
Universidade de Vigo
Signal Theory and Communications Department

DOCTORAL DISSERTATION
INTERNATIONAL MENTION

Cognitive and Signal Processing Techniques

for Improved Spectrum Exploitation

in Wireless Communications

Author:

Alberto Rico Alvariño

Directed by:

Carlos Mosquera Nartallo

2014





iii

DOCTORAL DISSERTATION
INTERNATIONAL MENTION

Cognitive and Signal Processing Techniques

for Improved Spectrum Exploitation

in Wireless Communications

Author:

Alberto Rico Alvarino

Directed by:

Carlos Mosquera Nartallo

EXAMINATION COMMITTEE
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especialmente ó comezo da tese). O meu seguinte agradecemento vai dirixido a Nuria González,
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Abstract

The increasing demand of wireless data makes the electromagnetic spectrum a scarce and valu-

able resource. Wireless networks should exploit its available spectrum in the most efficient way

to maximize the amount of data they can support. Alternatives to increase the spectral efficiency

of wireless networks include the design of new spectrum access paradigms and the operation of

existing wireless links in the most efficient way. In this thesis we present two different approaches

for increasing the spectral efficiency of wireless networks.

The first approach is based on a cognitive-inspired spectrum access paradigm in which a

secondary user is allowed to access the frequency bands owned by a primary user. This cognitive

access has to be properly designed to avoid any possible degradation on the primary service.

We advocate the use of the so-called overlay cognitive radio paradigm, in which primary and

secondary users are allowed to cooperate. More precisely, we focus on the cases where the

secondary transmitter knows the primary message, and spectrum access is allowed as long as

the primary user’s service is not affected. We analyze overlay access over both point to point

and broadcast primary networks, and incorporate some practical impairments into the problem.

The second part of the thesis is focused on the design of adaptive transmission strategies

under changing channel conditions, in a process that is known as link adaptation. The time

varying nature of fading channels causes changes in the maximum rate they can support and,

therefore, a transmitter that wants to efficiently exploit the wireless medium should be able to

adapt its transmission rate depending on the channel conditions. We first design adaptation

techniques for mobile satellite communications, where the main challenge is the inaccuracy of

channel state information at the transmitter due to the large propagation delay. We propose the

use of adaptation techniques based on statistical knowledge of the channel, and show how to ex-

ploit some degree of channel reciprocity even in frequency division duplexing systems. We move

afterwards to a different setting, and analyze the link adaptation problem in multiuser multiple

input multiple output orthogonal frequency division multiplexing systems with limited feedback

of the channel state. Adaptation is performed by combining machine learning techniques, greedy

algorithms and interference estimation due to imperfect channel state information.
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1.1 Motivation

In the last years there has been an increasing demand of mobile data, and it is forecast to keep

growing in the next years. According to [1], there has been an increase of around 81% in traffic

during 2013. To accommodate this growth, modern wireless standards have been deployed to

increase the spectral efficiency of wireless networks. During the development of this thesis, there

have been transitions from UMTS to LTE in cellular, from IEEE 802.11n to IEEE 802.11ac

in wireless local area networks (WLAN), from DVB-T (and even analog television) to DVB-

T2 in terrestrial television broadcasting, and from DVB-S to DVB-S2/DVB-RCS in satellite

broadcasting. On top of the advances in modulation and coding that allowed an increase of
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the spectral efficiency, these standards are also characterized by the addition of novel network

structures, such as single frequency network (SFN) operation in LTE and DVB-T/DVB-T2,

small cells in LTE, multiuser multiple input multiple output (MIMO) in IEEE 802.11ac and

support of mobile receivers in DVB-S2.

These improvements in spectrum exploitation, however, do not seem enough to be able

to provide the ten-fold increase in traffic that is forecast between 2014 and 2017 [1], thus en-

visioning the need for research in the direction of more efficient physical layer techniques and

network architectures. Also, some of the recently developed technologies have still room for

improvement in non-standard procedures, such as scheduling or adaptive modulation and cod-

ing. Research efforts should be made in both directions to provide additional improvements in

spectral efficiency.

In this thesis we explore both directions and propose different techniques to improve spec-

trum exploitation. In the first part we propose spectrum access techniques based on the cognitive

radio paradigm to allow secondary access to parts of spectrum allocated to a primary user. This

access has to be carefully planned to be able to use the wireless media without the disruption

of the primary service. In the second part we design link adaptation algorithms for two sce-

narios where the use of traditional techniques may result in suboptimal spectrum exploitation.

The two scenarios are the mobile satellite channel, where the large round-trip time delay causes

channel state information (CSI) to be inaccurate, and multiuser MIMO orthogonal frequency

division multiplexing (OFDM) with limited feedback, where the inter-user interference has to

be carefully taken into account in the adaptation method.

1.2 Cognitive Radio

1.2.1 Introduction

A cognitive radio is an intelligent radio device that is capable of adapting its behavior depending

on its environment. Since the introduction of this idea in [2], there has been an increased interest

in exploring the potential benefits of this kind of devices. Possibly the best known example of

cognitive radio is the dynamic spectrum access to underutilized frequency bands (known as

white spaces), mostly used for terrestrial television broadcasting. The television broadcaster,

known as primary user in cognitive radio jargon, must not suffer any service degradation due

to the operation of the cognitive or secondary user. Thus, the secondary user must identify the

unused frequency bands with high reliability in order to prevent interruptions in the primary

service. This approach to dynamic spectrum access has been a major topic of research during
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the last decade, and some countries have already decided to allow this kind of access. For

example, the Federal Communications Commission (FCC) in the United States of America has

already approved dynamic spectrum access by means of a combination of spectrum sensing and

a geolocation database that contains the unused spectrum bands [3]. In Europe, the Office of

Communications (OFCOM) in the United Kingdom is launching a pilot for white space spectrum

access [4].

The concept of cognitive radio was recently extended to more sophisticated spectrum access

techniques where primary and secondary users can interact in a variety of manners. These

techniques can be classified in three groups, according to [5]:

• Interweave cognitive radio This dynamic spectrum access paradigm covers the classic

white spaces approach. The cognitive user has to obtain information about the occupancy

of the different channels by means of a geolocation database [6] or by spectrum sensing [7].

Under this setting, the secondary user does not transmit in the same channels as the

primary user, but detects the unused frequency bands to use them.

• Underlay cognitive radio The underlay cognitive radio paradigm allows secondary

transmissions in the same time-frequency resources as the primary user, thus increas-

ing the interference temperature suffered by the primary receivers. The transmit power

of the secondary user is usually constrained by the maximum tolerable interference at the

primary receivers [8,9]. Other approaches to underlay transmission include the concentra-

tion of the interference in a small part of the spectrum, so it can be filtered out by the

primary receiver [10], or the transmission in some spatial dimensions such that a multiple

antenna primary receiver is able to remove the interference [11].

• Overlay cognitive radio Systems based on overlay cognitive radios allow some kind of

cooperation between the primary and secondary transmitters. In this setting, it is usually

assumed that the secondary transmitter acts as a relay of the primary signal, or that the

secondary transmitter knows the primary signal in a non-causal way. The primary and

secondary transmitters use the same time and frequency resources, so there is interference

between them. The knowledge of the primary signal can be used to alleviate the interfer-

ence in two different forms: first, the primary signal can be transmitted by the secondary

user to increase the signal to interference and noise ratio (SINR) of the primary link; sec-

ond, interference cancellation techniques can be performed at the secondary transmitter

to increase the quality of the secondary link.

In this thesis we focus on the overlay cognitive radio paradigm. Based on information-

theoretical results on the so-called cognitive interference channel, we propose and analyze the



4 Chapter 1. Introduction

application of the overlay cognitive radio paradigm to practical scenarios. We consider overlay

transmission over broadcast1 and point to point primary users, and we take into account some

effects that appear in practical scenarios. We focus on the issues created by imperfect (or none)

CSI at the secondary transmitter. This lack of CSI will affect both the transmission of the

primary signal as well as the possibility of performing interference cancellation.

1.2.2 Prior work

The information theoretical foundation of overlay cognitive radio is on the so-called cognitive

channel. The cognitive channel is a two user interference channel where the secondary trans-

mitter knows (causally or non-causally) the message to be transmitted by the primary one. A

diagram depicting this kind of channel is shown in Figure 1.1.

+

+

Figure 1.1: Cognitive radio channel: primary and secondary transmitters T1 and T2 communicate
messages m1 and m2 to receivers R1 and R2, respectively. The received signals are the output
of an interference channel with noise z1 and z2 and interfering gains a1 and a2. The secondary
transmitter knows the primary message.

The capacity region [12,13] of this channel is achieved by transmitting the primary message

to increase the capacity of the primary link, as well as by using Costa precoding [14] (also known

as dirty paper coding) to remove the interference at the secondary receiver. Some practical

conditions for the cognitive channel were introduced in [15], where the operation of the secondary

transmitter is constrained so the primary user is not affected by its presence. These conditions

are, in short,

1. The rate of the primary system cannot be affected by the operation of the secondary user.

2. The primary receiver uses a single-user decoder, as in the case where the secondary trans-

mitter is not present. For example, decoding the secondary message and subtracting it

from the received signal is not allowed.

1Throughout the thesis, the term broadcast system will denote a communication scenario where multiple
receivers are decoding the same message, unlike the information-theoretical broadcast channel.
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We follow these two principles in the designs described in this thesis.

One of the main criticisms to overlay cognitive radio is the feasibility of knowing the primary

message before its transmission. Although it might seam unfeasible in practice, there are several

scenarios where this knowledge can be possible:

• In some cases, the secondary transmitter does not know the primary message in a non-

causal way, but acts as a relay of it instead. The presence of a relay can boost the achievable

rate of the primary system, and use the capacity gain to transmit its own message [16,17].

• In a broadcast network organized as an SFN, multiple base stations transmit the same

data in a synchronized way. In this setting, we could think of a secondary transmitter

as an additional SFN transmitter conveying its own information on top of the primary

one [18].

• In point to point systems with automatic repeat request (ARQ), a message is retransmitted

if the first transmission is incorrectly decoded. In this case, a potential secondary user

might have decoded the message in the first transmission. When a retransmission occurs,

the secondary user knows the primary message [5].

• In a more general setting, a system can be designed so that the primary transmitter shares

its message with the secondary transmitter through a backbone connection. Although in a

different setting, this idea can be seen to be similar to coordinated multipoint (COMP) [19].

Imperfect CSI in the cognitive radio channel introduces serious drawbacks in the system

design. We could think of modifying the primary receiver to estimate the direct and interfering

channels, and feed them back to the secondary transmitter. This approach, however, would

require modifying the primary receiver, which is undesirable. Let us focus on the diagram of

Figure 1.1. Imperfect CSI has the following effect on cognitive radio channels:

• If the secondary transmitter does not transmit the primary message, knowledge on the

magnitude of a2 is needed to determine the amount of interference the primary receiver

is receiving. For example, small values of a2 would allow a higher transmit power at the

secondary transmitter.

• If the secondary transmitter transmits the primary message, knowledge on the phase of a2

is needed to align the primary and secondary contributions of the primary signal so that

the interference is constructive. For example, if a2 = −1 and the secondary transmitter

transmits the primary message with the same power as the primary transmitter, then
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the interference between the primary and secondary replicas will be destructive and the

received signal to noise ratio (SNR) will be zero.

• Knowledge of a1 is needed if the secondary transmitter uses dirty paper coding to remove

the interference caused by the primary transmitter at the secondary receiver. Although

this value could be fed back by the secondary receiver, in some cases this is not possible

(e.g., if the secondary system is of broadcast nature).

This thesis is focused on analyzing and proposing solutions for the CSI acquisition problem.

In some cases, where some reduced amount of feedback from the primary transmitter is allowed,

we analyze and optimize this information interchange to maximize the efficiency of the secondary

link. In the cases where the primary receiver is not capable of feeding back any CSI, we design

transmission schemes that are able to cope with unknown channels.

1.2.3 Contributions

In this thesis we consider two different scenarios: in the first one, the primary system is a

broadcast network, where users inside the coverage area receive the same message. In this

setting, there is no possible feedback from the primary receivers; in the second one, the primary

system is point to point, and a reduced amount of feedback is allowed. In both cases, we analyze

the problem of imperfect CSI at the secondary transmitter. The contributions on this first part

of the thesis can be summarized as follows:

• C1.1) Performance analysis and design of overlay cognitive radio systems over

an SFN with line of sight propagation The overlay cognitive radio paradigm can

be applied to an SFN, where the secondary transmitter can gain access to the primary

message and synchronization signals. Unlike [18], we take into account the effect of trans-

mitting the primary signal when the phase of the interfering channel is not known. We

consider wideband transmission using OFDM, and model the channels as a pure line of

sight component (one-tap channel). The joint transmission of the primary signal from

both transmitters creates an artificial multipath, or frequency selectivity. We show that

this artificial multipath cannot be neglected in most SNR regimes, and derive the optimum

power allocation at the secondary transmitter to circumvent this problem. We assume that

the secondary receiver is inside the primary coverage area, so it can decode the primary

message and, in consequence, remove its interference. We consider the case of a single

primary receiver, as well as the case of infinite primary receivers in the coverage area.
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• C1.2) Extension to non line of sight channels We extend the previous results and

analyze the case of channels with different degrees of multipath, and in different SNR

regimes. We resort to the use of packet error rate prediction metrics, or effective SNR

metrics, to perform this analysis. We conclude that the negative effect of artificial mul-

tipath appears in scenarios with high SNR and strong line of sight propagation. We also

consider the case of transmitters using space time coding, so that the artificial multipath

does not appear.

