

+σ2
X

t2)

3∆2 (σ2
N + σ2

Xt
2)

2 ,

where in the previous expression, due to HQR ≫ 1, (1− α)2∆2 can be neglected
in comparison to 12σ2

X , Q−1(1− pγ,U) is negative (by assuming that pγ,U < 0.5),
therefore the first derivative of γU(t) with respect to t is negative, implying that
γU(t) monotonically decreases.



Chapter 6

Applications

In the previous chapters of the thesis, an ML-based estimation technique was
introduced for real-valued Gaussian distributed signals and real-valued channel
gains. Its theoretical limits were studied following an estimation and information
theoretical approach, a set of practical algorithms to rapidly obtain the estimate
of t0 was proposed, and, finally, its performance, measured in terms of accuracy
and required time, was evaluated by carrying out a set of experiments.

In this chapter, with the aim of providing insights into the wide range of
practical uses of DPCE, we present a set of applications of the proposed technique
dealing with making SCS robust to gain attacks, equalizing the channel gain in
real digital communication scenarios, and extending our algorithm to the case of
complex Gaussian signals and complex gains.

6.1 Scalar Costa Scheme Robust to Gain

Attacks

Watermarking schemes based on the DPC paradigm have been shown to achieve
much higher rates than classical SS methods. However, in practice, the lat-
ter continue to be used due to their higher security and robustness. A simple
but devastating special case for SCS (the most prevalent DPC method) is the
fixed gain attack (a.k.a. linear valumetric attack), in which the channel simply
multiplies the watermarked signal by a constant real number. Even such a sim-
ple channel has shown to have dramatic consequences on the decoding of SCS,
yielding very large probabilities of decoding error. In this section, we follow the
equalization approach, proposed in [18] and later developed in [4, 51], for which
an estimate of the channel gain is needed and obtained by making use of DPCE.
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6.1.1 Overview of SCS Data Hiding

In this section we will focus on the binary implementation of SCS, i.e., the case
where two scalar quantizers (corresponding to the embedded bit) are used. The
binary vector m is embedded by modifying the host signal x (we assume X ∼
N (0, σ2

XIL×L)) to the watermarked signal y, which is given by

yi = xi + α

(

Q∆

(

xi − di −mi
∆

2

)

−
(

xi − di −mi
∆

2

))

,

for all 1 ≤ i ≤ L. Note that the difference between the previous expression and
its counterpart for DPCE (2.3) of Sect. 2.3 lies in that in this case a message
is embedded into the host and the estimation is carried out taking advantage
of such data embedding; while in the other case, the host is modified only for
estimation purposes and, thus, there is not embedded message.

Here, we propose a modification of the framework introduced in Chap. 2 by
considering two independent noise signals. Indeed, under the fixed gain attack
the received signal z is defined as

z = t0 (y + n1) + n2, (6.1)

where t0 is a true gain factor, N1 ∼ N (0, σ2
N1
IL×L), N2 ∼ N (0, σ2

N2
IL×L), N1

and N2 are mutually independent and also independent of Y . Be aware that in
[4, 51] z corresponds to z = t0 (y + n1); therefore, the model considered here
is slightly more general (its usefulness in modeling practical situations will be
shown in Sect. 6.1.3).

The most extended implementation of the decoder estimates the ith embedded
bit as

m̂i = argmin
m∈{0,1}

∣

∣

∣

∣

Q∆

(

zi − di −m
∆

2

)

−
(

zi − di −m
∆

2

)∣

∣

∣

∣

.

However, if t0 6= 1 the embedding and decoding codebooks will be misaligned
with the consequence of significantly increasing the decoding error probability
[47]. This problem could be easily solved if the gain factor t0 were known; as this
is not the case, it must be estimated from the received samples. To this end, it is
possible to take advantage of the structure of the watermarked signal distribution
(which is induced by SCS embedding). The decoder can exploit this estimate,
denoted by t̂0(z), to equalize the received samples before decoding. Specifically,

m̂i = argmin
m∈{0,1}

∣

∣

∣

∣

Q∆

(

zi

t̂0(z)
− di −m

∆

2

)

−
(

zi

t̂0(z)
− di −m

∆

2

)∣

∣

∣

∣

. (6.2)
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6.1.2 Gain Factor Estimation

Since a priori knowledge of t0 is not available in general, we propose to obtain an
approximation of the ML estimate of t0. Following the same approach proposed
in this thesis, due to the componentwise independence of Z, the ML estimate is
calculated as t̂0(z) = argmint L(t, z), where L(t, z) , −2

∑L
i=1 log fZ|T,K(zi|t, di),

and the embedded bits are modeled by an i.i.d. random variables that take the
value 0 or 1 with equal probability.

Unfortunately, L(t, z) is an involved function, so we propose to simplify the
ML estimation by approximating the pdf of Z based on the approach followed
in Sect. 3.1.1 to obtain the Z’s pdf for low-SNR cases. Specifically, the ap-
proximation used here is based on the adjustment of the assumptions presented
in Chap. 2: a) σ2

X ≫ ∆2/12 (HQR ≫ 1 that is verified for a wide range of
real applications) in order to use the flat-host assumption (see [44]); b) the
scaled self-noise variance [45] is much smaller than the total channel noise vari-
ance, i.e., (1 − α)2t20∆

2/12 ≪ t20σ
2
N1

+ σ2
N2

(a version of SCR(t0) ≪ 1); c) the
variance of the total noise (self-noise plus total channel noise) is larger than
the second moment of the scaled quantization lattice used at the decoder, i.e.,
(1− α)2t20∆

2/12 + t20σ
2
N1

+ σ2
N2

> t20∆
2/48 (adjustment of TNQR(t0) ≫ 1) ; and

d) the variance of the total noise is much smaller than the variance of the scaled
host, i.e., (1−α)2t20∆

2/12+ t20σ
2
N1

+ σ2
N2

≪ t20σ
2
X (adaptation of TNHR(t0) ≪ 1).

Under these hypotheses, fZ|T,K(z|t, d) can be approximated as

fZ|T,K(z|t, d) ≈ e
− z2

2σ2
X

t2

√

2πσ2
X t2

×









1 + 2e
−

2π2

(

σ2
N2

+t2

(

σ2
N1

+
(1−α)2∆2

12

))

(∆/2)2t2 cos

(

2πz

∆t/2
− 2πd

∆/2

)









.

It is worth comparing the previous approximation of the pdf of Z with the
counterpart introduced for the low-SNR case (3.8) in Sect.3.1.1. The difference
comes from their respective different frameworks: a) there is a component due
to the scaled channel noise and given by t2σ2

N1
, and b) the distance between

contiguous centroids is ∆t/2, instead of ∆t as in (3.8) when the message is not
embedded. Therefore, under the assumptions introduced above, L(t, z) can be
approximated as

L(t, z) ≈ ‖z‖2
σ2
Xt

2
+ L log(2πσ2

Xt
2)

−4

L
∑

i=1

e
−

2π2

(

σ2
N2

+t2

(

σ2
N1

+
(1−α)2∆2

12

))

(∆/2)2t2 cos

(

2πzi
∆t/2

− 2πdi
∆/2

)

. (6.3)

The same issues regarding how to reach the global minimum L(t, z) described
in the basic framework of this thesis appear here; therefore, we adapt one of the
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algorithms proposed in the previous chapter for this particular scenario; specif-
ically, the statistical search-interval proposed in Sect. 5.1.1, the sampling of the
candidate set based on DC-QIM’s Modulo-Lattice Reduction of Sect. 5.2.1, and
the Decision-Aided Optimization described in Sect.5.3.1 are adapted and their
particular modifications are developed below.

First, a search-interval for the absolute value of t0 is obtained from the
variance-based unbiased estimate of t20. Specifically,

t̂20(z)var =
‖z‖2
L

− σ2
N2

σ2
X + σ2

W + σ2
N1

. (6.4)

If L is large enough to use the Central Limit Theorem (CLT), then the distribution
of t̂20(z)var can be approximated by N (t20, 2(t

2
0(σ

2
X + σ2

W + σ2
N1
) + σ2

N2
)2/(L(σ2

X +
σ2
W + σ2

N1
)2)), and t20 will be within [t2−, t

2
+] with large probability, where

t2± , max
(

ǫ, t̂20(z)var

±K2

√

√

√

√

2(t̂20(z)var(σ
2
X + σ2

W + σ2
N1
) + σN2)

2

L
(

σ2
X + σ2

W + σ2
N1

)2



 ;

ǫ > 0 guarantees that both t2− and t2+ take positive values, and K2 ≥ 0 controls
the probability with which |t0| lies in the interval [t−, t+].

Once it is available, the search interval [t−, t+] is sampled, producing a candi-
date set T +; this sampling must be fine enough to guarantee that if a sample is
within the main lobe of the target function, then at least one of its neighbors in the
sampling set will be also in the main lobe. Specifically, the sampling criterion is
based on the factor in (6.3) defining the lobes, i.e., the cosine function argument.
Indeed, we consider the variance of (z−td)mod(t∆/2) when t is in a neighborhood
of t0, and for t = t0; the sampled points t(l) are iteratively computed as t(l +

1) =
t(l)

(

α∆2

48
+σ2

X+ ∆
2
√

12
ν
)

σ2
X+

∆2(1−K1)
48

, where ν ,
√

∆2/48 ((1− α)2 +K1(2α− 1)) +K1σ2
X ,

t(1) = t−, and the iterative sampling stops when t(l) ≥ t+. Parameter K1 is
introduced to control the separation between consecutive points in T + and, thus,
the cardinality of such set; the larger K1, the smaller |T +| (less computational
cost), but the more likely it will be that T + misses the main lobe of the tar-
get function, with a consequent performance loss. Since t0 can be negative, by
symmetry we define T = T + ∪ −T +.