• C1.3) Extension to secondary receivers outside the primary coverage area A

second extension is considered for secondary receivers located outside the primary coverage

area. If the secondary receiver is near the coverage edge, it is going to receive a substantial

amount of interference from the primary transmitter without being able to decode it.

This is usually called a gray space, placed between the black space, or coverage area, and

white space, where the effect of the primary transmitter is negligible. In gray spaces, the

secondary transmitter can extend the primary coverage area by transmitting the primary

message, so that the secondary receiver can decode the interference. We analyze optimum

transmission strategies for black, gray and white spaces under the overlay cognitive radio

paradigm, for unicast and broadcast secondary users.

• C1.4) Optimum power allocation for OFDM-based primary user with SNR

feedback from the primary receiver If the primary system is unicast, then a purely

cooperative secondary transmitter can adjust the phase of its transmission so that the

received signals at the primary receiver are coherently added, thus increasing the capacity

of the primary link. If the primary system is capable of performing link adaptation, then

this increment in capacity will be translated into an increment in the transmission rate

and, therefore, less transmit resources will be used to convey the same amount of data. The

unused resources can be used by the secondary transmitter to convey its own information.

We analyze a scenario where the primary system uses OFDM, so the secondary transmitter

can perform power allocation among the subcarriers to maximize the rate of the primary

link. We assume that the primary receiver performs periodic SNR measurements and feeds

back this information to the primary transmitter. This information can be also received

by the secondary transmitter, and be exploited to acquire CSI.

• C1.5) Optimum transmit signals for CSI acquisition If the primary receiver feeds

back to the primary transmitter the magnitude and phase observed by the received sig-

nal, then this information can be exploited to obtain CSI at the secondary transmitter.

A simple procedure was described in [15] to obtain CSI from the feedback information.

We analyze this procedure under an estimation theoretic approach, and derive optimum
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transmit signals that minimize the CSI estimation error for single input single output

(SISO), MIMO and time-varying channels. We show that the original procedure of [15] is

suboptimal in the mean squared error sense.

1.3 Link Adaptation

1.3.1 Introduction

Link adaptation is the process of dynamically changing the transmission parameters according

to the channel state. Depending on the particular scenario, different adaptations might result

of interest. For example, power control can be applied in fading channels to keep a constant bit

rate, in what is known as channel inversion [20], user scheduling can be performed depending

on the channel quality, etc.

One problem that is particularly interesting, and that is usually performed on modern

wireless communication systems, is rate adaptation. Wireless channels are of fading nature

and, therefore, the rate they can support changes over time. A communication system that

wants to maximize its spectral efficiency should somehow track the channel changes and adapt

its transmission rate accordingly. This rate selection is usually performed by the definition of a

discrete set of available coding rates and modulations, or modulation and coding schemes (MCS).

Rate adaptation is usually referred to as adaptive modulation and coding (AMC). Most modern

communication systems, including cellular technologies (3GPP LTE [21], IEEE 802.16 [22]),

wireless local area networks (IEEE 802.11 [23]) and satellite communication standards (DVB-

S2 [24], DVB-RCS [25]) support different MCS and, therefore, enable the use of AMC.

Performing AMC requires the knowledge of some sort of channel state information (CSI) at

the transmitter (CSIT). The transmitter can gain access to this information by means of feedback

from the receiver, in what is known as closed loop CSI, or by exploiting the pilots present in the

incoming signal if there is channel reciprocity, and estimating the channel in an open loop way.

The former CSI acquisition technique is widely supported by modern communication standards,

while the latter can only be exploited if the duplexing is performed in the time domain.

Once the transmitter has gained access to CSI, it is still not trivial how to select the

most appropriate MCS. For example, a problem arises when CSIT is inaccurate as a result of

estimation errors, or simply due to the delay induced by the wireless channel. In these cases,

there is usually a tradeoff between throughput maximization and outage minimization [26].

Most modern communication standards include some sort of automatic repeat request (ARQ)

mechanism that transforms the outage probability into an average number of retransmissions
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or, equivalently, into an average delay. MCS selection is particularly difficult in mobile satellite

communications, where the large round trip time increases the CSI delay and decreases the

maximum allowable number of retransmissions.

MCS selection is also difficult in some scenarios where CSI is timely. For example, systems

using MIMO-OFDM suffer from a large dimensionality of the CSI. Unlike single carrier systems,

which are usually characterized by a single SNR value, multicarrier systems have one SNR value

for each subcarrier and spatial stream. Reducing the dimensionality by averaging the SNR

values is usually not a good approach, since average SNR is not a good quality metric in these

systems. The difficulty of performing MCS selection is increased when CSI is imperfect due to

limited feedback.

In this thesis we design MCS selection strategies for mobile satellite communications and

MIMO-OFDM systems. Particularly, we focus on the forward and return links of mobile satellite

systems with statistical and delayed CSI, and the downlink of an IEEE 802.11ac-like system with

limited feedback CSI.

1.3.2 Prior work

Classic work on link adaptation focused on narrowband fading. For example, the modulation

and power were dynamically adjusted with constraints on the uncoded bit error rate (BER)

and average transmit power to maximize the spectral efficiency [27, 28]. The extension of these

approaches to coded transmission resulted in more complicated analytical expressions, and usu-

ally required the use of BER approximations [29, 30]. The MCS selection problem in [27–30] is

essentially a unidimensional problem that consists of assigning an SNR interval to each MCS. A

different approach to link adaptation can be seen in works like [31,32], where the transmit rate

is modified without taking into account the current channel state, but only with ACK/NAK

information.

Mobile satellite communications

Prior work on satellite communications focused on selecting the MCS based on thresholds on

the estimated SNR value. In [33–35] thresholds for MCS selection were designed taking into

account the CSI error caused by imperfect SNR estimation, but the effect of delay in a mobile

environment was not analyzed. The obtained adaptation strategy is based on adaptation with

hysteresis, i.e., the MCS to be used in the next transmission is selected depending on the

estimated SNR value and the current MCS. In [36] it is proposed to use a backoff margin to

account for the inaccuracy of the SNR estimate, including both delay and estimation error. This
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backoff margin can be obtained online, from the ACK/NAK interchange, or can be obtained by

simulations. In [37] it is proposed to use only a fraction of the available MCS to perform link

adaptation with the objective of increasing the robustness of the adaptation.

In this thesis we follow different approaches to adaptation in forward and return links. In

the forward link we exploit statistical information about the channel to maximize the throughput

subject to a packet error rate constraint. This maximization is performed by suggesting different

transmission strategies, namely multilayer coding and use of different MCS in each retransmis-

sion. In the return link we propose the use of open loop CSI to obtain timely information about

the channel.

MIMO-OFDM

Link adaptation in systems with multiple channels is challenging due to the higher dimensionality

of the CSI. The channel state cannot be characterized with a single SNR value in systems

using OFDM or MIMO with spatial multiplexing. The reason is that different symbols in the

same codeword experience different SNR values. Because of the complicated mapping between

codeword error and symbol error, the average SNR may not contain enough information to

permit effective adaptation [38]. An alternative is to map the set of SNR values (one for each

carrier and spatial stream) to one effective SNR [39–43]. The effective SNR is defined as the

SNR for an additive white Gaussian noise (AWGN) channel to experience the same frame error

rate (FER) or packet error rate (PER) as the fading channel under study. Effective SNR metrics

are defined as a Kolmogorov mean [44] of the SNR values with some parameters that are fitted

according to empirical results. The WiMAX forum, for example, recommends the exponential

effective SNR metric as the default method for FER prediction [45] and link adaptation in IEEE

802.16e. The effective SNR metrics lead to adaptation algorithms in the form of look-up tables,

where each effective SNR value is associated to an MCS. Some works like [46] make use of

effective SNR metrics to develop link adaptation algorithms in single user scenarios. Having

a fixed mapping between effective SNR and MCS is not ideal due to the impact of practical

impairments like non-linearities, non-Gaussian noise or implementation dependent parameters,

like Viterbi truncation depth or number of rounds in a turbo decoder.

Data-driven approaches provide a solution to the problem of mapping an appropriate FER

to the set of SNR values. Based on empirical observations of the SNR values and their associated

FER, learning algorithms have been designed to select the proper MCS for each channel realiza-

tion [47–52]. This classification task is performed by machine learning algorithms like K-nearest

neighbors or support vector machines (SVM) [53]. These algorithms are usually described as

non-parametric, since they do not assume any model that maps SNR values to FER, but try
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to learn it from empirical data. In these non-parametric approaches there exists a tradeoff be-

tween adjusting the model to the training samples and producing a smooth function describing

the model, which is known as the bias-variance tradeoff [54]. Learning can be performed on-

line [50–52] or offline [47,49], and is usually based on a low dimensional feature set containing a

subset of the ordered SNR values [55]. This data-driven formulation was shown to outperform

the effective SNR in [47], and is resiliant to practical impairments like non-Gaussian noise or

amplifier non-linearities [51].

Prior work on learning-based link adaptation focused on single user scenarios [47–52]. The

extension of these approaches to the more general case of having multiple users served at the

same time by the use of space division multiplexing (SDM) is not trivial due to the interaction

between user selection, mode selection, precoding, and MCS selection. For example, the link

adaptation technique in [47] requires running the classification algorithm for all possible number

of spatial streams (NSS) and selecting the NSS leading to a higher throughput. Applying a

similar strategy in the multiuser case would require an additional exhaustive search over the

choice of users and the number of spatial streams per user.

Prior work on learning-based link adaptation also did not consider the impact of limited

feedback precoding [47–51]. In multiuser MIMO (MU-MIMO) systems, limited feedback creates

quantization error that results in residual interuser interference [56]. The resulting interference

makes performance a function of the feedback quality. Therefore, a smart multiuser link adap-

tation algorithm should predict the interuser interference and move from aggressive multiuser

transmission to more conservative modes depending on the feedback quality [57].

Link adaptation may be performed taking as input more information than SNR values.

For example, codeword length or noise distribution affect the performance of a given MCS.

Previous work using FER prediction dealt with the variable codeword length in various ways.

For example, [31, 46, 58, 59] assumed perfect knowledge of the coded bit error rate (CBER),

and from that value they calculated the corresponding FER. Other previous work using FER

predictors assumed constant frame length [30,47,48,52,60], which is not realistic under modern

communication standards.

In this thesis we develop a learning-based link adaptation technique for multiuser MIMO-

OFDM. Multiuser transmission is achieved by means of linear precoding from limited feedback

information. We also consider the effect of codeword length and noise distribution in the adap-

tation algorithm.
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1.3.3 Contributions

In the second part of the thesis we present link adaptation algorithms for mobile satellite com-

munications and multiuser MIMO-OFDM. The contributions of this part of the thesis are sum-

marized as follows:

• C2.1) Link adaptation techniques for the forward link of mobile satellite chan-

nels using ARQ CSI acquisition in the forward link of mobile satellite channels is rather

inaccurate due to the large round trip delay. For a geostationary satellite, for example,

this delay is around half a second. In many scenarios, and even for low speeds, the channel

coherence time is lower than this value. On top of this problem, the channel variation is

larger than the usual in terrestrial systems due to the sensitivity to blockages of the line of

sight propagation path. Thus, it is possible to suffer very large SNR variations in a small

period of time.

In this thesis we propose to perform link adaptation based on statistical channel informa-

tion, and try to exploit the diversity created by the large SNR variations. We consider

systems that allow the use of retransmissions to incorporate time diversity. We present two

different approaches that allow exploiting the good channel instants while incorporating

an outage constraint on the system. The first one is based on the use of two-layer coding,

and the second one on the use of different MCS for different retransmission index. The

design of the two-layer coding approach is based on the knowledge of statistical informa-

tion about the channel, which allows designing the power weighting of the two layers and

the MCS selection. The second method is based on the use of different MCS in different

retransmissions. This technique is also designed based on statistical information on the

channel, but we present a method to estimate the necessary parameters from the exchange

of ACK/NAK.

• C2.2) Link adaptation for the return link of mobile satellite channels exploiting

open loop and closed loop CSI The return link of mobile satellite channels suffers

from the same problem of CSI inaccuracy as the forward link if operating in closed loop

mode. If adaptation is performed in open loop, large channel variations can be detected

by observing the forward channel, as the objects that cause blockage are always placed

next to the terminal. Fading due to multipath, however, is not detectable by observing

the incoming singal if duplexing is performed on the frequency domain. Thus, in some

cases the open loop CSI might outperform the closed loop one, and vice versa.

In this thesis we propose a method to automatically combine both CSI values depending on

the observed ACK/NAK values. The link adaptation algorithm is derived as the stochastic
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gradient descent solution of an unconstrained optimization problem which sets the observed

FER to a desired target value.

• C2.3) Link adaptation for multiuser MIMO-OFDM with limited feedback Per-

forming link adaptation in a multiantenna and multiuser system is challenging because of

the coupling between precoding, user selection, spatial mode selection and use of limited

feedback about the channel. The problem is exacerbated by the difficulty of selecting the

proper modulation and coding scheme when using OFDM.

In this thesis we present a data-driven approach to link adaptation for multiuser MIMO-

OFDM systems. A machine learning classifier is used to select the modulation and coding

scheme, taking as input the SNR values in the different subcarriers and spatial streams.

A new approximation is developed to estimate the unknown interuser interference due

to the use of limited feedback. This approximation allows to obtain SNR information at

the transmitter with a minimum communication overhead. A greedy algorithm is used

to perform spatial mode and user selection with affordable complexity, without resorting

to an exhaustive search. The proposed adaptation is studied in the context of the IEEE

802.11ac standard, and is shown to schedule users and adjust the transmission parameters

to the channel conditions as well as to the rate of the feedback channel.

• C2.4) Link adaptation with practical impairments Link adaptation is usually per-

formed by exploiting SNR information only. In a realistic environment, however, there

might be other factors, which we denominate practical impairments, that affect the per-

formance of a certain MCS. For example, higher layers can deliver to the physical layer

packets of different size, which changes the codeword size (and, in consequence, the FER)

for the same MCS. Also, although it is usually assumed that the noise is Gaussian, in

many realistic environments this might not be the case, and noise is better modeled by

the use of a generalized Gaussian distribution.

In this thesis we present two methods to incorporate practical impairments into link adap-

tation, particularly into the FER prediction problem. The first method is inspired on

machine learning techniques, and includes the practical impairments as additional fea-

tures to the FER prediction problem. We observe that a combination of effective SNR

and machine learning offers a good performance. The second method is explicitly designed

to incorporate different codeword length into the FER prediction problem, and is based on

classic estimation theory and an analytical expression that relates the FER of two different

codeword lengths.
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Part Chapter Contributions

I Chapter 2 C1.1

I Chapter 3 C1.2

I Chapter 4 C1.3

I Chapter 5 C1.4, C1.5

II Chapter 6 C2.1, C2.2

II Chapter 7 C2.3

II Chapter 8 C2.4

Table 1.1: Summary of contributions and chapters

1.4 Structure of the Thesis

The main content of this thesis is structured in 7 chapters, divided into two parts. Part I,

which includes Chapters 2 to 5, contains the contributions on cognitive radio. Part II, which

includes Chapters 6 to 8, contains the contributions on link adaptation. Chapter 9 contains

the conclusion of the thesis and some comments on future lines of work. The distribution of

contributions in the different chapters is summarized in Table 1.1.

1.5 Notation

Any non-standard notation used in this thesis is defined for the particular chapter at the point

where the symbols first occur. For reader’s reference, we also include a comprehensive list of

the notation in Table 1.2.



Symbol Description

~ Circular convolution operator

U(a, b) Uniform random distribution with support [a, b]

CN (µ,R), N (µ,R)
(Complex circular) Gaussian random distribution

of mean µ and covariance matrix R

|α|,∠α Absolute value and phase of α

χ2
n χ-squared distribution with n degrees of freedom

∇xf (x0) Gradient of the function f evaluated in x0

∇2
xf (x0) Hessian matrix of the function f evaluated in x0

E[·] Expectation operator

Var[·] Variance operator

P[A] Probability of event A

adj (A) Adjugate matrix of A

vec (A) Column-wise vectorization of A

diag(a) Diagonal matrix with diagonal equal to a

det(A), tr(A) Determinant and trace of A

� Hadamard product

⊗ Kronecker product

Xa×b Set of all matrices with a rows and b columns with entries in X
(·)T , (·)∗ Transpose and conjugate transpose

‖ · ‖` (resp. ‖ · ‖) norm ` (resp. norm 2)

0L Zero L× 1 vector or L× L matrix

1L L× 1 all-ones vector

IL Identity matrix of size L× L

Table 1.2: Notation used in this Thesis.
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2.1 Introduction

Recently, there has been an increased interest for learning the potential of those cognitive radio

(CR) systems where the secondary transmitter has knowledge of the primary message, in what

is known as the overlay paradigm [5]. This prior knowledge of the primary transmission can

be exploited by the secondary users to convey their own information when accessing primary

user spectrum in an efficient way, while preserving the primary user’s quality of service (QoS).

Hence, the usefulness of the knowledge of the primary message is twofold: on the one hand,

the degradation of the primary user link due to the insertion of a secondary signal can be

compensated by the secondary transmitter by using a fraction of its available power to transmit

the primary message, keeping the signal to noise ratio (SNR) at the primary receivers above a

given threshold; on the other hand, since the secondary transmitter knows the primary message,

some kind of interference cancellation scheme can be applied, like dirty paper coding (DPC) [14].

However, the knowledge of the primary signal by the secondary transmitter is hard to justify,

and, therefore, limited to a small quantity of practical cases [5]. In this chapter, similarly to [18],

we introduce another practical scenario where the knowledge of the primary signal is possible:

in broadcasting systems working as a single frequency network (SFN), e.g., the European digital

video broadcasting - terrestrial (DVB-T) based service, deployed in many countries worldwide,

the primary signal is sent via satellite (or other kind of distribution network) to some major

transmitters, which need to apply the corresponding delay to keep the synchronization required

by the SFN mode. Thus, a potential secondary transmitter might also gain access to the

primary signal, keeping time and frequency synchronization with the primary transmitters and,

therefore, join the primary network. The ultimate goal is to overlay the secondary information on

the primary signal which can be decoded by secondary receivers, while preserving and possibly

reinforcing the quality of service of the primary network (see Figure 4.1) without any modification

on the primary receivers. Thus, the present work is focused on the cognitive spectrum reuse of

the frequency bands used by any broadcast system working as an SFN, as they are specially

interesting due to the high amount of bandwidth that these services are allocated, the possibility

of accessing the primary message, and also due to the good propagation conditions of these

frequency bands.

Although following a different principle, this idea has been developed in [67], where by

resorting to game theory principles, the primary transmitter adapts its power to the overlaid

secondary use of the spectrum to keep its QoS. The case of a secondary user that is aware of

the primary message is studied in [16] following a similar game-theoretic formulation, where it is

proposed to transmit the primary message over a fraction of the primary transmission resources
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Figure 2.1: The secondary transmitter conveys the primary signal (black rays), which is deliv-
ered via a distribution network (gray rays). The secondary transmitter overlays the secondary
message (white ray) on top of the primary one.

(in this case, frequency bands) with the objective of incrementing its capacity and, therefore,

release the remaining spectrum for the secondary transmission while keeping the original primary

transmitter rate. Here we will consider that the transmit power of the primary user is fixed, as

usual in current broadcast networks, and we will introduce the possibility of using a fraction of

the secondary power to transmit the primary message. The objective of this transmission is not

to free some transmission resources of the primary user, but to control the interference due to

the transmission of the secondary message.

Although the case of secondary transmitters with knowledge of the primary signal has been

addressed from an information theoretic point of view, see e.g., [12,13,15] among others, there is

still an important gap between capacity-achieving models and practical implementations where

successful spectrum reuse is expected to be achieved. In short, some of the main issues to address

are:

Metric for primary QoS. A usual metric for the QoS of the primary user is the capacity

of a transmitter-receiver pair: if this capacity is greater than the transmission rate of the primary

user, then the primary communication is not compromised [15]. If the channel is of time-varying

nature, the QoS is measured in terms of probability of outage for a given transmission rate [9].



22 Chapter 2. Overlay Cognitive Radio over Broadcast Networks with Line of Sight Reception

However, in broadcasting scenarios, coverage areas become the relevant metric as a result of the

achieved bit error rates.

Primary user reinforcement. Even in the absence of a secondary information signal,

the simple transmission of the primary signal from a secondary transmitter will not necessarily

improve the primary service quality, since echoes can degrade performance as it is well-known

in current SFN deployments [68], unless proper countermeasures can be taken. This effect is

especially noticeable in those systems with a dominant line of sight (LOS) component, and

almost negligible in high scattering environments. In practical cases, the degradation coming

from the secondary echo could be higher than the power gain due to the extra contribution of

the secondary transmitter. This type of problems is expected to be mitigated in the future with

new standards such as DVB-T2 [69], which include some precoding schemes such as Alamouti

space-time coding or constellation rotation. On the other side, some specific channels, such as

Rayleigh fading channels, benefit from the diversity created by SFN deployments, as illustrated

in [68]. In this chapter, we will model both the primary and secondary channels as a pure

LOS component, which is indeed the case for which a higher degradation is expected, according

to [68]. In Chapter 3 we extend this scenario to accommodate non-LOS channels as well.

Interference cancellation techniques. In many cases practical interference mitigation

techniques at the transmitter exploiting side information cannot be directly applied, as they

require knowledge of the channel state. In [70] it was shown that the uncertainty in the channel

phase suffices to decrease the achievable capacity of the secondary link dramatically. Interference

cancellation can be also performed at the secondary receiver, provided the interfering power is

strong enough [71], as proposed in [72].

Given the widespread current use of DVB-T, we will focus on this multicarrier technology

as support for the primary signal, and show how an appropriate secondary transmission of the

primary signal can reinforce the original QoS. This is a first step towards a cognitive secondary

transmitter which additionally includes a secondary information signal while preserving the

primary user coverage area.

The remaining of the chapter is organized as follows: in Section 2.2 we introduce the

notation and the analytical expressions to be used afterwards. In the next sections, the problem

is treated in an incremental way, using the aforementioned analytical expressions as quality

metrics for the primary system: in Section 2.3, a pure cooperative secondary user that tries to

maximize a primary receiver QoS is studied, and practical transmission strategies are derived;

in Section 2.4 the case of a secondary user maximizing its own transmission rate in presence

of a single secondary receiver is presented; Section 2.5 completes the study, introducing the

restriction of preserving the original coverage zone of the primary user. In Section 2.6 the
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analytical expressions are verified by means of software simulations and hardware measurements.

Finally, the conclusions are presented in Section 2.7.

2.2 Problem statement

Throughout the chapter we will assume that the links from both primary and secondary trans-

mitters to a given primary receiver can be modeled1 as additive white Gaussian noise (AWGN)

channels, so the equivalent baseband received signal after the cyclic prefix (CP) removal can be

written as

yn =
(
δn + γe−jθfn−n0

)
~ xn + ρe−jθsn−n0 + wn (2.1)

where the equivalent channel was normalized to set the channel from the primary transmitter

to δn, while γ, θ and n0 are the relative amplitude, phase and delay of the primary signal

contribution sent from the secondary transmitter, ~ denotes the circular convolution operator,

xn denotes the n-th sample of the primary signal (normalized to have unit power), ρ denotes

the relative amplitude of the secondary signal sn ∼ CN (0, 1), assumed to be white Gaussian2,

sent from the secondary transmitter, and wn ∼ CN
(
0, σ2

)
is a sample of white Gaussian noise.

As an additional degree of freedom, the secondary transmitter is allowed to (circularly) filter

the primary signal with a transmit filter fn. The convenience of this filtering will be illustrated

in the remaining of the chapter. In the discrete Fourier transform (DFT) domain, the previous

relation reads for a given carrier k as

Yk =
(

1 + γe−j(2πkn0/N+θ)Fk

)
Xk + (2.2)

+ρe−j(2πkn0/N+θ)Sk +Wk k = 1, ..., N

where Xk, Sk, Fk and Wk denote the N -DFT of xn, sn, fn and wn, respectively, with N the

number of carriers. Figure 5.1 summarizes the system model.

For the sake of simplicity, we will assume perfect channel estimation3 and frequency syn-

chronization in the analytical derivations, and an overall channel length shorter than the CP.

1The simple AWGN channel can be a good approximation, specially for those receivers with rooftop antennas
(very common in terrestrial television broadcasting), which allow the existence of a strong LOS propagation path.

2This can be a good approximation, for example, in the case of a secondary transmitter using an OFDM
waveform, where the time-domain signal is generated by combining a relatively large number of independent
random variables (the symbols on the different carriers). The gaussianity is maintained in the DFT domain
provided both primary and secondary waveforms are not identical (for example, by using different FFT sizes or
CP lengths).

3We are assuming that the primary waveform carries some pilot symbols (which are also transmitted by the

secondary transmitter) to perform the channel estimation, so the equivalent channel
(

1 + γe−j(2πkn0/N+θ)Fk
)

can be accurately estimated at the primary receivers.
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Figure 2.2: System model: the Secondary Transmitter (ST) knows the message xn of the Primary
Transmitter (PT). The ST filters the primary signal with the filter γfn, and scales the secondary
message sn with ρ. The signal received by the Primary Receiver (PR) is described by equations
(2.1) and (2.2).