The centroid used at embedding is estimated for each t ∈ T ; this is done by
equalizing the received observation, i.e., cj = Q∆/2 (zj/t− dj) + dj , j = 1, . . . , L.
Then, given t ∈ T , the vector of centroids c is estimated, and from this choice the
minimum mean square error gain factor, i.e., t∗ , argmint‖z−tc‖2, is computed,
then t∗ = (zTc)/‖c‖2. We will denote by T ∗ the set of local optimizers t∗ thus
obtained. Note that |T ∗|≤ |T |. Since the sampling method guarantees that
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at least one t ∈ T belongs to the main lobe, the ML estimate of t0 is finally
approximated by t̂0(z) ≈ argmint∈T ∗ L(t, z).

6.1.3 Adaptation to Filtered Images

An interesting application of the technique introduced in the previous section goes
beyond a pure scaling and considers a watermarked image that is convolved with
a linear filter. From the estimation result, the embedded bits must be reliably
extracted. In this section we assume the embedding to be performed in the full-
frame Discrete Cosine Transform (DCT)1 domain, and the considered filters to
be circularly symmetric; therefore, x will denote the coefficients in that domain
of a gray level image xS of size Nr ×Nc.

Typically, the energy of natural images is concentrated at the low frequen-
cies, which are the most perceptually significant components. Therefore, an at-
tacker could remove the high frequencies without a large semantic distortion;
consequently, most robust watermarking schemes embed the messages at the
low-middle frequencies, excluding the DC component (e.g., [5]).

After embedding, the full-frame Inverse DCT (IDCT) of y is calculated to
obtain yS. The pixel values of the watermarked image are rounded to the nearest
integer and clipped; this operation, which is modeled by the addition of n1 in
(6.1), is denoted by rclip(·)

rclip(ysi ) =







round(ysi ) if ysi ∈ [0, 2q − 1]
0 if ysi < 0
2q − 1 if ysi > 2q − 1,

where round(·) stands for the round to the nearest integer function, and q denotes
the pixel depth. Then, the watermarked image is filtered (and subsequently
rounded and clipped) in the spatial domain, yielding zS = (yS +nS

1 ) ∗ hS +nS
2 ,

where ∗ denotes the convolution operation (we consider zS to have the size of
yS and nS

1 ), h
S is an Nh

r × Nh
c -sized spatial filter, and nS

2 models the rclip(·)
operation after filtering.

Assuming Nr ≫ Nh
r and Nc ≫ Nh

c , as customary, the filtering border effect
is neglected in our analysis; the spatial domain filtering is approximated by a
DCT domain frequency-dependent gain (although one must be aware that the
filtering effect is not purely multiplicative). So, if one can estimate the gain
factor corresponding to each frequency, then the SCS decoder in (6.2) may be
used.

This gain estimate will be performed block-wise, relying on the assumption
of the filter frequency response to be approximately constant within each block.

1The definition proposed in [33] is used.
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Non-overlapped NB × NB-sized blocks are used. If NB were too large, then the
frequency response could no longer be assumed constant within each block; on
the other hand, if NB were too small, then the estimate precision will be poor,
due to the small number of samples.

We assume the AC full-frame DCT coefficients used for embedding to be i.i.d.
zero-mean Gaussian distributed with known variance, and independent of the
coefficients in other blocks. Furthermore, rclip(·) is modeled in the spatial domain
by bothNS

1 (rounding and clipping due to the pixel domain transformation of the
watermarked image, before filtering) and NS

2 (rounding and clipping due to the
pixel domain casting of the filtered image) following independent U([−1/2, 1/2]L)
distributions. If Nr ·Nc is large enough, the CLT can be applied, and N1 and N2

can be approximated to be i.i.d. zero-mean Gaussian distributed with variance
1/12.

6.1.4 Experimental Results

In this section we compare, by using synthetic signals, the performance of our
proposed method with that of previous schemes in the literature; we also illustrate
the application to filtered images. Throughout this section, the parameters of
our method have been set to K1 = 10−3, K2 = 10, and ǫ = 10−3. Here, for
the sake of comparison it will be useful to define the effective WNR as WNRe ,

t20σ
2
W/(t20σ

2
N1

+ σ2
N2
).

First, assuming that t0 > 0, we compare the performance in terms of the
Bit Error Rate (BER), of the scheme described in Sect. 6.1.2 with that of Balado
et al. [4]. The results are shown in Fig. 6.1, where the turbo-code used in [4] is
employed, i.e., a 1/15 turbo code based on the recursive systematic convolutional
code g = (31, 21, 25, 35, 23, 33, 27, 37) (octal coding) and interleaver size of 103

uncoded bits (yielding L = 1.5 · 104) [3]. This coding is also considered for the
results of the current approach shown in Fig. 6.1. It is worth noting that in
order to reduce the complexity, our gain factor estimation algorithm does not
explicitly exploit the code structure; in other words, for the results of the current
method in Fig. 6.1 the code error correcting capabilities are employed solely for
message decoding once the received signal is equalized by t̂0(z). Hence, further
improvements in the gain factor estimation would be afforded by exploiting the
code underlying structure at the expense of a higher computational cost.

Fig. 6.1 shows that our scheme outperforms [4] for all the considered WNRe’s,
except for WNRe ≈ 1.76 dB, where no decoding errors were found for either.2

This is not surprising as this WNRe corresponds to t0 = 1. Indeed, the large sen-
sitivity of [4] to gain attacks even slightly different from 1 is shown by the authors

2Be aware that also no decoding errors were found for our method when WNRe = 1 and 3
dB.



Chapter 6. Applications 139

−3 −2 −1 0 1 2 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

WNR
e
 (dB)

B
E

R

 

 

Current
[4]
Variance-based starting

Figure 6.1: BER as a function of WNRe for the method in [4], its variation when
it is initialized by the variance-based estimate (6.4), and the current proposal.
DWR = 30 dB, L = 1.5 · 104, and α = αCosta.

in their original paper; for the sake of numerical illustration, in Fig. 6.1 the gains
corresponding to WNRe = 1 and 2 dB are t0 ≈ 0.850 and t0 ≈ 1.058, respectively.
Fig. 6.1 also shows the results obtained by initializing the scheme in [4] with the
variance-based estimate introduced in (6.4); this initialization of Balado et al.’s
method, newly proposed here, achieves the best results among all three methods
for very small values of WNRe (where the error in the variance-based estimate is
very small), but it is clearly outperformed by the scheme described in Sect. 6.1.2
when larger WNRe’s are considered (corresponding to larger values of variance
of the variance-based estimator).

Fig. 6.2 shows the BER as a function of WNRe for [51], the variance-based
estimate in (6.4), and our proposal when channel coding is not used, and t0 > 0.
[51] is carried out by sampling finely enough a search interval. Special attention
was paid to reducing its computational cost as much as possible (e.g., precom-
puting the pdfs depending on a quantized version of the dither).

Since [51] uses the exact received signal pdf and exhaustive search, it was
expected to provide the best results, as it is indeed the case. Furthermore, and
similarly to Fig. 6.1, the variance-based estimate outperforms our proposal for
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Figure 6.2: BER as a function of WNRe for the method in [51], the variance-
based estimate (6.4), and the current proposal. DWR = 30 dB, L = 103, and
α = αCosta.

very low values of the WNRe, as the structure on fY (y) induced by the watermark
embedding is no longer observable; however, for larger WNRe’s such structure is
made evident, and our scheme clearly improves the results of the variance-based
estimate. It is also interesting to note that Shterev and Lagendijk’s method
behaves almost exactly as the best result among the variance-based estimate
and our proposal, showing that both schemes are good choices (depending on the
WNRe) to be used as alternatives to the method proposed in [51], with a dramatic
reduction in the computational cost over the latter. Specifically, each Monte Carlo
trial of [51] for WNRe = 6 dB carried out in MatlabR2013b using a Core i5-2500
3.3GHZ 16 GB PC requires around 50 s, while our proposal approximately needs
only 0.3 s.

Finally, Fig. 6.3 shows the results of the filtered-image-targeted adaptation
proposed in Sect. 6.1.3 for a low-pass 5× 5 spatial Gaussian filter with standard
deviation 1, and a test set of 100 gray-converted 384× 512-sized images pseudo-
randomly selected from the UCID v2 image database [50]. For the reasons given
in Sect. 6.1.3, only the first 10 zigzag-ordered DCT coefficient blocks of size 64×64
are used for hiding data.
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Figure 6.3: Estimate ĥ of the block gain factor averaged over 100 images, the
mean square estimation error of the gain factor, averaged BER per block, and
WNRe for each watermarked DCT block following the zigzag order. PSNR = 40
dB, NB = 16, α = 1, and Gaussian spatial filter of size 5 × 5 with standard
deviation 1.

Fig. 6.3 shows the BER averaged over the test images for the considered
blocks, when NB = 16, α = 1, and the PSNR, defined in this case as 2552/σ2

W , is
set to 40 dB. According to the shown results, the block BER approximately takes
values between 10−1 and 10−2, which illustrates that our scheme can be practically
used in this demanding scenario. In addition, the BER seems to depend on the
actual value of h (its estimate ĥ is shown in this figure) as one would expect, since
σ2
W , σ2

N1
, and σ2

N2
are approximately constant for all the watermarked blocks and,

thus, the WNRe only changes with h. These BER results are supported by the
accuracy of the obtained estimates; specifically, in this example the mean square
estimation error (MSE) of the gain factors takes values approximately around
−30 dB in medium frequencies and less than −40 dB for low frequencies (where
the energy of the images is concentrated).
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6.2 Digital Communications: PAM

Constellations

As an example of application of our techniques in digital communications, we
propose to use DPCE on flat-fading channels in a digital communications frame-
work. Since we mainly focus on the real gain case, the samples x are obtained
from real constellations; indeed, we focus our attention in independent and uni-
formly distributed PAM constellation symbols. In this case, X is not Gaussian
distributed and, in order to tackle this, the watermark embedding and the gain
estimation are carried out in the ST domain. Thus, as explained in Sect. 3.4,
by assuming that the value of L is large enough, the CLT guarantees that XST

can be accurately modeled by a zero-mean Gaussian distribution and, therefore,
DPCE techniques can be applied. Note that working in the ST domain allows
us to choose the working point, i.e., we can reduce LST in order to reduce the
TNQR (cf. Sect. 3.4); furthermore, this projection gain can not be achieved if
one tries to estimate the channel scaling by looking at the PAM signal structure.