Moreover, we will consider a quadrature phase shift keying (QPSK) constellation in the primary

system, as the derived analytical bounds are easier to deal with. However, these results will

be extended to higher order constellations and practical synchronization schemes by means of

hardware measurements.

Unlike previous approaches to similar problems that use a capacity-based quality metric

for the primary system [9,18], we propose to analyze the performance of the primary system by

means of the Chernoff bound (CB) for the uncoded bit error rate (BER) or, equivalently, by the

exponential effective signal to noise ratio metric (EESM) [39], one of the metrics used orthogonal

frequency division multiplexing (OFDM) systems with adaptive coding and modulation (ACM)

[41], and one of the physical layer abstraction methods proposed in IEEE 802.16 [73]. The

expression for the effective Signal to Noise Ratio (SNR) using the EESM metric is4 Υeff =

−2 log (η), where

η =
1

N

N∑

k=1

e−Υ|Hk|2/2 =
1

N

N∑

k=1

e−β|Hk|
2

(2.3)

is the expression for the CB. From (2.2) we have that Hk = 1 + γe−j(2πkn0/N+θ)Fk is the

4The general expression for the EESM is Υeff = −λ log
(

1
N

∑N
k=1 e

−Υ|Hk|2/λ
)

, being λ a degree of freedom

that depends on the particular modulation and coding scheme [39]. In this chapter we will set λ = 2, as it is
the value for the CB of the BER of a QPSK, although results can be easily extended to other values of λ to
accommodate other constellations.
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equivalent channel seen by the k-th carrier at a given receiver, so

|Hk|2 = 1 + γ2
k + 2γk cos (θ + 2πkn0/N) (2.4)

where γk , γFk is assumed to be real, without loss of generality, and Υ , 1
σ2+ρ2 denotes the SNR

of the system in absence of the secondary transmitter conveying the primary message, which

is constant along all the carriers due to the AWGN assumption. Moreover, we have defined

β = Υ/2 for the sake of simplicity.

In the following, we will assume that the value of the relative amplitude γ is deterministic,

as it can be obtained by means of a propagation model or by measurements, and model θ as a

uniform random variable (RV) θ ∼ U (0, 2π] as it is not possible to determine the exact phase

difference between echoes θ. Note that the metric η as defined in (2.3) is a RV, so a deterministic

figure of merit for a primary receiver is obtained after substituting (2.4) in (2.3) and averaging5

over θ:

η (γ, ρ) =
1

N

N∑

k=1

Eθ
[
e−β(1+γ2

k+2γk cos(θ+2πkn0/N))
]

=
e−β

N

N∑

k=1

e−βγ
2
k

1

2π

∫ 2π

0
e−2βγkcos(θ)dθ (2.5)

=
e−β

N

N∑

k=1

e−βγ
2
kI0(2βγk)

where I0(·) is the zero-th order modified Bessel function of the first kind, EX [·] denotes the

expectation operator over the RV X, and γ = [γ1, . . . , γN ]T . As the obtained expression does

not depend on the time difference n0, there is no need to make any assumption about this

value. This CB-based metric η will be recurrent throughout the chapter, and will appear as the

optimization objective in Section 2.3, and as a design constraint in Sections 2.4 and 2.5.

In order to obtain a relationship between the CB and the definition of the coverage zone,

which is determined by the coded BER, we introduce the following analytical bound for the

5If we assume a static channel model, the value θ will not change for different OFDM blocks in given receiver,
but only change among different receivers. Thus, in order to make the quality metric process ergodic in every
receiver, a different random phase component could be applied to every OFDM block at the secondary transmitter
(similarly to [74]), so the long-term average η seen by a single receiver is the expected value of η, even for a static
channel scenario.
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BER after Viterbi for DVB-T, taken from [75]:

BER ≤ 1

4

∞∑

d=dmin

cdη (γ, ρ)d (2.6)

with dmin the minimum Hamming distance of the convolutional code, and cd the total input

weight due to an error event at distance d from the all-zero path.

Unlike previous work on BER minimization via power allocation for coded OFDM [76,77],

we will use the CB to get analytical results of potential interest for practical designs. Obviously,

it cannot be said that the obtained results are optimum in the sense that we are dealing with

BER bounds, not the BER itself. However, due to the impossibility of obtaining a closed

form expression for the BER, the most reasonable approach is to derive optimum transmission

strategies with respect to the BER bound, and afterwards analyze them in a real environment,

by means of software simulation and hardware measurements.

2.3 Optimum power allocation for a purely cooperative sec-

ondary user

In this section, we will obtain the optimum carrier power allocation (with respect to the metric

η in (2.5)) for a secondary transmitter that cooperates by minimizing the BER of a single

primary receiver as a first approach, without inserting a secondary message6. For a primary

receiver location where the ratio between the powers coming from the secondary and primary

transmitters is γ2, the minimization of the CB (2.5) reads as

minimize
N∑

k=1

e−βγ
2
kI0(2βγk) subject to

1

N

N∑

k=1

γ2
k ≤ γ2. (2.7)

This is a non-convex problem over N variables, which makes numerical methods difficult to

apply. However, as shown in Appendix 2.A, those points of the form γ = [0TN(1−φ) K1TNφ]T ,

(where 1p and 0q denote the all-ones row vector of p elements and the all-zeros column vector of

q elements, respectively) with K such that the power constraint is met with equality, and with

a fraction of active carriers φ such that Nφ is an integer, are critical points of the Lagrangian of

the proposed optimization problem. For this type of solutions, the optimization problem (2.7)

6This case is of special interest, as it provides the solution to the optimum power weighting γ given a total
power γ2 allocated to the primary waveform at the secondary transmitter.
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can be recast as7

minimize (1− φ) + φe−βγ
2/φI0

(
2βγ√
φ

)

subject to 0 ≤ φ ≤ 1.
(2.8)

As shown in Appendix 2.B, the asymptotic solution of (2.8) for large SNR values is φ = γ2

4 ,

which forces to allocate γ2
k = 4 to the corresponding fraction of carriers. Following (2.4), in

this case we have that |Hk| ≥ 1, so no carrier suffers from an SNR loss with respect to the

scenario without a secondary transmitter. Note that the optimum solution is only dependent

on the fraction of active carriers, and not on their specific locations, due to the symmetry of the

problem. In any case, the unidimensional problem (2.8) is computationally tractable as opposed

to (2.7).

We have evaluated the analytical bound for the BER in (2.6) for those solutions found

in (2.8): Figure 2.3 shows that the proposed method always decreases the BER bound, even

when the unfiltered approach leads to a huge degradation, thus showing the importance of the

proposed filtering, which intends to reduce the degradation due to the presence of SFN echoes.

Interestingly, the solution φ = γ2

4 is quite a good approximation to the optimum value of the

fraction of active carriers, especially for the higher SNR case.

2.4 Optimum power distribution for a single primary receiver

In this section, we will focus on the strategy the secondary transmitter must follow in order

to maximize its own capacity subject to a controlled degradation of the primary service at a

given receiver. We will assume that the secondary users are able to use some kind of interference

mitigation techniques so the capacity of the secondary link is equivalent to that in absence of the

primary transmitter. As we explained previously, the use of DPC techniques [14] would require

channel knowledge at the transmitter [70] and, therefore, a feedback channel to convey that

information, whereas the use of successive interference cancellation (SIC) at the receivers is more

likely to be performed. A similar idea was developed in [9, 72], where the use of opportunistic

interference cancellation (OIC) was shown to dramatically increase the secondary user rate.

In our case, we will assume that interference cancellation can be always performed, as the

secondary user is expected to be in the primary user coverage area. Therefore, our channel

model will be an interference Z channel [5], where the secondary message is treated as noise

by the primary receivers, and the primary interference can be completely canceled out by the

7Here, we are assuming that the number of carriers is large enough to approximate the fraction of active
carriers by any real number in the interval [0, 1]. If the resulting optimum value of φ is such that Nφ is not an
integer, the loss of performance taking bNφc as the number of active carriers will be negligible.
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Υ = Υ0 − 0.75dB, φ = γ2/4

Υ = Υ0 − 0.75dB, φ = 1

Υ = Υ0 − 0.75dB, φ = φopt

Υ = Υ0, φ = γ2/4

Υ = Υ0, φ = 1

Υ = Υ0, φ = φopt

Υ = Υ0 +0.75dB, φ = γ2/4

Υ = Υ0 +0.75dB, φ = 1

Υ = Υ0 +0.75dB, φ = φopt

Figure 2.3: Analytical bound for the BER for QPSK, convolutional rate 2/3, with different
secondary transmission approaches: no filtering (φ = 1), filtered with φ = γ2/4 and with
φ = φopt as found by fminbnd. Υ0 denotes the SNR that the bound predicts for the quasi
error free (QEF - BER after Viterbi decoding of 2 10−4) threshold for the system under analysis,
which is Υ0 ≈ 5.6dB.

secondary receivers.

In the design of practical multicarrier receivers it is sometimes assumed that the noise

power is constant for all the carriers. If this is the case, the fact of transmitting with high power

in a few carriers will be a source of narrowband interference, which is very harmful to OFDM

transmission [78]. In consequence, we will restrict the design of secondary signals to those with

constant power along the carriers, although the proposed methodology can be extended to the

general case.

Let us denote by P the secondary received power (normalized by the primary one) at a

given location, that has to be split between the primary
(

1
N

∑N
k=1 γ

2
k = γ2

)
and secondary (ρ2)

signals. Note that the flat spectrum constraint for the secondary message turns the maximization

of the capacity equivalent to the maximization of the power allocated to the secondary message

ρ2, so introducing a power constraint and a constraint on the primary user CB η in (2.5), we
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can formulate the optimization problem as

minimize −ρ

subject to
1

N

N∑

k=1

e
− 1+γ2

k
ψ+2ρ2 I0

(
2γk

ψ + 2ρ2

)
≤ η0

ρ2 +
1

N

N∑

k=1

γ2
k ≤ P

(2.9)

where η0 is the constraint on the CB η, and ψ , 2σ2, leading to β = 1
2(σ2+ρ2)

= 1
ψ+2ρ2 .

In Section 2.3 it was shown that, for a given allocated average power of a purely cooperative

secondary user to the primary user message γ2= 1
N

∑N
k=1 γ

2
k , the optimum power distribution

consisted on concentrating the power in a fraction φ of carriers, leaving the remaining fraction

1 − φ set to zero. Again, for a sufficiently large number of carriers, we can approximate the

fraction φ by a real number in the interval [0, 1], so problem (2.9) can be rephrased as

minimize −ρ

subject to e
− 1
ψ+2ρ2

(
(1− φ) + φe

− γ2/φ

ψ+2ρ2 I0

(
2γ√

φ(ψ+2ρ2)

))
≤ η0

ρ2 + γ2 ≤ P
0 ≤ φ ≤ 1.

(2.10)

With this simplification we have reduced the number of variables from N + 1 (the N variables

γk to perform the power weighting, and ρ) to three. Furthermore, we can reduce the number of

variables to two by approximating φ by its asymptotic optimum (and heuristic) value
(
φ = γ2

4

)

for the sake of analytical tractability. With this last simplification, the CB constraint in (2.10)

can be rewritten as

f (γ, ρ) = e
− 1
ψ+2ρ2

((
1− γ2

4

)
+ γ2

4 e
− 4
ψ+2ρ2 I0

(
4

(ψ+2ρ2)

))
− η0 ≤ 0 (2.11)

or, equivalently,

γ2 ≥ 4
1− η0e

1
ψ+2ρ2

1− e−
4

ψ+2ρ2 I0

(
4

ψ+2ρ2

) . (2.12)

The solution to this problem presents a different behavior depending on the values of the SNR in

absence of the secondary transmitter, ΥNS , 2/ψ, and the received power from the secondary

transmitter P , as detailed next.
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2.4.1 Moderate values of P

For non-extreme values of P , if γ2 ≤ 4, the approximate optimum value of γ is the one that

maximizes ρ while meeting constraint (2.12) and, therefore, is the value obtained from (2.12)

with equality, so the BER restriction is active and the remaining power is used to transmit the

secondary information. By substituting γ2 = P − ρ2 in (2.12) we can obtain the value of ρ as

the root of the following equation:

ρ2 = P − 4
1− η0e

1
ψ+2ρ2

1− e−
4

ψ+2ρ2 I0

(
4

ψ+2ρ2

) . (2.13)

If γ2 = P − ρ2 > 4, then the obtained solution is not valid, as φ > 1. In such a case the solution

would be obtained by forcing φ = 1 and ρ2 + γ2 = P in problem (2.10), so the desired value of

ρ2 is the root of

e
− 1+P−ρ2

ψ+2ρ2 I0

(
2
√
P − ρ2

ψ + 2ρ2

)
− η0 = 0. (2.14)

2.4.2 P → 0

For small values of P the solution will be strongly dependent on the SNR in absence of the

secondary transmitter ΥNS . Let us define Υ0 as the value of SNR such that the BER constraint

is met with equality in absence of the secondary transmitter, i.e., e−
Υ0
2 = η0. Equivalently, we

define ψ0 , 2
Υ0

= −1
log(η0) . We will restrict our analysis to those receivers in the original coverage

region, i.e., ΥNS ≥ Υ0.