As in Chap. 2, the sent signal y can be written as

y = x+w;

however in this case, since w = VwST (V is the L × LST orthonormal matrix
used in the transformation), each component of wST is zero-mean independently
distributed, and if LST is assumed to be large enough, the distribution of W can
be approximated by a zero-mean Gaussian distribution by applying the CLT. The
decoder receives the scaled transmitted sequence z plus noise, i.e.,

z = t0y + n = t0(x+w) + n.

In this section, we consider that t0 ≥ 0 and N follows N (0, σ2
NIL×L). According

to the embedding and due to the linear nature of ST, t0 is calculated in the ST
domain. It is worth pointing out that as DPCE is a ML-based technique, the
length of the observed sequence in the ST domain LST must be large enough to
obtain an accurate estimate of t0.

After obtaining t̂0(z), z is equalized as z/t̂0(z) then, the sent message is
extracted. In this application, we use the BER to measure the performance. It
is worth noting that, contrarily to SIT, the watermark is not removed at the
decoder in our scheme; therefore, the watermark constitutes an additional source
of noise with impact on the performance of the digital communications system.
Let us mention that we are aware that there exist techniques to reduce the power
of the watermark for scalar dirty paper coding techniques (e.g., [18] or [19])
but the obtained performance was almost the same compared to the case of not
implementing those techniques and, therefore, we decided to dismiss them to
avoid unnecessary complexity.
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Figure 6.4: BER as function of HWNR for the optimal DPCEH, and for the
optimal variance-based estimator (Var) are depicted. In addition, PDD, and for
AWGN channel known t0 are shown. L = 102, LST = 102, and t0 = 1.

6.2.1 Experimental Results

In this section, we consider the transmission of independent and uniformly dis-
tributed 32-PAM symbols (which constitute the current host signal x). The BER
for both DPCE and PDD is minimized with respect to the splitting of the trans-
mitter power budget (i.e., σ2

X + σ2
W ) into σ2

X and σ2
W . Additionally, exhaustive

search minimization is performed over α for DPCE, and over η for PDD (i.e., the
self-interference parameter).

Once the estimation is performed for PDD, z/t̂0(z) is computed (as for
DPCE), and the estimated watermark is removed from the signal; the result
is the decoder input.

6.2.1.1 Known Variances

In Figs. 6.4-6.5, for the case of known the variances σ2
X and σ2

N , the performance
is measured in terms of BER vs. Host-plus-Watermark-to-Noise Ratio (HWNR)
(defined as (σ2

X + σ2
W )/σ2

N ) using the DPCEH techniques, the variance-based
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Figure 6.5: BER as function of HWNR for the optimal DPCEH, and for the
optimal variance-based estimator (Var) are depicted. In addition, PDD, and for
AWGN channel known t0 are shown. L = 102, LST = 102, and t0 = 2.

estimator, and PDD. In these figures L = LST = 102. In addition, the curve of
known t0 (in this case HWNR = σ2

X/σ
2
N ) is also shown as a reference. From these

results, one can conclude that both the DPCEH and the variance-based estimator
outperform PDD. In addition, approximately for values HWNRe ≤ 22 dB (here,
HWNRe , t20(σ

2
X + σ2

W )/σ2
N ; therefore, this value approximately corresponds

to HWNR = 22 dB in Fig. 6.4 and HWNR = 16 dB in Fig. 6.5), the variance-
based estimator outperforms DPCEH, while for larger values of HWNRe, DPCEH
shows better performance than the variance-based estimator. From this, one can
conclude that the advantages of DPCE techniques (i.e., the host helps in the
estimation of the gain) appear for large values of HWNRe.

6.2.1.2 Unknown Channel Noise Variance

Here we consider that σ2
N is unknown, the transmitter is power constrained, and

the embedder and the decoder agree on the quantization step value ∆. In order
to provide a realistic framework, these minimizations are performed by consid-
ering a fixed HWNRe (we denote this scenario by Fixed HWNRe Optimization,
FHO), but the BER is evaluated for different values of HWNRe. Note that the



Chapter 6. Applications 145

16 18 20 22 24 26 28 30 32 34 36
10

−4

10
−3

10
−2

10
−1

10
0

 

 

var-aware DPCE

unk-var DPCE

unk-var DPCE FHO

PDD

PDD FHO

AWGN

HWNRe (dB)

B
E
R

Figure 6.6: BER as a function of the HWNRe for the unknown-variance DPCE
FHO, and PDD FHO when the optimization is performed for HWNRe = 26 dB.
For the sake of comparison, we have also plotted the results for the variance-aware
ST-DM-based DPCE (using the high-SNR target function), unknown-variance
ST-DM-based DPCE, and PDD. The BER in these three plots was minimized
for each HWNRe with respect to α (for DPCE plots), η (for PDD plot), and
DWR. In addition, the curve of the AWGN case is also depicted. Independent
uniformly distributed 32-PAM constellation, L = 103, and t0 = 0.9.

system will be insensitive, in terms of BER, to changes on t0 and σ2
N which verify

t20
σ2
N
= constant, and consequently the BER is univocally defined as a function of

HWNRe. Note this can be also verified by comparing Fig. 6.4 and Fig. 6.5, where
the latter corresponds to a shift of approximately 6 dB of the HWNR axis with
respect to Fig. 6.4.

Fig. 6.6 shows the BER for t0 = 0.9 as a function of the HWNRe for the
unknown-variance ST-DM-based DPCE and PDD in FHO, where the optimiza-
tion was performed for HWNRe = 26 dB, and using the constraint TNQR(t0) < 1,
LST = min(L,max(1, ⌊t20WNRL(1 − (1 − α)2)/α2⌋)). These results illustrate
that variance-unknown DPCE FHO clearly outperforms PDD FHO for values
of HWNRe larger than or equal to 26 dB; indeed, the gain of DPCE FHO with
respect to PDD FHO increases with HWNRe. As discussed above, this is a conse-
quence of PDD spending part of the watermark power in reducing the host inter-
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ference. Furthermore, PDD must achieve a good trade-off between σ2
X and σ2

W :
the larger σ2

W , the more accurate the estimate, but also the lower σ2
X , which is the

power of the information transmitting signal, and consequently the BER might
actually increase (i.e., t0 estimation and data decoding are somehow competing).
On the other hand, DPCE is not affected by host interference, but watermark
removal is not implemented, and consequently the watermark interferes on in-
formation decoding; therefore, the larger the HWNRe, the larger the DWR, and
consequently the more accurate the estimation of t0 (as long as TNQR(t0) < 1),
and the smaller the interference of w on x, summing up both effects for reducing
the BER.

For the sake of comparison, we also plot the results for the unknown-variance
ST-DM-based DPCE, PDD, variance-aware ST-DM-based DPCE and the AWGN
channel (where σ2

W = 0) when the optimization of the system parameters is
performed for each particular HWNRe (instead of being performed for a fixed
HWNRe, as it is in FHO). Obviously, unknown-variance ST-DM-based DPCE
FHO is outperformed by unknown-variance ST-DM-based DPCE, which in turn
is outperformed by variance-aware ST-DM-based DPCE (although both plots
are very similar), and the latter is outperformed by (but it is quite close to) the
AWGN channel case. In contrast, the results for both PDD and PDD FHO are
virtually the same, as both of them require complete host interference cancella-
tion, yielding approximately the same DWR (around 15 dB).
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6.3 Complex Gain Estimation

We now present how to adapt our technique to estimate real channel gains in
order to address the scenarios of complex-valued signals and gains; specifically,
we modify our basic framework (proposed in Chap. 2) to

z = t0(x+w) + n,

where in this case, t0 ∈ C, X and N are mutually independent random vectors
and i.i.d. following a zero-mean circularly-symmetric complex Gaussian distribu-
tion.

Considering the two most widely used ways to multiply complex numbers,
we propose also a pair of approaches: one based on using polar coordinates to
multiply complex numbers in Sect. 6.3.1 and other focusing on the Cartesian
coordinates, presented in Sect. 6.3.2

6.3.1 Polar Approach

Here, we exploit the nature of the complex product (multiplicative on the mag-
nitude, additive on the phase) by considering a codebook defined in polar coor-
dinates. By doing so, the estimation of t0 will be decoupled into two simpler real
estimation problems: first, an estimator |t̂0(z)| of the magnitude is obtained, and
this is then used to estimate the phase ∡t̂0(z). This decoupling will introduce
some loss in performance, but, on the other hand, it will allow to significantly
reduce the computational cost of the estimation.

6.3.1.1 Generation of the Transmitted Signal

The magnitude of xi is modified as |yi|= |xi|+α (Qρ (|xi|− ̺i)− (|xi|−̺i)), where
i = 1, . . . , L, Qρ(·) denotes a uniform scalar quantizer with step-size ρ, and
̺ stands for a dither sequence which is uniformly distributed in [−ρ/2, ρ/2]L.
It is worth noting that since the real and imaginary components of X follow
independent zero-mean Gaussian distributions with variance σ2

X , then |X| will be
Rayleigh distributed, with scale parameter σX .

In order to control the distortion introduced by the estimation aiding signal
(i.e., the watermark signal), and at the same time provide a phase detection er-
ror probability similar to that of the magnitude detection, the quantization step
applied to ∡xi, i = 1, . . . , L, is chosen to yield an Euclidean distance between
neighboring complex centroids sharing the same magnitude (i.e., those centroids
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only distinguished by their phase), nearly equal to ρ.3 Specifically, the quantiza-
tion step used for quantizing the phase coordinate of the ith sample is calculated
as

φi =



























2π

(⌈

π

[

cos−1

(
√

(Qρ(|yi|−̺i)
2−(ρ/2)2)

Qρ(|yi|−̺i)

)]−1
⌉)−1

if Qρ (|yi|−̺i) 6= 0,

2π, otherwise

, (6.5)

where the arccosine function cos−1(·) takes values in [−π, π), ⌈·⌉ stands for the
ceil function, and we have used the relationships between Cartesian and polar
coordinates.

Consequently, the modified phase will be obtained as ∡yi = ∡xi +
α [Qφi

(∡xi − φiϕi)− (∡xi − φiϕi)], where ϕ is uniformly distributed in
[−1/2, 1/2]L. Note that the magnitude quantization step does not depend on
i, but the phase quantization step does; in fact, the larger the magnitude of the
ith sample, the smaller the used phase quantization step, which makes sense in
order to achieve the target of controlling the estimation aiding signal power.

6.3.1.2 Magnitude Estimation

Since, in general, a priori information on |t0| is not available, as for the real
case, the Maximum Likelihood (ML) estimator will be used. In order to obtain
a mathematically tractable expression of f|Z|||T |,K (|zi|||t|, ̺i), pdf of |Z| given
|t| and ̺i, an approximation of that pdf is proposed based on three hypotheses
(note that these are versions of the high-SNR hypotheses presented in Sect. 2.4
adjusted for estimating |t0|): 1) the variance of |X| is much larger than the second
moment of the quantization lattice (i.e., ρ2/12). Therefore, the probability of
the transmitted centroid given |t0| can be approximated by ρf|X|(z/|t0|) (this
is the counterpart of HQR ≫ 1), 2) the variance of the scaled self-noise (i.e.,
|t0|2(1 − α)2ρ2/12) is much smaller than the variance of the channel noise σ2

N

(version of SCR(t0) ≪ 1). Therefore, the Gaussian channel noise dominates the
total noise distribution, 3) the square distance between scaled centroids (which we
will quantify by using |t0|2ρ2/12) is much larger than the variance of the total noise
(σ2

N + |t0|2(1 − α)2ρ2/12) that corresponds to a modification of TNQR(t0) ≪ 1.
Therefore, the noise distribution is negligible outside of the quantization region
of the transmitted centroid.

3In general that distance can not be exactly ρ, as the phase quantization step is required to
be an integer divider of 2π, in order to verify the phase periodicity constraint.
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By jointly considering these assumptions, one can approximate

f|Z|||T |,K (|z|||t|, ̺) ≈ |z|ρe
− |z|2

2σ2
X

|t|2

σ2
X |t|

e

− ((|z|−̺|t|)modρ|t|)2

2

(

σ2
N

+
(1−α)2ρ2|t|2

12

)

√

2π
(

σ2
N + (1−α)2ρ2|t|2

12

)

. (6.6)

If the three hypotheses do not simultaneously hold, the validity of this pdf ap-
proximation and the accuracy of our estimator can no longer be guaranteed.
Intuitively, the leftmost fraction of the previous expression approximates the
probability of the centroid corresponding to |z|, while the rightmost fraction ap-
proximates the distribution of |z| given that centroid. Note this split of the pdf
is coherent with the corresponding real-valued high-SNR case (3.10) formulated
in Sect. (3.1.2); indeed, in spite of using the magnitude in this expression, the
difference of both pdfs is the distribution of the leftmost term, corresponding to a
Gaussian distribution in the real-valued case and the Rayleigh distribution here.
From (6.6), and given that the components of z are mutually independent, the
ML estimation can be approximated as

|t̂0(z)|≈ argmin
|t|≥0

(

‖z‖2
σ2
X |t|2 +

‖(|z|−̺|t|)modρ|t|‖2
(

σ2
N + (1−α)2ρ2|t|2

12

)

+L log

(

|t|2
(

σ2
N +

(1− α)2ρ2|t|2
12

))

)

. (6.7)

In order to limit the search-space of (6.7), a search-interval [|t|−, |t|+] will
be calculated by using an adaptation of the variance-based estimator (explained

in Sect. 5.1.1) but for |t0|2, i.e., |t̂0(z)|2var=
∑L

i=1|zi|
2

L−1
−
(

∑L
i=1|zi|
L−1

)2

−σ2
N

σ2
|X|+σ2

W
,where σ2

|X| =

(4 − π)σ2
X/2 and σ2

W denotes the variance of the magnitude of the estimation
aiding signal (i.e., σ2

W ≈ α2ρ2/12). It can be shown that |t̂0(z)|2var is an unbiased
estimator of |t0|2; consequently, if L is large enough to apply the CLT, the distri-
bution of |t̂0(z)|2var can be approximated by a Gaussian distribution with mean
|t0|2 and variance 2(|t0|2(σ2

|X| + σ2
W ) + σ2

N )
2/[(L − 1)(σ2

|X| + σ2
W )2]. Therefore,

if |t̂0(z)|2var≈ |t0|2, then |t0|2 will lie with approximated probability erf(K2/
√
2)

in the interval defined by |t|2±= max
(

ǫ, |t̂0(z)|2var±K2

√

2η/(L− 1)
)

,where ǫ > 0

guarantees that |t|2+ and |t|2− take positive values, and η ,
(|t̂0(z)|2var(σ2

|X|+σ2
W )+σ2

N )2

(σ2
|X|+σ2

W )2
.

By applying the square root to those values, we obtain the interval we were
looking for.

Here, based on the sampling technique based on the modulo-lattice reduction
of the real valued case introduced in Sect. 5.2.1, we propose to sample the search
interval [|t|−, |t|+] finely enough to guarantee that two consecutive sampled points
will be in the main lobe of the target function, which is indeed convex. The
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sampling criterion is based on setting the total noise variance to be a multiple
of the square quantization step-size, iteratively assuming that the considered
magnitude value |t(l)|= |t0|, so

|t(l + 1)|= |t(l)|
E{|X|2}+ ρ2(1−K1)

12

×
(

α
ρ2

12
+ E{|X|2}

+
ρ√
12

√

ρ2

12
((1− α)2 +K1(2α− 1)) +K1E{|X|2}

)

,

where E{|X|2} = σ2
|X| + σ2

Xπ/2, |t(1)|= |t|−, and the iterative sampling stops

when |t(l)|≥ |t|+. The parameter K1 is introduced to control the separation
between two consecutive elements of T and, thus, the cardinality of that set.

The Matlab optimization toolbox function fminbnd (which implements a
bounded optimization algorithm based on golden section search and parabolic
interpolation) is run once for each interval defined by two consecutive elements
of T ; in this way a set T ∗ (of cardinality |T |−1) with the corresponding opti-
mization solutions, is built. Finally, the approximated ML estimate is that point
in T ∗ which minimizes the target function in (6.7).

6.3.1.3 Phase Estimation

Assuming that |t̂0(z)| obtained following the scheme described in the previous sec-
tion is an accurate approximation of |t0|, the normalized observation |zi|/(|t̂0(z)|),
which is approximately equal to |yi|, is used to estimate the phase quantizer step-
size φ̂i as in (6.5).

Under the hypotheses introduced in the previous section, the distribution
of Z given t0 and the transmitted centroid, can be approximated by an i.i.d.
Gaussian distribution centered at the transmitted centroid multiplied by t0, and
with variance equal to the sum of the noise channel variance and the self-noise
variance scaled by |t0|2. Analogously to the magnitude estimation, the pdfs of
neighboring phase centroids are approximately not overlapped. Therefore, the
resulting ML estimator of ∡t0 can be approximated as

∡t̂0(z) = argmin
t∈[−π,π)

L
∑

i=1

∣

∣

∣

∣

∣

Qρ

( |zi|
|t̂0(z)|

− ̺i

)

−
( |zi|
|t̂0(z)|

− ̺i

)

ej((∡zi−φ̂iϕi−t)modφ̂i)

∣

∣

∣

∣

∣

2

,

where the modulo operation is used to measure the phase difference between
the received samples and their closest centroids. For this algorithm, the previous
optimization is carried out by exhaustive-search.
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6.3.2 Cartesian Approach

We propose another approach to deal with a complex gain AWGN channel based
on dividing the product into the real and the imaginary parts; as opposed to the
polar approach introduced above, the nature of this approach does not provide
an easy way to decouple the 2D estimation problem into two 1D estimation
problems. However, this approach is more coherent with the proposed technique
for the real gain proposed in Chap. 5 of this thesis, as will become apparent
during its explanation.

6.3.2.1 Generation of the Transmitted Signal

The real and imaginary part of xi is altered as

Re(yi) = Re(xi) + α (Q∆ (Re(xi)− Re(di))− (Re(xi)− Re(di)))

Im(yi) = Im(xi) + α (Q∆ (Im(xi)− Im(di))− (Im(xi)− Im(di)))

yi = Re(yi) + j Im(yi),

where i = 1, . . . , L, and Re(·) stands for real part of the argument while Im(·)
denotes its imaginary part. In order to simplify the technique, the values taken
by α and ∆ are the same for for both the real and imaginary parts; obviously,
a modification of the algorithm can be proposed with different values for the
real and the imaginary parts but the control of the embedding distortion or the
verification of the hypotheses would be more difficult. Regarding the dither se-
quence d, both vectors Re(d) and Im(d) are mutually independent and uniformly
distributed in [−∆/2,∆/2]L.

6.3.2.2 Estimation of the Complex Gain

As in the previous complex gain estimation technique, the MLE is used. First, an
approximation of the pdf of Z given t0 and d is proposed based on three hypothe-
ses (again, these hypotheses are modifications of high-SNR hypotheses introduced
for the real case): 1) the variance of the host is much larger than the second
moment of the quantization lattice 2∆2/12 (i.e., an adaptation of HQR ≫ 1),
therefore the probability of a transmitted centroid can be approximated by
(∆fX(z/|t0|))2; 2) the variance of the scaled self-noise (i.e., 2(1 − α)∆2|t0|2/12)
is much smaller than the channel noise σ2

N (based on SCR(t0) ≪ 1), thus, the
Gaussian channel noise dominates the total noise distribution; and 3) the vari-
ance of the total noise (σ2

N + 2(1 − α)∆2|t0|2/12) is much smaller than square
distance between the scaled centroids (corresponding to TNQR(t0) ≪ 1), there-
fore, the noise distribution can be disregarded outside the quantization region.
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The approximation of pdf of Z is written as

fZ|T,K(z|t0,d) =
1

‖t0‖2







∆2e
− ‖z‖2

2‖t0‖2σ2
X

/2

2πσ2
X/2






· e

− ‖t0‖2‖(z/t0−d) mod ∆‖2

2((1−α)2∆2/12+σ2
N

/(2‖t0‖2))

2π ((1− α)2∆2/12 + σ2
N/(2‖t0‖2))

;

where in this case A mod B , (Re(A)−QB(Re(A))) + j(Im(A)−QB(Im(A))),
for A ∈ C and B ∈ R. As in the previous approach, the leftmost term ap-
proximates the centroid given z, while the rightmost term corresponds to the
distribution of Z given a centroid. Using this approximation of the pdf of Z and
since the components of z are mutually independent, the ML-based cost function
to optimize can be approximated as

L(t, z) ≈
(

‖t‖2‖(z/t− d) mod ∆‖2
σ2
N + 2(1− α)2 ‖t‖

2∆2

12

+2L log
(

2π
(

σ2
N + 2(1− α)2‖t‖2∆2/12

))

+
‖z‖2
σ2
X‖t‖2

)

.