ΥNS > Υ0

In this case, as ψ < ψ0, we have that e
− 1
ψ+2P ≤ η0 for sufficiently small values of P . Therefore,

the secondary transmitter can allocate all the available power to the secondary message without

violating the BER constraint, i.e, its optimum allocated power to the secondary message is

ρ2 = P . This could be the case of a primary receiver operating at a very high SNR, or a

low-power secondary user.
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ΥNS = Υ0

In this case, as the BER constraint is met with equality, we have that e
− 1
ψ0+2P > η0, so the CB

constraint is not fulfilled if all the power P is allocated to the secondary message. Following

expression (2.11) and from the definition of ψ0, we have f (0, 0) = 0. For ρ ≈ 0, γ ≈ 0 and

as ∇γ,ρf (0, 0) = 0, we can approximate the CB constraint (2.11) by its second order Taylor

polynomial:

f(γ, ρ) =
1

2
[γ ρ]∇2

γ,ρf (0, 0) [γ ρ]T (2.15)

where∇γ,ρf (γ0, ρ0) denotes the gradient of the function f evaluated in (γ0, ρ0), and∇2
γ,ρf (γ0, ρ0)

denotes the Hessian matrix evaluated in the same point. In this case, the Hessian evaluated in

(0, 0) is a diagonal matrix with entries

∂2f

∂γ2
(0, 0) =

1

2
e−5/ψ0

(
I0

(
4

ψ0

)
− e4/ψ0

)
(2.16)

∂2f

∂ρ2
(0, 0) =

4e−1/ψ0

ψ2
0

. (2.17)

The maximum value of ρ will be obtained when both the CB constraint and the power con-

straint are met with equality. Therefore, the solution is obtained by equating (2.15) to zero and

substituting γ2 = P − ρ2, so the following equality arises:

ρ2

P
=

∂2f
∂γ2 (0, 0)

∂2f
∂γ2 (0, 0)− ∂2f

∂ρ2 (0, 0)
=

ψ2
0

(
e4/ψ0 − I0

(
4
ψ0

))

e4/ψ0
(
ψ2

0 + 8
)
− ψ2

0I0

(
4
ψ0

) . (2.18)

2.4.3 P →∞

For high values of P , the high power coming from the secondary transmitter makes the primary

contribution negligible. In this case it can be easily seen that the optimum filtering of the

primary signal leads to φ = 1, so we can write the CB constraint as

η(γ, ρ) = e
− γ2

2ρ2 ≤ η0, (2.19)

so the optimum value of ρ2 will be obtained when (2.19) and the power constraint are met with

equality, so we arrive to
ρ2

P
=

1

1− 2 log (η0)
=

1

1 + Υ0
. (2.20)
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Table 2.1: Values for the design parameters φ, γ2 and ρ2 for the different cases under study.

Case φ γ2 ρ2

P Moderate, γ2 < 4 γ2/4 P − ρ2 Root of (2.13)

P Moderate, γ2 ≥ 4 1 P − ρ2 Root of (2.14)

P → 0, ΥNS > Υ0 N/A 0 P

P → 0, ΥNS = Υ0 γ2/4 P − ρ2 (2.18)

P →∞ 1 PΥ0
1+Υ0

P
1+Υ0

Note that this is the case when both noise and primary user power are negligible, so the constraint

for the secondary user is to keep the ratio between primary and secondary messages over the

limit SNR value, γ2

ρ2 = Υ0.

The analytical power allocation results are summarized in Table 2.1 for the different cases.

2.4.4 Results

We will show the values of the secondary message power ρ2 for receivers with different margins

with respect to the necessary SNR for QEF reception, obtained with the analytical approxima-

tion φ = γ2/4. These results will be compared with those obtained with the optimum value

φ = φopt in order to check the accuracy of the approximation, and with those forcing φ = 1,

thus showing the importance of the unequal power weighting. These two latter approximation

are obtained by MATLAB fmincon applied to the problem (2.10), with φ a degree of freedom and

φ = 1, respectively. The approximation φ = γ2/4 is obtained8 following the P moderate entries

in Table 2.1.

In the simulations the selected convolutional code rate is 2/3 again, for which the bound

(2.6) predicts a value of Υ0 ≈ 5.6dB for a BER of 2 · 10−4, being η0 ≈ 0.16.

In Figure 2.4 it is shown the evolution of ρ with the total available power for moderate

values of P and three different SNR values, with ΥNS,dB = 10 log10 (ΥNS). Obviously, as all

the three cases have the same CB restriction, the one with the higher ΥNS will require a lighter

support from the secondary transmitter and, therefore, ρ2 will be higher. It is also noticeable

that the evolution of ρ2 (in both the φ = γ2/4 and φopt cases) has two differentiated regimes:

the low power regime, where all the secondary power can be allocated to the secondary message

without breaking the BER constraint and, therefore, in this region ρ2 = P ; and the moderate

8An additional check has to be performed: If the obtained value meets ρ2 > P , then all the available power
can be allocated to the secondary message ρ2 = P , and the CB constraint will be met with strict inequality.
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power regime. Note also that the case of ΥNS = Υ0 does only admit the moderate power regime,

as the BER constraint is met with equality even in absence of the secondary transmitter. The

solution for φ = 1 has a slightly different behavior:
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Figure 2.4: Power (seen at reception) allocated to the secondary signal at the secondary trans-
mitter as a function of the received secondary power with respect to the primary one..

• For the cases where all the power can be allocated to the secondary message without

breaking the BER constraint, the solution is the same as in the other approximations. If

this region does not exist (for ΥNS = Υ0) the optimum value of ρ is zero for a large range

of values of P .

• For moderate values of P , an increment on the value of P is not reflected in the value of

ρ, as allocating some power to the primary message would increase the BER bound.

• For high values of P , the value of ρ increases with P . In this region, the value of ρ is

obtained as the root of (2.14), and approximates the optimum solution as P increases.

It is also noticeable that the solution with φ = γ2/4 offers very little degradation with

respect to the optimum value of φ for small values of P , while the solution for φ = 1 offers a

good performance for larger values. Therefore, a near-optimum solution could be obtained just

by solving the φ = 1 and φ = γ2/4 problems, and choosing the one whose performance is better,

which is substantially less computationally expensive than solving the more general problem.

The degradation due to the presence of echoes is transcendent for a large range of values of P ,
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specially the lower ones. In this region, the importance of the proposed filtering is clear, as it

allows the secondary transmitter to achieve a non-zero rate.

In Figure 2.5 the accuracy of the P → ∞ and P → 0 expressions for ρ2/P is shown. For

moderate values of P , it is also shown that if the target receivers have ΥNS > Υ0, then the

fraction of available power used for the secondary transmission can be quite high for low values

of P and then it has to decrease. In fact, in the low power regime, all the available power can be

allocated to the secondary message without breaking the BER constraint, as previously stated.

It can be also seen that the family of curves for ΥNS > Υ0 tend to approach the ΥNS = Υ0

curve as ΥNS approaches Υ0.
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Low power regime

Figure 2.5: Fraction of power used for the transmission of the secondary message as a function
of the total received power from the secondary transmitter with respect to the primary one.

2.5 Coverage analysis

In this section we will extend the previously obtained results to the case of having several

primary receivers in different reception states (i.e., different values of P and ΥNS), as expected

in a realistic broadcast scenario. As we will see next, obtaining a solution is more involved than

just considering a worst case primary receiver.

Let us define the transmit mask γ̃ = [γ̃1, ..., γ̃N ], and the secondary ratio ρ̃ as the transmit

parameters such that 1
N ||γ̃||22 + ρ̃2 ≤ 1, so we can write γ(x) =

√
P (x)γ̃ and ρ(x) =

√
P (x)ρ̃,

where P (x), γ(x) and ρ(x) denote the same quantities as in previous sections with the insertion

of a parameter that indicates the position x (in polar coordinates x = (r, θ), for convenience) of
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a receiver located at x. Similarly, we introduce the modified metric

η(x, γ̃, ρ̃) =
1

N

N∑

k=1

e
− 1+γ2

k(x)

ψ(x)+2ρ2(x) I0

(
2γk(x)

ψ(x) + 2ρ2(x)

)
(2.21)

that extends (2.5) by adding the location parameter x. With this extension, η(x,0, 0) denotes

the same metric in the absence of a secondary transmitter.

We will constrain the secondary user to keep (at least) the original coverage area of the

primary system so the licensed service is not compromised. For the sake of simplicity, we will only

consider those points within the coverage zone that are aligned with the primary and secondary

transmitters, and have the two transmitters at the same side. This is equivalent to assuming

receivers with perfectly pointed antennas with a gain of −∞ dB for all angular directions (except

0◦). Thus, the points that are affected by the secondary user and, therefore, the points we

must take into account in the coverage constraint can be written in polar coordinates as C0 =

{(r, θ) | r ∈ [rs, r0], θ = θ0}, where r0 is the radius of the coverage zone, assumed to be a circle

centered on the primary transmitter, and (rs, θ0) denotes the secondary transmitter location.

This scenario is depicted in Figure 2.6.

Figure 2.6: Coverage diagram. Due to the assumption on the perfect directivity of the antennas,
receiver (1) is affected by the secondary transmitter, but receivers (2) and (3) are not.

Unfortunately, the problem of maximizing the secondary rate subject to a constraint on

the primary coverage area is analytically intractable. However, and in order to show the effects

of having several receivers under very different reception characteristics, we will study first a

simplified two-user scenario, where one of the primary receivers is located near the secondary

transmitter, and the other one far from it. As we will see afterwards, this two-user scenario is

quite a good approximation to the solution to the complete coverage scenario, which has to be

obtained numerically.
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2.5.1 Two different receivers

In the proposed scenario we are likely to find two receivers that are in extremely different

reception situations. For instance, if the secondary transmitter is located far from the coverage

edge and its transmit power is much smaller than that of the primary transmitter, those receivers

in the limit of the coverage zone will have an active CB constraint (η(x,0, 0) = η0), and a value of

P (x)→ 0, whereas the receivers near the secondary transmitter will have a value of P (x)→∞.

We will study this case as a simplification of the general case covering receivers under many

different values of P .

Let us denote as xn the position of the receiver that is near the secondary transmitter

(P (xn)→∞), and as xf the position of the receiver that is far from the secondary transmitter

(P (xf ) → 0). Even for this simple case, the optimum fraction of active carriers for the nearby

receiver is φ = 1, and for the far-off receiver is φ = γ2 (xf ) /4 ≈ 0. For the sake of analytical

tractability, we will restrict our analysis to two-level solutions for the primary power weighting,

i.e., solutions of the form γ̃ = [γ̃11
T
Nφ γ̃21

T
N(1−φ)]

T , with neither γ̃1 nor γ̃2 necessarily zero. In

Appendix 2.C it is shown that a fraction of power

ρ̃2 =
ψ2

0

(
e4/ψ0 − I0

(
4
ψ0

))

e4/ψ0

(
Υ0 (ψ0 − 2)2 + ψ2 + 8

)
− (Υ0 + 1)ψ2

0I0

(
4
ψ0

) (2.22)

can be allocated to the secondary signal in this scenario, with γ̃2 = Υ0ρ̃, γ̃2
1 → ∞ and φ → 0.

As we will see in the following section, this simplified scenario is a good approximation to the

general one, where all the receivers in the coverage zone are taken into account.

2.5.2 Conditions for ρ̃ > 0

Under the diverse reception characteristics present in this problem, it is not trivial to prove if

the optimization problem has a solution with a non-zero power for the secondary user. Here,

we propose two different sufficient conditions and one necessary condition for the attainment

of a value of ρ̃ > 0. We will focus on the case where the receiver with a minimum SNR is

Υmin = Υ0, as Υmin > Υ0 implies that every point in the coverage zone taken into account has

an SNR margin, and, therefore, the insertion of a secondary signal is always possible.

Proposition 2.1 (Sufficient condition 1). If for every point x0 ∈ C0 such that the BER constraint

is active, i.e, η (x0,0, 0) = η0 we have that ψ (x0) > 1, then there exists γ̃, ρ̃ > 0 such that

η (x, γ̃, ρ̃) ≤ η0, ∀x ∈ C0.
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Proof. We will check the local optimality of the point (γ̃, ρ̃) = 0 for all points in the coverage

zone C0. For those points such that η (x, γ̃, ρ̃) < η0, i.e, the BER constraint is not active,

the problem can be (locally) seen as an unconstrained optimization problem9 and, therefore, a

feasible direction with ρ̃ > 0 exists.

For the points where the BER constraint is active, the solution is more involved.

In order to check the local optimality of the point 0, the whole optimization problem has

to be recast because of the lack of regularity of the problem in the point 0. It can be easily seen

that ∇γ̃η(x0,0, 0) = 0, and ∂
∂ρ̃η(x0,0, 0) = 0, so the gradient of the restriction with respect

to the design variables in the point 0 is null and, therefore, no constraint qualification can be

applied such that strong duality holds and the KKT conditions are no longer valid.

The cause of this lack of regularity is the symmetry of the problem around 0; we are

allowing negative values of ρ and γi, but as ρ always appear in the form of ρ2, and γi squared

or multiplying the argument of I0 (·) (which is an even function), the result is not affected. We

can recast the problem with the insertion of the variables γ̂i = γ2
i , ρ̂ = ρ2, with γ̂ = [γ̂0 ... γ̂N−1].

The problem now reads as

minimize −ρ̂
subject to 1

N

∑N−1
k=0 e

− 1+γ̂
ψ+2ρ̂ I0

(
2
√
γ̂

ψ+2ρ̂

)
≤ η0

−ρ̂ ≤ 0

−γ̂ � 0

ρ̂+ 1
N

∑N−1
k=0 γ̂k ≤ P.

If we are in the point γ̂ = 0, ρ̂ = 0, then all constraints are active except the power constraint.

The KKT conditions are




0

.

.

.

0

−1




+
λ1

N




− e
− 1
ψ (ψ−1)
ψ

.

.

.

− e
− 1
ψ (ψ−1)
ψ

2e
− 1
ψ

ψ2




−




λ2,1

.

.

.

λ2,N

λ2,N+1




= 0. (2.23)

where λ1 is the Lagrange multiplier of the BER restriction, and λ2,i are the Lagrange multipliers

of the restrictions on the sign of γ̂i and ρ̂.

9Except in the degenerate case of P = 0, where the power constraint will be active.
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The last equation can be easily solved just by setting

λ1 = N
ψ2 (λ2,N+1 + 1)

2e
− 1
ψ

, (2.24)

which is a positive number.

The other N equations must meet the condition

−N e
− 1
ψ (ψ − 1)

ψ
=
λ2,i

λ1
, (2.25)

so, as λ � 0, if ψ ≥ 1 the left part of the equality is positive and, therefore, the point 0 does not

meet the necessary conditions for optimality, which implies that a value of ρ̃ > 0 is feasible.

This result is similar to the one shown in Appendix 2.A, where it is proved that, when

trying to minimize the primary BER, the point γ = 0 was a local minimum if β = ψ−1 < 1,

and a local maximum if β = ψ−1 > 1. In fact, if ψ < 1, the point 0 is the only feasible point

in its neighborhood, so there is no feasible direction where the objective function decreases (in

fact, there is no feasible direction). If ψ > 1, then any direction with γ̂i > 0 will make the BER

to decrease and, therefore, open a gap for the insertion of the secondary signal.

This proposition states that very robust signaling waveforms (the ones that are able to

provide the target BER with an SNR of less than 3dB) are easily enforced and, therefore, the

insertion of a secondary message is possible. Unfortunately, the studied system (DVB-T with

QPSK and convolutional rate 2/3) requires a SNR of 5.7dB, which is a value of ψ ≈ 0.55.

Even when there is no feasible point in the neighborhood of (ρ,γ) = 0 with ρ > 0, we will

prove that, under some conditions, a value of ρ̃ > 0 can be attained.

Proposition 2.2 (Sufficient condition 2). If for every point x ∈ C0 the relationship between the

received powers from the secondary and primary transmitters is such that P (x) > 4
N , then there

exists γ̃, ρ̃ > 0 such that η (x, γ̃, ρ̃) ≤ η0,∀x ∈ C0

Proof. We will follow the reasoning of proposition 2.1: we will find a point (γ̃, ρ̃) such that

η (x, γ̃, ρ̃) < η0∀x ∈ C0 and 1
N ||γ̃||22 + ρ̃2 < 1 . If this point exists, then the optimization

problem is (locally) equivalent to an unconstrained optimization problem, so a value of ρ̃ > 0 is

attainable.

Let x0 = arg minx∈C {P (x)}. For this point, we will analyze the effect of one carrier in the

global BER. If we want to reduce the BER contribution of the carrier k, the value of the sum
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term with γk must be strictly less than setting γk = 0, this is

e
− 1
ψ(x0) > e

− 1+γ2
k(x0)

ψ(x0) I0

(
2γk(x0)

ψ(x0)

)
, (2.26)

or, equivalently

e
γ2
k(x0)

ψ(x0) > I0

(
2γk(x0)

ψ(x0)

)
. (2.27)

This equation cannot be solved analytically (for values of γk(x0) 6= 0), so we will use the fact

that

ex1 ≥ I0 (x2)∀x1 ≥ x2 ≥ 0 (2.28)

with equality only for x1 = x2 = 0 to give a value of γk(x0) that meets the inequality. If we set

γ2
k(x0)

ψ(x0)
≥ 2γk(x0)

ψ(x0)
=⇒ γk(x0) ≥ 2, (2.29)

then the inequality (2.27) will be met. Note that this result is independent of ψ(x0).

For the other points x 6= x0 in the coverage area, as P (x) ≥ P (x0) ∀x ∈ C0, γk (x) =
P (x)
P (x0)γk (x0) ≥ γk (x0), they will also meet inequality (2.27). Therefore, if P (x0) > 4/N , both

the power and the BER constraint will not be active, so a value of ρ̃ > 0 is attainable.

Note that this result is highly dependent on the number of carriers: if this number is

larger, the quantity of power we can save by nullying all the carriers but one will be larger and,

therefore, the necessary value of P will be smaller. This means that if the number of carriers

is large enough, a value of ρ̃ > 0 can be always achieved without an increment of the available

power.

Lemma 2.1. Let β > 0. Then,

eγ
2
0β > I0 (2βγ0) =⇒ eγ

2β > I0 (2βγ) , 0 < γ0 ≤ γ. (2.30)

Proof. See Appendix 2.D.

Proposition 2.3 (Necessary condition). Let X = {x ∈ C0 |η (x,0, 0) = η0}. If there exists

γ̃, ρ̃ > 0 feasible, then ∀x0 ∈ X , e
NP (x0)
ψ(x0) > I0

(
2
√
NP (x0)/ψ(x0)

)
.

Proof. Let us assume that ∃x0 ∈ C0 such that e
NP (x0)
ψ(x0) ≤ I0

(
2
√
P (x0)/ψ(x0)

)
and γ̃, ρ̃ > 0.
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Then, as η is a strictly monotonic increasing function of ρ̃,

η (x0, γ̃, 0) < η0 = η (x0, 0, 0) , (2.31)

or, equivalently, and dropping the spatial indexing x0

N−1∑

k=0

e
− 1+γ2

k
ψ I0

(
2γk
ψ

)
<

N−1∑

k=0

e
1
ψ , (2.32)

so at least one of the summands of the left part of the equation has to meet inequality (2.27)

e
γ2
k
ψ > I0

(
2γk
ψ

)
. (2.33)

However, using Lemma 2.1,

e
γ2
1
ψ > I0

(
2γ1

ψ

)
=⇒ e

γ2
2
ψ > I0

(
2γ2

ψ

)
∀γ2 ≥ γ1, (2.34)

and, using the fact that ρ̃ > 0 implies that γ2
k < NP∀k,

e
NP
ψ > I0

(
2
√
NP

ψ

)
, (2.35)

which contradicts our assumption.

These two last results show the fact that the insertion of a secondary signal is possible if and

only if the secondary transmitter is able to enforce all the primary receivers with an active BER

constraint by using a fraction of its available power, but not all of it. Therefore, we conclude

that for values of P > 4/N the insertion of the secondary message is always possible and for

values of P < P0/N is impossible, being P0 a nonzero value such that eP0/ψ0 = I0

(
2
√
P0/ψ0

)
.

For the value of ψ0 predicted for the studied system, P0 ≈ 1.67.

2.5.3 Numerical approach and results

The extension of the previous optimization problems to the complete coverage zone implies the

insertion of an infinite number of CB constraints (one for each of the infinite points in the cover-

age zone), so the problem can be seen to be a semi-infinite program (SIP), i.e., an optimization

problem with a finite number of design variables, but an infinite number of constraints. This
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problem is intractable due to the high dimensionality of the problem.10

We can reduce this dimensionality by grouping the N amplitude values γ̃1, ..., γ̃N in M

groups G1, ..., GM , such that the power allocation will be constant in each group, this is, γ̃j =

γ̃k ∀ γ̃j , γ̃k ∈ Gi. Similarly to (2.9), we can rewrite the problem as

minimize −ρ̃
subject to η̃(x, γ̃, ρ̃,φ) ≤ η0 ∀x ∈ C0,

ρ̃2 +
M∑

i=1

γ̃2
i φi ≤ 1

M∑

i=1

φi = 1

φi ≥ 0

(2.36)

where φi is the fraction of carriers in the i-th group, φi = |Gi|
N ≤ 1, |X | denotes the cardinality

of set X , φ = [φ1, ..., φM ] and

η̃(x, γ̃, ρ̃,φ) =
M∑

i=1

φie
− 1+γ2

k(x)

ψ(x)+2ρ2(x) I0

(
2γk(x)

ψ(x) + 2ρ2(x)

)
. (2.37)

In this problem, the number of variables is 2M : the secondary ratio ρ̃, the amplitudes for

the different groups γ̃1, ..., γ̃M and the corresponding fractions of carriers φ1, ..., φM−1. The

remaining fraction can be computed as φM−1 = 1 −∑M−1
i=1 φi. We will also assume that there

is a large enough number of carriers in every group, so 0 ≤ φi ≤ 1, with φi ∈ R.

MATLAB function fseminf was used to obtain the solution of the optimization problem.

This algorithm, of the discretization type [79], is based on a quasi-Newton sequential quadratic

programming (SQP) algorithm applied to a finite number of constraints, as a result of the

discretization of the semi infinite constraint. This optimization method will return a local

minimum, but as the problem is not convex we cannot guarantee global optimality. In order

to overcome this problem, the optimization algorithm was run 2,000 times for each pair of

problem complexity and secondary position (M, rs) with different initial random points, selecting

afterwards the solution that provided the lowest value on the objective function.

Other parameters that describe the scenario (height of transmitters and receivers, transmit

power...) are shown in Table 2.2, with the Okumura-Hata propagation model equations taken

from [80]. In Figure 2.7 the obtained results are compared with those corresponding to a single

10 For instance, this problem for a DVB-T system operating in the 8K-Mode will have 8193 variables, although
this number can be slightly lower if we take into account the guard bands, for example.
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Table 2.2: Parameters of the proposed scenario.

Parameter Value

Height of primary transmitter 324m

EIRP of primary transmitter 70dBm

Position of primary transmitter r=0Km, θ = 0

Height of secondary transmitter 40m

EIRP of secondary transmitter 36dBm

Position of secondary transmitter r = rs (Variable), θ = 0

Height of receivers 30m

Thermal Noise Power -105dBm

Propagation model Modified Okumura-Hata, Urban Model

Discretization step for the SIP solver 200m

primary receiver on the border of the coverage zone (which might be thought to be a worst

case, but as previously seen, the solution is more involved), and the two user scenario previously

described by the numerical evaluation of (2.22).
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Figure 2.7: Fraction of transmit power of the secondary transmitter allocated to the secondary
message as a function of the secondary transmitter position.

It can be seen that the lower values of rs suffer from quite a large degradation with respect

to the single user case, while for higher values this difference does not exist. The cause of this

difference resides in the variability of P among the different receivers: while for low rs values

those receivers near the secondary transmitter have P → ∞ and those near the coverage limit

have P → 0, in the high rs case all the receivers that are affected by the secondary transmitter
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experience relatively high values of P . Not surprisingly, the degradation in the low rs zone is

much more reduced if we compare the actual result with the simplified two-user scenario, as

it is closer to the studied case. These results imply that the insertion of two receivers in very

different situations reduces the power allocated to the secondary message, while incrementing

this number of receivers (even to infinity) does not change the result too much.

For higher values of rs, all the affected receivers have large values of P , so the optimum

fraction of active carriers is one for all of them, and the obtained solution is equivalent to the

worst case single-receiver solution. In this region the proposed approximation with two users is

not realistic, as even the users on the border receive a much higher power contribution from the

secondary transmitter, as previously pointed out.

With respect to the complexity of the problem (the number M of groups), for the lower

values of rs, similarly to the single receiver case, M = 1 results in a null power allocated to

the secondary message, whereas for values of M > 3 no additional gain is attained. Note that

the M = 1 case is equivalent to the transmission without the proposed power weighting in the

frequency domain, which use is shown once again to be mandatory in order to achieve a nonzero

rate for the secondary user. Moreover, the solution M = 2 (which was shown to be optimum

for the single user case) suffers only a slight degradation with respect to M = 3. For higher

values of rs, the solution is to perform a uniform power allocation for the primary message,

so the optimum number of groups is M = 1 and, therefore, further gain is not achieved by

incrementing the order of the problem.