The search-interval [|t|−, |t|+] is calculated as the intersection of the statisti-
cal interval [|t|V−, |t|V+] and the deterministic interval [|t|D−, |t|D+] in this case. The
computation of [|t|V−, |t|V+] is carried out using the variance-based estimator, the
estimate of the magnitude of the scaling factor t0 is obtained as

|t̂0|var(z) =
√

‖z‖2/L− σ2
N

σ2
X + 2α2∆2/12

;

the interval [|t|V−, |t|V+] is obtained using the approximation to the CRB of the
variance-based estimator of t0 from App. 4.A when |t0|2σ2

X ≫ σ2
N

|t|V± = max

(√
ǫ, |t̂0|var(z)±K2

|t̂0|var(z)√
2L

)

.

Following the deterministic approach to generate the search-interval, the com-
putation of a deterministic search-interval to estimate |t0| is obtained by lower
bounding the cost function by

L2(t, z) =2L log
(

2π(σ2
N + 2(1− α)2‖t‖2∆2/12)

)

+
‖z‖2
σ2
X‖t‖2

.

As explained in Sect. 5.1.2, given an initial approximation of |t0| a dichotomy
algorithm is carried out in order to obtain [|t|D−, |t|D+].

For the sampling, we propose to adapt the technique based on DC-QIM
modulo-lattice reduction presented in Sect. 5.2.1. In this case, [|t|−, |t|+] lim-
its the search of values of |t0|; therefore, a ring of possible values of t0 in the
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complex plane is defined by |t0|∈ [|t|−, |t|+]. This ring is sampled to obtain the
candidate set T according to

‖t(i+ 1)− t(i)‖2σ2
X + ‖t(i+ 1)− αt(i)‖22∆

2

12
+ σ2

N ≤ ‖t(i)‖2(1− α)2
2∆2

12
+ σ2

N

+K1‖t(i+ 1)‖22∆
2

12
; (6.8)

which is a modification of the sampling technique proposed in Sect. 5.2.1. In the
previous expression.

In order to reduce the computational complexity of this technique, the sam-
pling of the ring is carried out following a simplified version of the sampling.
This technique focuses on the first quadrant of the complex plane Re(t0) ≥ 0 and
Im(t0) ≥ 0, i.e., it is considered that the phase of t0 is in the interval [0, π/2].
First, the imaginary part of the candidate values of t0 is set to zero, [|t|−/

√
2, |t|+]

is sampled as in the real scaling factor case: by iteratively solving the following
inequality with Re(t(1)) = |t|−/

√
2

(Re(t(i+ 1))− Re(t(i)))2σ2
X + (Re(t(i+ 1))− αRe(t(i)))2

2∆2

12
+ σ2

N

≤ (Re(t(i)))2(1− α)2
2∆2

12
+ σ2

N +K1(Re(t(i+ 1))2
2∆2

12
,

and stopping when Re(t(l)) ≥ |t|+. In this way, we obtain the set of the real
parts of the candidate set T Real corresponding the first octant with the phase in
[0, π/4]. For each element Re(t(i)) of T Real, the imaginary interval [0, |t|+/

√
2] is

sampled fixing Re(t(i, j)) = Re(t(i, j + 1)) = Re(t(i)) and iteratively obtaining
the imaginary part Im(t(i, j + 1)) as

− 1

(−1 +K1)
(√

2∆√
12

)2

− σ2
X



α

(√
2∆√
12

)2

Im(t(i, j))

+σ2
X Im(t(i, j)) +

(√
2∆√
12

)[

K1σ
2
X

(

Im(t(i, j))2 + Re(t(i))2
)

+

(√
2∆√
12

)2

×
((

(−1 + α)2 + (−1 + 2α)K1

)

Im(t(i, j))2 − (−1 +K1)K1Re(t(i))
2
)

]1/2


 ,

where this expression comes from the solution of (6.8) for this case and
Im(t(i, 1)) = 0 till Im(t(i, j)) ≥ |t|+/

√
2]. An example of the resulting sampling

points is shown in Fig. 6.7 for DWR = 30 dB, WNR = 0 dB, α = 1, L = 400, and
K1 = 1. From this initial set, the candidate points are those verifying that their
magnitude is within interval [|t|−, |t|+], i.e., they are within the search-interval
for the magnitude of t0. An example of the candidate points (represented as
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squares) corresponding to the experiment is depicted in Fig. 6.7.. The candidate
set of the first quadrant T ++ is calculated by covering the remaining region of
the ring of the first quadrant by swapping the real and the imaginary parts of
the obtained points for [0, π/4]. An analogous process is carried out to sam-

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0
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0.4
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0.6
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0.9

1

Re(t
0
)

Im
(t

0
)

DWR = 30 dB, WNR = 0 dB, α = 1, t
0

= 1, L = 400, K1 = 1, t
−

= 0.70, t
+

= 1.31

Sampling points

Candidate points

Figure 6.7: Example of the obtained sampling points (blue crosses) and the can-
didate points (red squares lying inside the polygon) that are in the ring [|t|−, |t|+]
for the first octant of the complex plane with phase in [0, π/4]. DWR = 30 dB,
WNR = 0 dB, α = 1, L = 400, and K1 = 1.

ple the whole complex plain, i.e., given T ++, T −+ = −Re (T ++) + j Im (T ++),
T +− = Re (T ++)− j Im (T ++), and T −− = −Re (T ++)− j Im (T ++). Then, the
candidate point set is obtained as the union of the candidate point sets of each
quadrant, i.e.,

T = T ++ ∪ T +− ∪ T −+ ∪ T −−.

The estimate of t0 given T is obtained using a complex version of the Decision-
Aided technique presented in Sect. 5.3.1 as

Re(cj) = Q∆ (Re(zj/t(i))− Re(dj)) + Re(dj)

Im(cj) = Q∆ (Im(zj/t(i))− Im(dj)) + Im(dj),
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with j = 1, . . . , L, t∗(i) = c∗z/‖c‖2 with i = 1, . . . , |T | in order to obtain T ∗ =
t∗(1), . . . , t∗(L). Finally, the estimate is obtained as

t̂0(z) = argmin
t∈T ∗

L(t, z).

6.3.3 Experimental Results

In this section, we compare the MSE of the DPC-based estimators proposed for
complex scenarios, with that of PDD [29]. Figs. 6.8-6.11 show the MSE as a
function of |t0|∈ [0.1, 2] ∩ 0.1Z, where the results for each of those points were
obtained by using 103 Monte Carlo runs; for each run, ∡t0 was independently
generated according to U(−π, π). The DPC-based schemes K2 = 10, ǫ = 10−3.
For the polar approach K1 = 1 and the exhaustive search performed in the
estimate of ∡t0 considers 2 · 104 points uniformly located through [−π, π). For
the Cartesian approach K1 = 10−2.
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Figure 6.8: MSE vs. |t0| for the polar approach (DPC), PDD and
Modification of PDD (MPDD). DWR = 20, 30, 40 dB, WNR = 0 dB, α = 0.5,
and L = 103.

Concerning the comparison with PDD, we consider the case where such scheme
also deals with time invariant flat channels, even if it can be used in more general
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Figure 6.9: MSE vs. |t0| for our the polar approach (DPC), and PDD. WNR
= −3, 0, 3 dB, DWR = 30 dB, α = 1, and L = 103. MSEs of |t0| and ∡t0 are also
provided.

frameworks; furthermore, the host-interference controlling parameter proposed
in [29] is optimized in order to provide the best performance for that scheme.
Note that the power of the distortion introduced on the host signal by PDD
comprises both the power of the estimation aiding signal, and the power due to
the reduction of the host interference. The channel estimator proposed in [29],
once it is adapted to the complex flat fading case, is t̂0(z) = w∗z/‖w‖2, i.e., it
only uses the component of z in the direction of w; consequently, the remaining
L − 1 components of z are disregarded. Since those L − 1 components follow a
N (0, |t0|2σ2

X + σ2
N ) distribution, they are indeed informative about |t0|, and that

dependence could be exploited. Therefore, we propose a suboptimal MPDD,
where the L − 1 components of z orthogonal to w are fed to a variance-based
estimator, and the estimate of ∡t0 is ∡w∗z.

Fig. 6.8 compares the MSE of the polar proposed scheme with that of PDD and
MPDD as a function of |t0|, for different values of DWR. One can observe that the
larger the DWR (i.e., the larger the margin by which Hypothesis 1 in Sect. 6.3.1.2
is satisfied), the better the performance of the proposed scheme. Furthermore, in
the proposed scheme a larger DWR helps to estimate t0 (at the cost of increasing
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Figure 6.10: As Fig. 6.9 but for the Cartesian approach.

the estimation computational cost), contrarily to what happens with PDD and
MPDD; indeed, in order for the DPC-based scheme to provide better results than
PDD and MPDD, |t0| must take values larger than a DWR-dependent threshold;
the larger the DWR, the smaller the |t0| value for the crossing point. It is worth
mentioning that our method generally requires more computational resources
than PDD or MPDD. Related to the comparison between PDD and MPDD, the
larger the MPDD, the better MPDD is with respect to PDD; in that case PDD
will not be able to cancel out the host interference on w, and, as it was mentioned
before, the estimator proposed in [29] does not take advantage either of the L−1
components of z orthogonal to w (as our proposed modification MPDD does).