2.6 Bound verification: software and hardware simulations

In the previous sections, the transmit parameters of the secondary system have been designed

according to the BER bound (2.6), due to the impossibility of finding a closed form expression

for the actual BER. The objective of this section is to verify the aforementioned bound, thus

providing an empirical proof of the previous theoretical results.

Computer simulations and hardware measurements were conducted to validate the proposed

power allocation for the secondary transmitter. Hardware tests were performed in order to

check the potential negative effects that the proposed transmission technique could have on the

synchronization and estimation stages of a real receiver. The measurement set-up is described in

Figure 2.811. In Figure 2.9 it can be seen that, although the bound is not remarkably tight, its

11Due to hardware constraints, the power weighting was performed in the time domain, by means of a 32-ray
equivalent baseband channel, where one ray was used to emulate the primary contribution, and the remaining 31
to perform the frequency power weighting. The results were averaged in both cases for 50 different pairs (n0, θ)
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use as a performance metric for the design of the proposed filtering provides a clear improvement

in the primary link quality with respect to the simple transmission of the primary message, and,

therefore, the achievable rate of the secondary system is going to be larger12.

Figure 2.8: Hardware measurements set-up. The OFDM signal was generated with the Dek-
Tec DTU-215 USB-2 VHF/UHF modulator [63], which allows to simulate a 32 rays baseband
equivalent channel (by defining the delay, amplitude and phase of each ray), and the addition
of Gaussian noise. The BER was measured with Rohde & Schwarz ETL TV Analyzer [64], and
captured with MATLAB via the National Instruments (NI) VISA driver. The experiments (CNR,
channel model, number of measurements...) are configured, inserted into a relational database,
and finally executed by the experiment scheduler.

In order to show the usefulness of the proposed filtering when dealing with higher order

constellations, hardware tests were run also for a 64-QAM constellation, with the corresponding

results shown in Figure 2.10. It can be seen that the filtered approach outperforms the non-

filtered transmission in all the scenarios except for the γ = 0.5 one, where some artifacts were

found. These effects are expected to disappear when using higher order transmission filters

or weighting directly in the DFT domain. A similar behavior was obtained for a 16-QAM

constellation, although the results are omitted due to space constraints.

2.7 Conclusions

In this chapter we considered the application of the overlay cognitive radio paradigm to a

broadcast Single Frequency Network. Given the fact that the primary user Quality of Service

is not simply a function of the Signal to Noise Ratio, our approach has taken into account

the possible degradation of the primary service in strong line of sight environments due to

of delay and phase differences between primary and secondary contributions
12As the carrier to noise ratio (CNR) required for a given BER performance is going to be lower for the filtered

transmission, the secondary user is allowed to allocate more power to the secondary message and, therefore,
achieve a larger rate.
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Figure 2.9: Analytical bounds, simulation and hardware (HW) results for multiple CNR and γ
values. DVB-T waveform with Constellation: QPSK, Code Rate: 2/3. The CNR is calculated
prior to the transmission of the secondary user, i.e. β = 1

2Υ = 1
210(CNR+0.33)/10 [65]

the impossibility a of coherent combination of the primary waveforms. Optimum transmission

strategies with respect to analytical BER bounds have been derived and analyzed via software

simulations. The proposed approach was further verified by means of BER measurements in

an actual hardware receiver. These modified transmission schemes were applied in order to

maximize the transmission rate of a secondary user operating at the same frequency and location

as the primary user. The primary QoS is assured by means of a coverage analysis whereby the

BER is restricted to be above a given threshold. Spectrum reuse is successfully achieved without

requiring any modification on the primary users, and with no cooperation with the primary

transmitters.

The content in this chapter is an extended version of a paper published in IEEE Transactions

on Wireless Communications [81] together with Prof. Carlos Mosquera and Prof. Fernando

Perez-Gonzalez. Preliminary versions of the paper were also presented in SPAWC 2012 [82, 83]

and CogArt 2011 [84].
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Figure 2.10: Hardware tests for a 64-QAM 2/3 DVB-T waveform. The proposed method (fil-
tering with φ = γ2/4) is compared with the unfiltered approach (φ = 1) and with the scenario
without the secondary transmitter (γ = 0).

Appendix 2.A Optimality conditions for the optimization prob-

lem

The associated Karush-Kuhn-Tucker (KKT) conditions to problem (2.7) are

2e−βγ
2
k (−βγkI0(2βγk) + βI1(2βγk)) + 2λγk = 0 ∀k, (2.38)

λ

(
N∑

k=1

γ2
k −Nγ2

)
= 0, λ ≥ 0. (2.39)

We will distinguish two cases: 1) when
∑N

k=1 γ
2
k −Nγ2 < 0, so λ is forced to be zero in order to

meet condition (2.39), and 2) when
∑N

k=1 γ
2
k −Nγ2 = 0, so λ is not forced to be zero (we will

refer to the constraint as active in that case).
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Non-active constraint

In this case, we have λ = 0, so the resulting condition is

2e−βγ
2
k (−βγkI0(2βγk) + βI1(2βγk)) = 0 ∀k =⇒ (2.40)

=⇒ γkI0(2βγk) = I1(2βγk) ∀k.

Proposition 2.4. The nontrivial solutions for (2.40) are in the interval
√

β−1
β ≤ γk ≤ 1 for

β > 1. For β ≤ 1, the only solution is γk = 0.

Proof. We will assume γk 6= 0. Using (2.45), we can write I0(2βγk) ≥ 1
βγk

I1(2βγk). Combining

this inequality with (2.40) we obtain I0(2βγk) ≥ 1
β I0(2βγk), so β ≥ 1.

Starting with (2.46), we have that I2
1 (2βγk) > I0(2βγk)I2(2βγk), which together with (2.45)

leads to

γ2
kI

2
0 (2βγk) > I0(2βγk)I2(2βγk). (2.41)

Finally, combining equations (2.45) and (2.40), we have that I2 (2βγk) =
(

1− 1
β

)
I0 (2βγk), so

(2.41) reads as γ2
kI

2
0 (2βγk) >

(
1− 1

β

)
I2

0 (2βγk), or, equivalently γk >
√

β−1
β .

Proposition 2.5. The nontrivial solutions for (2.40) are not local minima of the optimization

problem.

Proof. In order to be a local minimum, the Hessian matrix of the objective function has to be

positive definite. The Hessian is a diagonal matrix with elements

L(γk) = (L(γ))k,k = 2e−βγ
2
k × (2.42)

×
(
−4β2γkI1(2βγk)+ β2I2(2βγk) +

(
2βγ2

k + β − 1
)
I0(2βγk)

)
.

Moreover, we have that

−4βγkI1(2βγk) + βI2(2βγk)+ (2.43)

β
(
2βγ2

k + β − 1
)
I0(2βγk)

(i)
=

(−2βγ2
k − 1 + b)I0(2βγk) + βI0(2βγk)

(ii)
=

(−2βγ2 + 2β − 2)I0(2βγk)

where (i) derives from (2.40) and (ii) from (2.45) and (2.40).
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As all the elements must be positive if γ is a local minimum, and since I0 is strictly positive,

the condition for the minimum is γk <
√

β−1
β , which contradicts proposition 2.4.

Therefore, those points with some γk 6= 0 and inactive power constraint are not local

minimum of the optimization problem.

Active constraint

In this case, we have the following necessary conditions for the point γ to be optimal

−2βγke
−βγ2

kI0(2βγk) + 2βI1(2βγk)e
−βγ2

k + 2λγk = 0 (2.44)

∀i = 1, ..., N, λ ≥ 0.

The condition is met if γ2
k = 0, as I1(0) = 0. If γ2

k 6= 0, we can rewrite (2.44) as λ =

βe−βγ
2
k

(
I0(2βγk)− 1

γk
I1(2βγk)

)
∀ k, so it can be seen that those points of the form γM =

[0N−M k1M ] (or their corresponding permutations) where the power constraint is active are

critical points of the Lagrangian.

As the function λ(γk) = βe−βγ
2
k

(
I0(2βγk)− 1

γk
I1(2βγk)

)
is non-injective, there are some

points γ1 6= γ2 such that λ(γ1) = λ(γ2). However, these points were found to be local maxima

of the objective function by checking the second order necessary conditions for optimality.

Regarding the second order conditions, some of the points under study can be local maxima,

whereas others are local minima. As we are optimizing over the whole set of points, it is expected

that the solution will lead to a global optimum.

2.A.1 Properties of the Bessel functions

Iv(t) = Iv−2(t)− 2(v − 1)

t
Iv−1(t), (2.45)

I2
1 (t) > I2

0 (t)I2
2 (t). (2.46)
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Appendix 2.B Asymptotic optimum value for φ

We start with f(φ) = (1−φ)+φe−βγ
2/φI0(2βγ/

√
φ). In order to find a minimum of this function,

we take its derivative

d
dφ (f(φ)) = e−βγ

2/φ×
×
(
I0(2βγ/

√
φ)
(

1 + βγ2

φ

)
− I1(2βγ/

√
φ) βγ√

φ

)
− 1.

(2.47)

For high SNR, if we use the asymptotic approximation for the Bessel function I0,1(x) ≈ ex√
2πx

,

and make the variable change α = γ√
φ

, after equating (2.47) to zero we have

e2βα

(
1− βα+ βα2

√
4πβα

)
= eβα

2
. (2.48)

For asymptotically large β, the expression between parenthesis can be ignored, so the remaining

expression is e2βα = eβα
2
. Therefore, we have α = 2, which leads to a value of φ = γ2

4 . Note that

this expression is only valid for values of γ < 2. In fact, if γ > 2, the solution of the problem is

to transmit over all carriers with equal power, i.e., φ = 1.

Appendix 2.C Two different receivers

If we constrain the frequency power weighting to have only two different levels, we can write the

Chernoff bound as

η (φ, γ̃1, γ̃2, ρ̃,x) = φe
− 1+γ2

1(x)

ψ(x)+2ρ2(x) I0

(
2γ1 (x)

ψ (x) + 2ρ2 (x)

)
+ (2.49)

(1− φ)e
− 1+γ2

2(x)

ψ(x)+2ρ2(x) I0

(
2γ2 (x)

ψ (x) + 2ρ2 (x)

)
,

where φ ∈ [0, 1] ⊂ R since we are assuming a large enough number of carriers, and γi(x) =√
P (x)γ̃i, ρ(x) =

√
P (x)ρ̃. We will try to find a solution (φ, γ̃1, γ̃2, ρ̃) that fulfills the BER

constraint at both receivers even with the insertion of a secondary signal, i.e., η (φ, γ̃1, γ̃2, ρ̃,x) ≤
η0, ∀x ∈ {xn, xf}. For the nearby receiver, the signal coming from the primary transmitter will

be negligible with respect to the secondary transmission, so we have that

η (φ, γ̃1, γ̃2, ρ̃,xn) = φe
− γ̃2

1
2ρ̃2 + (1− φ)e

− γ̃2
2

2ρ̃2 (2.50)

just by taking the limit P (x)→∞ in (2.49).
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Let us define γ̃m = min {γ̃1, γ̃2}. Then η (φ, γ̃1, γ̃2, ρ̃,xn) < e
− γ̃

2
m

2ρ̃2 , so if we set e
− γ̃

2
m

2ρ̃2 = η0,

then γ̃2
m/ρ̃

2 = Υ0, the CB constraint will be met.

With this restriction, we can write a simplified CB constraint for the distant receiver using13

φ = γ2/4 and γ2 =
√

Υ0ρ, with γ2 = φγ2
1 the total power spent in the carriers with amplitude

γ1 = 2, as

η (γ, ρ,xf ) =
γ2

4
e
− 5
ψ0+2ρ2 I0

(
4

ψ0 + 2ρ2

)
+ (2.51)

(
1− γ2

4

)
e
− 1+Υ0ρ

2

ψ0+2ρ2 I0

(
2ρ
√

Υ0

ψ0 + 2ρ2

)
.

Let us define f (γ, ρ) = η (γ, ρ,xf ) − η0. As P → 0, we have that γ → 0 and ρ → 0, so we can

write f(γ, ρ) = 1
2 [γ ρ]∇2

γ,ρf (0, 0) [γ ρ]T , being ∇2
γ,ρf (0, 0) a diagonal matrix with entries

∂2f

∂γ2
(0, 0) =

1

2
e−5/ψ0

(
I0

(
4

ψ0

)
− e4/ψ0

)
(2.52)

∂2f

∂ρ2
(0, 0) =

(4− 2Υ0(ψ0 − 1))e−1/ψ0

ψ2
0

. (2.53)

The maximum value of ρ will be obtained when the power constraint is met with equality. In

this case γ2 + ρ2 +
(

1− γ2

4

)
Υ0ρ

2 = P , so γ2 =
4((Υ0+1)ρ2−P)

Υ0ρ2−4
≈ P − (Υ0 + 1) ρ2, where the last

approximation holds provided Υ0ρ
2 is small enough with respect to 4. With these expressions,

we get to the desired equation

ρ̃2 =
ρ2

P
=

∂2f
∂γ2 (0, 0)

(Υ0 + 1) ∂
2f
∂γ2 (0, 0)− ∂2f

∂ρ2 (0, 0)
= (2.54)

ψ2
0

(
e4/ψ0 − I0

(
4
ψ0

))

e4/ψ0

(
Υ0 (ψ0 − 2)2 + ψ2

0 + 8
)
− (Υ0 + 1)ψ2

0I0

(
4
ψ0

) .