Fig. 6.9 illustrates for the polar approach the contribution of |t0| and ∡t0 to
the MSE of the estimate of t0 for different values of WNR; again, the results for
PDD are also plotted. Similarly to the discussion about Fig. 6.8, in this case we
can check the effect of the margin by which Hypothesis 3 in Sect. 6.3.1.2 (i.e.,
|t0|2ρ2/12 ≫ σ2

N + |t0|2(1− α)2ρ2/12) is satisfied on the performance of the esti-
mator. Mainly, the larger the WNR, the better the provided approximation; of
course, one must also take into account that a larger WNR will make easier the
estimate, independently of the accuracy in the approximation of the pdf. Addi-
tionally, it must be noted that the DPCE MSE curves share a similar behavior
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with respect to |t0|: for small values of |t0|, the value of the MSE increases with it;
then, when the three hypotheses hold, it decreases with |t0|. Furthermore, we can
see that the main source of MSE seems to be the phase estimate; this is partially
due to the fact that this estimator inherits the errors made by the magnitude
estimator. Fig. 6.10 is the counterpart of Fig. 6.9 using the Cartesian approach.
By comparing both graphs, one can easily conclude that the Cartesian approach
shows better performance than the polar one. For example, the abruptly drop of
the MSE appears around |t0|= 0.7 for the Cartesian case while for |t0|≈ 1.1 for
the other approach. By analyzing Fig. 6.10, one can realize that the phase does
not show the dominant effect as in the polar case does; indeed, the drop appears
almost simultaneously in both cases. Furthermore, it is worth noting that the
performance of the curves for high-SNR cases converges with the CRB for the
real Gaussian case (i.e., the inverse of (4.11)) detailed in Sect. 4.1.2.
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Figure 6.11: MSE vs. |t0| for our algorithm (DPC) (polar approach is rep-
resented without symbols while the Cartesian approach with 3), and PDD.
α = 0.25, 0.5, 0.75, 1, DWR = 30 dB, WNR = 0 dB, and L = 103.

Finally, Fig. 6.11 illustrates the behavior of the MSE as a function of the dis-
tortion compensation parameter α. According to these results, the performance
of our schemes shows a trade-off between the value of |t0| at the crossing point
with PDD, and the value of MSE when |t0| is increased. For example, for α = 0.5
the Cartesian approach outperforms PDD for |t0|≥ 0.5, and MSE ≈ −55 dB
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for large values of |t0|; on the other hand, for α = 0.75 the crossing point is at
|t0|≈ 0.65, but MSE ≈ −59 dB for large values of |t0|. It is straightforward to
verify again in this figure that the drop of performance for the Cartesian approach
appears significantly for smaller values of |t0| than for the polar case.
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Chapter 7

Conclusions and Further Work

In this thesis, we have addressed the problem of gain estimation in a flat fading
channel with Additive White Gaussian Noise (AWGN) using Dirty Paper Coding
(DPC) estimation techniques, following the idea that, if the host interference
rejection can be achieved in communications for digital watermarking, then this
can be also obtained for estimation purposes.

We have proposed to use Maximum-Likelihood (ML) estimation. However,
in order to deal with the real cost functions that are difficult to handle mathe-
matically, we introduce several more tractable pdf approximations and, by using
them, the corresponding cost functions of ML. In addition, we have also provided
a modification of the technique whenever the variances of the original signal and
the channel noise are unknown. Using an already established concept in digital
watermarking, we have studied how to make full use of the Spread-Transform
(ST) to estimate the channel gain.

In order to gain insight into the use of DPC for estimation, we have studied
this scheme theoretically. From the perspective of estimation theory, we have
developed some approximations of the Cramér-Rao Bound to determine the fun-
damental limits of the achievable accuracy; also, from an information theoretical
perspective, we have studied our technique by means of mutual information in
order to measure how much information the received sequence contains regarding
the channel gain.

In order to propose practical estimation techniques requiring affordable com-
putational complexity, we have proposed a set of techniques based on ML that
makes full use of the statistical and deterministic analysis of the problem. Sev-
eral of these techniques have been evaluated through experiments to verify and
illustrate their effectiveness. In addition, our proposed schemes have been ap-
plied in different situations: robust digital watermarking to gain attacks, digital
communications, and complex gain estimation.
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Some conclusions drawn from the work carried out and presented in this thesis
are that:

• The theoretical analysis indicates, and the experimental performance con-
firms, that DPCE is not only unaffected by the host, but in fact, the latter
helps the estimation. Indeed, the results obtained asymptotically indicate
that the resulting estimation accuracy is the same as if the available power
were entirely devoted to sending a pilot signal.

• The structure of the pdf of the random variable modeling the received
sequence has to become apparent to achieve host interference cancellation
in the estimation. This means that the channel noise should not smear the
structure created by the dirty paper code. Otherwise, the obtained results
would be those achieved by the variance-matching techniques.

• Similar results can be attained whenever the variance of the host signal
and the channel noise are not known, i.e., only making use of the induced
structure on the pdf. This is in contrast to variance-based methods where
the variance of the host and channel noise have to be known.

• Given the values of the WNR and the DWR, by using Spread-Transform
in DPC estimation, one can control the effective WNR, and extending the
range of WNRs for which the use of DPCE is feasible. This occurs at
the expense of reducing the effective size of the vector of observations and,
therefore, increasing the estimator variance.

• The proposed practical algorithms for DPC estimation require far less com-
plexity than other brute-force estimation techniques. Indeed, our algorithm
can be used in applications with strict time constraints.

• Our technique can be used in real digital watermarking applications to make
the Scalar Costa Scheme become robust to scaling and filtering.

• The use of our estimation algorithms in real digital communication has been
described in detail in this thesis. The performance of our techniques shows
better results than the superimposed training techniques used in several
real applications whenever the induced structure in the pdf can be used to
estimate.

• Two approaches based on the proposed idea are introduced to deal with
complex gains in AWGN channels. Both of them show similar asymptotic
performance in terms of mean square error as the techniques proposed for
the real gain case addressed in this thesis.
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7.1 Future Lines of Research

The research carried out in this thesis leaves open several problems that we con-
sider to be worthwhile addressing in the future:

• Our technique to estimate scalar gains in AWGN channels can be used to
estimate more complex communication channels by working with subbands
which, if they are sufficiently narrow, can roughly behave as flat channels.

• Our analysis was carried out by assuming zero-mean Gaussian distributed
signals, so we propose to make our algorithm and its analysis independent
of the distribution of the involved signals.

• In digital communications, the presence of the watermark acts as inter-
ference causing a reduction in performance; therefore, there is room for
performance improvement if the watermark can be effectively removed at
the decoder.

• Focusing on digital watermarking, we would like to study other relevant
attacks (e.g., rotation, translation, quantization, etc.) and how DPC esti-
mation can help to deal with them.

• We would like to extend our research to other uses including audio appli-
cations (e.g. room acoustic response estimation, active noise control, etc.),
for digital forensic applications (e.g., filter estimation), for digital com-
munications (e.g., Burst detector AGC, AGC in Satellite Communications
Channel, SNR estimation), or for physical layer authentication.
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Appendix A

Resumo

A.1 Introdución

A estimación de canle é un problema transversal en procesamento do sinal. Úsase
en numerosas aplicacións, inclúındo comunicacións dixitais (p.ex., na estimación
dos parámetros da canle, no control automático de ganancia, para a estimación
da relación sinal a rúıdo, etc.), restauración de imaxes (p.ex., na deconvolución
en imaxes), en forensia dixital (p.ex., para a estimación do filtro lineal usado
no post-procesamento dunha imaxe), e acústica (p.ex., a estimación da resposta
acústica dunha sala, da cancelación de eco, etc.).

Unha das propostas máis destacadas da estimación de canle é a estimación
cega. Estas técnicas explotan certas propiedades subxacentes da canle e do sinal
transmitido para estimar a canle usando unicamente o sinal recibido. Estas car-
acteŕısticas poden ser estat́ısticas, como estad́ısticos de orde superior [14], ou
deterministas, como nos algoritmos que usan o módulo constante [56] ou como
o criterio de máxima verosimilitude determinista [32]. Unha das principais van-
taxes da estimación cega é que non precisa modificar o sinal orixinal para estimar;
polo tanto, selecciónase xeralmente a estimación cega para aplicacións con esa re-
strición (por exemplo, para a explotación de petróleo [37] usando procesamento
do sinal śısmico). Desafortunadamente, os enfoques de estimación cego sofren de
converxencia lenta (é dicir, é necesario un elevado número de mostras do sinal
recibido), e é tamén pośıbel que converxan incorrectamente [57].

Indiscutibelmente, a estimación baseada no uso de sinais piloto é a familia
de técnicas de estimación de canle máis utilizada. Estes sistemas utilizan unha
parte do orzamento total de enerx́ıa para transmitir un sinal, que recibe o nome
de piloto ou sinal de adestramento, que se coñece no receptor, de xeito que se
pode empregar para inferir a resposta da canle. Na maioŕıa dos casos, o sinal
piloto transmı́tese nun subespazo ortogonal ao do sinal portador de información,
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frecuentemente usando multiplexación no dominio temporal ou ben no dominio
da frecuencia.

Os algoritmos baseados no uso de sinais piloto teñen unha serie de inconve-
nientes coñecidos [59, 29, 30]: 1) nas canles que vaŕıan rapidamente, os sinais
de adestramento deberán enviarse a miúdo, a fin de actualizar a información de
estado da canle, perdendo aśı unha cantidade significativa de recursos 1, 2) o
sinal portador da información debe ser desactivado, o que require a implantación
dunha lóxica adicional para sincronizar os slots de secuencia piloto (en calquera
dominio no que se use), tanto no transmisor como no receptor, 3) a estimación
está baseada en lugares espećıficos das secuencias piloto (tipicamente en tempo
e/ou frecuencia); polo tanto, neceśıtase frecuentemente a interpolación, a fin de
obter as estimacións da canle noutras posicións temporais ou frecuenciais.

Áında que sexan menos significativas que as dúas técnicas de estimación que
se describiron anteriormente, queremos mencionar que existen técnicas de esti-
mación chamadas estimación semi-cega que utilizan os estat́ısticos, como fai a
estimación cega, e śımbolos coñecidos como fan os algoritmos baseados no env́ıo
de pilotos [15]. Como vantaxe máis importante, estas técnicas precisan secuencias
de adestramento máis curtas; con todo, áında precisan usar parte da capacidade
en tempo ou frecuencia para enviar secuencias de adestramento.

A.1.1 Ligazón Superimposed Training - Marcado de Auga

Dixital

Recentemente, áında que a idea básica foi orixinalmente proposta en 1996 por
Farhang-Boroujeny [22], a chamada superimposed training gañou relevancia como
unha alternativa ás técnicas de estimación anteriormente indicadas. En super-
imposed training, unha secuencia piloto coñecida (imos nomealo marca de auga
debido ao paralelismo co marcado de auga, a primeira mención a esta relación
aparece, ata onde sabemos, no traballo de Mazzenga [40]) engádese ao sinal porta-
dor da información (que tamén imos chamar host). Esencialmente, estas técnicas
utilizan secuencias periódicas como marcas de auga para estimar a canle, a fin de
tomar vantaxe da cicloestacionariedade provocada na secuencia enviada. Dado
que ambos sinais son simplemente sumados (é dicir, son enviados á vez), a necesi-
dade de determinar explicitamente os intervalos de tempo/frecuencia para ade-
stramento non existe, en contraste cos métodos tradicionais de estimación que
usan pilotos [58, 41, 59]. Con todo, partindo do principio de que o transmisor
ten una potencia máxima fixa, o sinal portador de información sufrirá algunha
perda de potencia, que adicionalmente será distorsionada polo sinal superposto.
É interesante sinalar que esta é unha das técnicas de pre-codificación, que non

1En termos de aumento de ancho de banda ou perda na taxa de información concreto, a
secuencia de adestramento en UMTS-TDD pode ser de ata o 20% da carga útil.
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son novas na comunicación dixital xa que foron extensivamente estudadas despois
de ser presentadas por Tomlinson-Harashima [53, 28] a fin de ter en conta a in-
formación lateral do estado da canle dispoñ́ıbel no transmisor.

Por desgraza, en superimposed training, as secuencias do host e do piloto non
son ortogonais; aśı, o primeiro vai interferir co sinal piloto. Este é un problema
amplamente estudado no marcado de auga, onde se coñece como interferencia do
host, e ocorre naqueles algoritmos nos que a marca de auga independentemente
xerada do host engádese a esta última (como nos casos de espectro ensanchado
aditivo [13]). En ambos os campos propuxéronse solucións que dedican parte
da potencia dispoñ́ıbel para cancelar parcialmente a interferencia do host na di-
rección da secuencia engadida. Estes esquemas foron desenvolvidos de forma
independente por Malvar e Florêncio en 2003 [38] no campo do marcado de auga,
e por He e Tugnait en 2008 [29] para estimación da canle (inspirado polo traballo
presentado en 2005 para OFDM por Chen et al. [9], ata onde sabemos o primeiro
traballo considerando cancelación total da interferencia do host para superimposed
training foi proposto por Ghogho et al. en [26]), e foron denominados respecti-
vamente ISS e PDD. De xeito interesante, e de novo, ata onde nós sabemos, esa
conexión entre PDD e ISS non foi relatada antes que no noso traballo [16].

Tanto ISS como PDD unicamente cancelan parcialmente a interferencia do
host, deixando aśı espazo para melloras. De feito, a cancelación da interferencia
do host completa foi alcanzada na ocultación de datos a través da explotación do
paradigma de DPC, inicialmente proposto por Costa [10]. Adaptando o código
de construción de Costa, Chen e Wornell [8] propuxeron o uso de DC-QIM que,
grazas á súa caracteŕıstica de rexeitamento do host, levou a melloras substanciais
de rendemento en relación a ISS. As vantaxes de técnicas de DPC en marcado de
auga dixital foron amplamente recoñecidas [10, 8, 18]. En concreto, os esquemas
baseados en DPC poden alcanzar a capacidade da canle para canles aditivas con
rúıdo branco Gaussiano [21].

Dado que DPCE é moi senśıbel aos ataques de ganancia (tamén coñecidos
como ataques valumétricos lineais), a igualación de canle estúdase en marcado
de auga como unas das pośıbeis solucións a este problema. Neste caso, a canle
simplemente multiplica o sinal por un número real constante, que pode ser estu-
dada como unha canle de esvaecemento plano tradicional en comunicación dix-
ital, obtendo grandes probabilidades de erro de descodificación. Debido á súa
importancia, propuxéronse varias técnicas, en base a igualación da canle como
con Balado et al. [4] onde se desenvolveu un método baseado en cuantificadores
escalares uniformes e turbocódigos, que iterativamente calcula o factor de ganan-
cia, compensa o efecto, e decodifica a mensaxe contida. Sen embargo, Shterev
e Lagendijk [51] propuxeron unha implementación baseada na procura exhaus-
tiva da estimación de máxima verosimilitude (ML das siglas en inglés) do factor
de escalado; de novo, ese valor úsase para a igualación das observacións, e para
realizar a descodificación co conxunto de palabras código orixinal. Con todo, o
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custo computacional de [4, 51] é moi importante, deixando espazo para mellora.
Esta cuestión foi abordada con éxito no noso traballo [17], onde propoñemos unha
técnica que tamén usa o criterio de máxima verosimulitude, mais que esixe moito
menos recursos computacionais que [51].

É importante sinalar por unha cuestión de completitude que existen outras
técnicas que afrontan o problema da sensibilidade de DPC a ataques de ganan-
cia dunha maneira que se pode chamar conxuntos de palabras código robustos.
Neste caso, o conxunto de palabras códigos t́ıpicos de SCS [18] substitúese por
un conxunto de palabras código implicitamente robusto contra o ataque ganancia
[47, 2, 42]. Mentres que [42] propón a utilización de conxuntos de palabras código
baseados na fase (en oposición aos baseados en magnitude), en que a información
[2] insértase considerando a correlación máxima entre o sinal host e un conxunto
de secuencias xerado pseudoaleatoriamente, en [47] úsase un conxunto de palabras
código que depende das estat́ısticas emṕıricas do sinal marcado. Desafortunada-
mente, estas técnicas presentan diversas desvantaxes, como que a distorsión de
inserción resulta dif́ıcil de controlar en técnicas baseadas na cuantización fase [42]
e as técnicas DPC ortogonais [2] (que tamén son computacionalmente máis esix-
entes que o SCS), e o traballo [47] require unha memoria que debe ser cuberta
antes da descodificación para poder realizarse de maneira robusta.

Nesta tese de doutoramento, propoñemos o estudo da estimación da canle de
esvaecemento plano baseado na codificación de papel sucio, que será abordado
usando a estimación de máxima verosimilitude. Propomos tamén un conxunto
de algoritmos prácticos baseados en ML con rigorosas restricións de complexi-
dade (a diferenza de [51] que emprega busca exhaustiva). Ademais, queremos
analizar as prestacións da técnica, a fin de obter ideas máis claras sobre os seus
ĺımites fundamentais e poder determinar se a cancelación de interferencias do
host de marcado de auga dixital podeŕıa ser alcanzada tamén para a estimación.
As prestacións dos algoritmos propostos foron tamén verificadas para distintas
condicións e comparadas con outras técnicas de estimación (por exemplo, con
estimadores baseados nos estat́ısticos de segunda orde, como representante de
estimadores cegos, e PDD como exemplo de superimposed training). Ademais da
aplicación das nosas técnicas no esquema básico de estudo, preséntanse outras
pośıbeis aplicacións nunha variedade de campos tecnolóxicos para demostrar a
súa versatilidade.

A.2 Formulación do Problema

Previamente mostramos o paralelismo entre o marcado de auga dixital e a es-
timación da canle. Como indicamos, superimposed training pódese considerar o
análogo en estimación da canle á Add-SS. Ademais PDD seŕıa o equivalente a
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ISS. Sen embargo, non hai equivalente en estimación da canle para DC-QIM; esta
tese ocupa ese oco, na que se propón un método baseado en DPC.

Aqúı considérase que o sinal transmı́tese por unha canle con esvaecemento
plano (e ganancia t0) que tamén introduce rúıdo branco Gaussiano, aśı o sinal
recibido pódese expresar como

z = t0y + n;

onde y xérase usando unha versión escalar de DC-QIM

yi = Q∆(xi − di) + di + (1− α) [x−Q∆(xi − di)− di] ,

con i = 1, . . . , L, Q∆ denotando un cuantificador escalar uniforme con escalón de
cuantificación ∆. n e x son observacións do vector aleatorio independentemente
e identicamente distribúıdo que segue unha distribución Gaussiana de media cero.
d denota as observacións do vector aleatorio dither D ∼ U([−∆/2,∆/2]L).

Abordamos o estudo deste problema considerando que a varianza do sinal
orixinal é moito maior que a varianza do erro de cuantificación. Ademais, asum-
imos que a varianza do rúıdo da canle é moito maior que a varianza do self-noise
(que se define como (1− α) [x−Q∆(xi − di)− di]) escalado por t0. Dividiremos
a análise en dous escenarios ben diferenciados:

• O caso low-SNR, que precisa que a potencia de rúıdo total (isto é, rúıdo
da canle e self-noise escalado) sexa moito maior que o segundo momento
escalado do cuantificador. Ademais desta condición, tamén pode precisar
que a potencia total de rúıdo sexa moito menor que a varianza do sinal
orixinal escalada.

• O escenario high-SNR precisa ademais que a potencia do rúıdo total sexa
moito menor que o segundo momento escalado do cuantificador.

A.3 Estimador de Máxima Verosimilitude

Para obter a estimación da ganancia t0, usamos o criterio ML que procura o
valor de t mais probábel das observacións z cando non hai información a priori
do factor de escalado. Pódese obter o estimador ML como

t̂0(z) = argmax
t

fZ|T,K(z|t,d),

onde na expresión anterior fZ|T,K(z|t,d) denota a distribución conxunta de Z

coñecido o factor de escalado e a secuencia dither.
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En moitas aplicacións que requiren estimación de parámetros, selecciónase o
criterio ML porque é un enfoque sistemático e ademais polas súas interesantes
propiedades asintóticas [60]: a estimación ML é consistente, é asintoticamente
eficiente e asintoticamente segue unha distribución Gaussiana con media t0 e
varianza a CRB2.

Como se ve na expresión do estimador ML mostrada anteriormente, prećısase
a función de distribución de probabilidade de Z condicionada ao coñecemento
da secuencia de dither e á ganancia. Desafortunadamente, esta pdf (función de
densidade de probabilidade, das súas en inglés) é dif́ıcil de operar matematica-
mente. Por iso, desenvolvemos varias aproximacións desa pdf (que se poderá usar
no estimador ML debido a que as compoñentes de Z son independentes) para os
escenarios analizados: low-SNR e high-SNR. Estas aproximacións foron avaliadas
por medio da KLD (diverxencia Kullback-Leibler, das súas siglas en inglés), que
se pode considerar unha medida da distancia entre dúas distribucións (neste caso,
a distancia entra as nosas aproximacións e distribución real), mostrando que as
aproximacións son precisas nos escenarios para os cales foron deseñadas.

Usamos as aproximacións das pdfs obtidas para particularizar a función de
custe de ML. Analizándoas determinouse que teñen dúas partes ben diferenciadas,
unha coa parte da distribución do sinal orixinal e outra que aparece como resul-
tado do proceso de marcado do sinal. Ademais, analizando as funcións de custe
púidose comprobar que mostran varios mı́nimos e máximos locais que inhabilitan
o uso de técnicas de optimización convencionais, facendo necesario deseñar as
nosas propias técnicas ad-hoc de estimación da ganancia.

Finalmente, nesta tese propóñense varias alteracións da técnica orixinal que
permiten a súa aplicación para diferentes escenarios. Concretamente para o caso
no que se descoñezan as varianzas do sinal orixinal e de rúıdo da canle. Noutra
versión, baseándonos nas ideas de Spread-Transform usadas en marcado de auga,
conseguimos que se poida modificar o punto de traballo do sistema. Por exemplo,
a relación efectiva entre a potencia do host e da marca de auga ou a relación entre
a potencia da marca e do rúıdo da canle.

A.4 Análise Teórica: Teoŕıa da Estimación e

Teoŕıa da Información

Nesta tese realizouse unha análise teórica co fin de obter os ĺımites fundamentais
das técnicas de estimación baseadas en DPC e tamén para entender como o seu
funcionamento asintótico depende dos parámetros do esquema.

2A CRB é unha cota inferior da varianza da distribución de estimadores insesgados.
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A análise teórica reaĺızase seguindo un enfoque de teoŕıa da estimación. En
concreto, como en moitos traballos de investigación (por exemplo, [52], [24], etc.)
estúdase a CRB, xa que determina a cota inferior da varianza do erro de es-
timación dos estimadores insesgados de t0. Propóñense ademais varias aproxi-
macións das expresións da CRB usando as aproximacións da pdfs de Z propostas,
é dicir, aquelas desenvolvidas para o casos de low-SNR e high-SNR. É importante
resaltar que, segundo o indicado máis arriba, as técnicas de estimación ML son
asintoticamente eficientes cando L tende ao infinito. Polo tanto, comparando as
prestacións do estimador baseado en ML (p.ex., por medio da MSE entre as es-
timacións e os valores reais de t0) coa CRB, pódese avaliar a eficiencia dos nosos
estimadores.

Anaĺızase tamén o problema desde unha perspectiva de teoŕıa da información.
En concreto, comparamos as prestacións do esquema proposto coa obtida polas
Add-SS/SIT en termos de información mutua entre entre Z e T dada a clave
secreta, centrando a nosa análise, por unha cuestión de simplicidade, na caso
de L = 1. Xa que a información mutua mide información que Z contén sobre
a de T , a lóxica que sustenta a utilización desta métrica é que, a maior infor-
mación mutua, maior será a información dispoñ́ıbel sobre a ganancia. Áında que
no resto do traballo a ganancia é determinista, neste estudo T segue unha dis-
tribución Rayleigh con parámetro σT (esta distribución é amplamente utilizada
para modelar a parte multiplicativa de canais con esvaecemento plano [39]).

Esta análise teórica indica que as prestacións da estimación usando pdf non só
non son prexudicadas polo sinal host; senón que en realidade, este sinal axuda na
estimación. De feito, os resultados obtidos indican que a asintótica da precisión
da estimación é a mesma que se se enviara unha secuencia pilotos en lugar de
información. Concretamente, a estrutura da pdf de Z provocada polo marcado de
auga ten que aparecer (isto é, que o rúıdo da canle non domine a potencia de dita
estrutura) para obter ditas prestacións nas que que o host axuda a estimar; se
non, as prestacións obtidas seŕıan as mesmas ás dun estimador que simplemente
usase a relación entre as varianzas dos sinais do sistema.

A.5 Algoritmos Prácticos de Estimación

As funcións de custe ML baseadas nas pdfs de Z presentadas mostran varios
máximos/mı́nimos locais. Isto provoca que moitos dos algoritmos de optimización
tradicionais non se poidan usar. Ademais, a aplicación das técnicas de forza bruta
resulta computacionalmente prohibitiva. Para resolver esta cuestión, propóñense
un conxunto de algoritmos de estimación ad hoc que obteñen estimacións precisas
requerindo uns custos computacionas aceptábeis.

Como mostra a Fig. A.1 de maneira ilustrativa para t0 ≥ 0, as técnicas de



172 A.5. Algoritmos Prácticos de Estimación

A estimación ML aprox́ımase por:

t̂0(z) = argmint≥0 L(t, z)

Cálculo do Intervalo de Procura
[t−, t+]

Mostreo [t−, t+]

obtendo T

Optimización local de L(t, z)

usando T obtendo T ∗

t̂0(z) ≈ argmint∈T ∗ L(t, z)

t̂0(z) DPCE

Figure A.1: Algortimo de Estimación Ad-hoc.
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estimación propostas poden ser descritas de forma modular. En primeiro lugar,
calcúlase, baseándose nas caracteŕısticas das funcións de custo, un intervalo de
procura para a optimización [t−, t+]. A continuación, o intervalo de procura
mostréase explotando propiedades estat́ısticas da función obxectivo obtendo un
conxunto de candidatos T . Partindo deste conxunto de candidatos, lévase a cabo
unha optimización local obténdose o conxunto de solucións locais T ∗; a estimación
t̂0(z) selecciónase como o elemento de T ∗ que minimiza a función de custo.

Para cada un destes procedementos, propoñemos varias alternativas, que
deben ser seleccionadas de acordo co esixencias do escenario de aplicación es-
pećıfico. Concretamente, para a xeración do intervalo de procura deseñouse un
método que usa as propiedades estat́ısticas do problema e outro que se funda-
menta nas propiedades deterministas das funcións de custe. Para a xeración
de T propóñense dous métodos, un baseado en tratar de estimar os centroides
usados ao marcar e o outro na análise da media da función de custe. Final-
mente, propóñense tamén dúas técnicas para a estimación local, unha asumindo
que coñecemos os centroides usados en transmisión, minimiza a distancia das
observacións e estes centroides escalados. A outra técnica de optimización local
baséase na aplicación do método da bisección nas derivadas das funcións de custe
con respecto á ganancia da canle para procurar o mı́nimo local da función de
custe.

Os experimentos levados a cabo indican que os nosos algoritmos prácticos
de estimación mostran unhas prestacións en termos de precisión próximas as da
CRB cando se verifican as hipóteses e o número de observacións é suficientemente
elevado.

Alen diso, móstranse como no caso de descoñecemento das varianzas do host
e do rúıdo da canle obtéñense boas prestacións sempre que a estrutura da dis-
tribución de Z apareza. Verif́ıcase como usando Spread-Transform no noso algo-
ritmo podemos controlar o punto de traballo, incluso pudendo obter boas esti-
macións cando a potencia do rúıdo da canle é maior que a da marca de auga (sen
usar esta modificación baseada en Spread-Transform non seŕıa pośıbel).

Usando experimentos que miden o tempo de computación, mostrouse que
as nosas técnicas de estimación baseadas en DPC precisan moito menos tempo
que outras baseadas en procura exhaustiva (p.ex. pasando de requerir cententas
de segundo a décimas de segundo usando os nosos algoritmos). Polo tanto, as
nosas técnicas poden ser usadas en aplicacións nas que se existen fortes restricións
temporais.
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A.6 Aplicacións

Co obxectivo de obter unha idea sobre a ampla gama de usos prácticos dos nosos
algoritmos, esta tese presenta un conxunto de aplicacións fóra do escenario de
aplicación básico (isto é, sinais reais que seguen unha distribución Gaussiana e
ganancias reais), concretamente:

• Usamos os nosos algoritmos para facer o marcado de auga dixital baseado
en DPC robusto para ataques de ganancia. Os resultados validan, usando
sinais sintéticos e imaxes reais, a eficacia das nosas técnicas en tratar con
tales ataques.

• Tamén amosamos, nun escenario de comunicacións da canle con esvaece-
mento plano, como igualar a ganancia estimada cos nosos algoritmos.Os
resultados mostran que as nosas técnicas melloran as prestacións daquelas
técnicas baseadas na varianza, aśı como as de superimposed training.

• Finalmente, tamén propoñemos como adaptar o noso algoritmo de esti-
mación para o caso de sinais complexos e ganancias complexas. Os al-
goritmos propostos baséanse nas formas mais comúns de multiplicar dous
números complexos, usando coordenadas polares ou usando coordenadas
Cartesianas. As prestacións das técnicas indican que aproximadamente
acándase os mesmos resultados que para o caso real e Gaussian: toda a
potencia do host úsase para axudar na estimación.
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González. Angle QIM: A novel watermark embedding scheme robust against
amplitude scaling distortion. In IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), volume II, pages 797–780,
March 2005.

[43] Athanasios Papoulis. Probability, Random Variables, and Stochastic Pro-
cesses. McGraw-Hill, 1991.
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