Appendix 2.D Proof of Lemma 2.1

Firstly, we will prove a proposition that will be used later.

Proposition 2.6. Let β > 0, β ∈ R, K ∈ Z. If βK

K! < 1, then βK+∆

(K+∆)! < 1, ∀∆ ∈ N

13With this simplification, γ1 = 2, and as γ2 ≈ 0, γm = γ2. In the following, we will omit the position indexing
(x), as we are only taking into account the far-off receiver.
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Proof. The proof is quite straightforward. If we prove that βK

K! < 1 =⇒ βK+1

(K+1)! < 1 the

proposition is proved by induction.

First, we characterize a property of K

βK < K! < KK =⇒ β < K, (2.55)

so
βK+1

(K + 1)!
=

β

K + 1

βK

K!
<

β

K + 1
< 1 (2.56)

Proof of Lemma. We aim to prove that

eγ
2
0β > I0 (2βγ0) =⇒ eγ

2β > I0 (2βγ) , 0 < γ0 ≤ γ (2.57)

Let us define

F (γ) = eβγ
2 − I0 (2βγ) . (2.58)

We will prove that F (γ) > 0 =⇒ F ′ (γ) > 0, which is a sufficient condition for (2.57). We will

use the series expansion of both the exponential and Bessel function [85]

ex =

∞∑

K=0

xK

K!
(2.59)

I0 (x) =
∞∑

K=0

(
1
4x

2
)K

(K!)2
, (2.60)

so we can write (2.58) as

F (γ) =

∞∑

K=0

γ2K

(
βK

K!

(
1− βK

K!

))
=

∞∑

K=0

γ2KbK , (2.61)

with bK = βK

K!

(
1− βK

K!

)
, and its derivative as

F ′ (γ) =
∞∑

K=0

2K

γ
γ2K

(
βK

K!

(
1− βK

K!

))
. (2.62)
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Using proposition 2.6 we can write

F (γ) =

K0∑

K=0

γ2KbK +
∞∑

K=K0+1

γ2KbK , (2.63)

where bK ≤ 0 ∀K ≤ K0 and bK ≥ 0 ∀K > K0. Therefore, if F (γ) > 0,

F ′ (γ) =

K0∑

K=0

2K

γ
γ2KbK +

∞∑

K=K0+1

2K

γ
γ2KbK (2.64)

>

K0∑

K=0

2K0

γ
γ2KbK +

∞∑

K=K0+1

2(K0 + 1)

γ
γ2KbK

>
2K0

γ




K0∑

K=0

γ2KbK +

∞∑

K=K0+1

γ2KbK


 =

2K0

γ
F (γ) > 0
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3.1 Introduction

In the previous chapter we investigated the insertion of a secondary transmitter in a multicarrier

broadcast network modeling the propagation channel from each both primary and secondary

transmitters as frequency flat. One of the main results was the fact that the insertion of a

cooperative secondary transmitter (i.e., a transmitter that is not transmitting the secondary

message) might not increase the performance of primary receivers. In this chapter we extend

this result to include general Rician channels in different signal to noise ratio (SNR) regimes.

The additive white Gaussian noise (AWGN) (treated in Chapter 2) and Rayleigh channels are

obtained as special cases of the Rice fading channel.

In this chapter we focus on the effect of inserting a secondary transmitter conveying the

same information as the primary one. The results on this chapter can be extended to include a

secondary message, just like in Chapter 2, but also used on its own to calculate performance and

coverage of single frequency network (SFN) deployments. For example, it is usually assumed

that SFN offers a performance gain due to the reception of signal from two or more transmitters

[18, 86]. In this chapter, we show that this power gain does not always translate directly into

a performance gain due to the presence of SFN echoes. We quantify the effect of the artificial

multipath by the use of effective SNR metrics, as well as two different methods to overcome this

degradation, namely the use of space-time codes, and the use of a transmit filter like the one in

Chapter 2.

The remaining of the chapter is structured as follows: Section 3.2 describes the system

model; Section 3.3, 3.4 and 3.5 analyze the AWGN, Rayleigh and Rice channels, respectively;

we analyze AWGN and Rayleigh channels separately from Rice, although the two former can be

obtained from the latter; Section 3.6 introduces a general result for fading channels in high and

low SNR regimes; Section 3.7 and 3.8 present two techniques to improve the SFN performance:

the use of Alamouti space time codes, and the use of a filter at the secondary transmitter,

similarly to Chapter 2; Section 3.9 presents the numerical results; Section 3.10 concludes the

chapter.

3.2 System model

Throughout the chapter, we will compare a scenario with a single transmitter (the only-primary

scenario) with an SFN operation comprising the presence of another transmitter (the secondary

transmitter). The system under study uses orthogonal frequency division multiplexing (OFDM)

for data transmission. We will assume perfect synchronization, perfect channel estimation, and
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an overall channel length shorter than the cyclic prefix (CP) length. Therefore, the received

baseband signal after CP removal can be written as

yn = (hn + gn)~ xn + wn (3.1)

where hn denotes the channel from the original transmitter, gn the channel from the secondary

transmitter, xn is the (normalized) time-domain signal, wn ∼ CN
(
0, σ2

)
, and ~ denotes the

circular convolution operator. Therefore, in the Discrete Fourier Transform (DFT) domain,

(3.1) reads as

Yk = (Hk +Gk)Xk +Wk (3.2)

with Hk, Gk, Xk and Wk the N points discrete Fourier transform (DFT) of hn, gn, xn and wn.

The average SNR metric (ASM) of the complete system (3.2) is

γ̄S ,
1

N

N∑

k=1

|Hk +Gk|2
σ2

≈ 1

N

N∑

k=1

|Hk|2 + |Gk|2
σ2

(3.3)

where the approximation holds if both Hk and Gk are independently drawn from a zero mean

probability distribution1, so E {HkGk} = 0. In the same way, the ASM in absence of the

secondary transmitter is

γ̄0 ,
1

N

N∑

k=1

|Hk|2
σ2

, (3.4)

so the SFN gain (we will call it average SFN gain (ASG)) can be defined as

∆γ̄ ,
γ̄S
γ̄0
≈ 1 +

∑N
k=1 |Hk|2∑N
k=1 |Gk|2

, (3.5)

so we have that ∆γ̄ ≥ 1, leading to a positive ASG (in dB). This is the usual approximation

when calculating the SFN gain [86].

The performance of multicarrier systems, however, is not just a direct function of the ASM,

but also of the distribution of the SNR on the different carriers. Effective SNR metrics (ESM)

have been developed [39,40] with the purpose of predicting the performance (in terms of packet

error rate - PER, or frame error rate - FER) of a multicarrier system in the presence of a

frequency selective channel. The effective SNR γ̂ can be written as a function of the SNR of the

1This is a good approximation even in the case of systems working with a strong line of sight, as a uniform
phase term in the signal received from one of the transmitters makes the resulting ASM to follow (3.3).
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N carriers (γi, i = 1, ..., N) as

γ̂ , Φ−1

(
1

N

N∑

k=1

Φ (γk)

)
(3.6)

with

γk =
|Hk +Gk|2

σ2
(3.7)

where the function Φ is chosen as a concave increasing function, or convex decreasing function.

In particular, the mutual information ESM (MIESM) has been found to be of special interest

because of its accuracy in predicting the PER [41]. The function Φ associated to the MIESM2,

taken from [73], is

Φ (γ) =
1

M log2M

M∑

m=1

EU

[
log2

(
M∑

k=1

e
− |Xm−Xk+U|−|U|2

1/γ

)]
(3.8)

where U ∼ CN (0, 1/γ), and Xm, m = 1, ..., M are the complex constellation points. (3.8) can

be approximated as [41]

Φ (γ) =
L∑

l=1

φle
−βlγ (3.9)

where
∑L

l=1 φl = 1, and φl ≥ 0 and βl ≥ 0 are parameters that have to be properly chosen in

order to fit the actual value of (3.8).

Following this ESM approach, we define the effective SFN gain (ESG) as

∆γ̂ ,
γ̂S
γ̂0
, (3.10)

with

γ̂S , Φ−1

(
1

N

N∑

k=1

Φ

(
|Hk +Gk|2

σ2

))
(3.11)

and

γ̂0 , Φ−1

(
1

N

N∑

k=1

Φ

(
|Hk|2
σ2

))
. (3.12)

As ESM are good PER predictors, those scenarios with ∆γ̂ > 1 will benefit from the insertion of

a secondary transmitter, whereas those with ∆γ̂ < 1 offer a worse performance than the single

transmitter case. In the remaining of the chapter, we will calculate the ESG for different channel

2For the sake of simplicity, (3.8) is different (in a constant term) from the original expression in [73], but the
overall ESM is the same.
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models.

3.3 AWGN channel

In the AWGN case, we can set Hk = 1, k = 1, ..., N , and

Gk = αe−j(θ+2πn0
k
N ) (3.13)

where α accounts for the different amplitude of Gk, n0 accounts for the delay between the two

contributions, and θ is the difference between phases.

Since Hk = 1, we have

γ̂0 = γ̄0 =
1

σ2
. (3.14)

The calculation of γ̂S is more involved. First, note that

|Hk +Gk|2 = 1 + α2 + 2α cos

(
θ + 2πn0

k

N

)
, (3.15)

so in the degenerate case of n0 = 0, θ = 0 we have |Hk +Gk|2 = (1+α)2 ∀ k, and if n0 = 0, θ = π,

|Hk +Gk|2 = (1 − α)2 ∀ k. However, for usual values of n0, the N different arguments of the

cosine

θ + 2πn0
k

N
, k = 1 . . . , N, (3.16)

will conform an approximately uniform sampling of the interval (0, 2π], so we can write for a

sufficiently large number of carriers

Φ (γ̂S) =
1

N

N∑

k=1

Φ

(
|Hk +Gk|2

σ2

)
≈ Ea

[
Φ

(
1 + α2 + 2α cos (a)

σ2

)]
(3.17)

with a ∼ U (0, 2π]. Substituting (3.9) in (3.17) we arrive to

Φ (γ̂S) =
1

2π

∫ 2π

0

L∑

l=1

φle
−βl(1+α2+2α cos(a))/σ2

da = (3.18)

L∑

l=1

φle
−βl(1+α2)/σ2

I0

(
2βlα

σ2

)

with I0 (·) the zeroth order modified Bessel function of the first kind.
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In order to gain insight on the implications of (3.18), we will focus on the case3 with L = 1

(or, equivalently, the exponential ESM - EESM [40]), so

Φ−1(x) = − 1

β
log (x) (3.19)

where we denote β , β1 for the sake of simplicity. Note that φ1 = 1, so a simple form for γ̂S is

obtained by applying (3.19) to (3.18)

γ̂S = − 1

β
log

(
e−β(1+α2)/σ2

I0

(
2βα

σ2

))
=

1 + α2

σ2
− 1

β
log

(
I0

(
2βα

σ2

))
. (3.20)

The ESG for the AWGN channel is readily obtained by dividing (3.20) by (3.14):

∆γ̂ = 1 + α2 − σ2

β
log

(
I0

(
2βα

σ2

))
. (3.21)

This expression has two clearly differentiated components:

• The term 1 + α2 = ∆γ̄ represents the average power gain due to the two different compo-

nents.

• The term σ2

β log
(
I0

(
2βα
σ2

))
represents the degradation caused by the transformation of a

flat fading channel into a multipath one.

Therefore, the ESG will be positive (in dB) if

eCα
2
> I0 (2Cα) (3.22)

with C = β
σ2 . Although the actual value of the ESG has to be computed numerically, we will

analyze the asymptotic ESG in the low and high SNR regimes.

3.3.1 High SNR

In the high SNR regime, we can approximate [85]

I0 (x) =
1√
2πx

ex, (3.23)

3Unfortunately, we are not able to provide closed form expressions for L > 1 due to the impossibility of
obtaining a closed form inverse function for (3.9).
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so the limit ESM reads as

lim
σ2→0

∆γ̂ = lim
σ2→0

1 + α2 − 2α+
σ2

2β
log

(
2π

2βα

σ2

)
= (1− α)2. (3.24)

In this case, values of α < 2 will lead to a lower ESM value, with two transmitters performing

worse than just a single one. Note that, in this high SNR case, the performance is always

decreased with respect to having only the transmitter from which more power is received (a

scenario with α = 2, for example, can be transformed into a scenario with α = 1/2 just by

changing the roles of primary and secondary transmitters).

3.3.2 Low SNR

In this case, we can approximate for x ≈ 0 [85]

I0(x) = 1 +
1

4
x2 (3.25)

and

log(1 + x) = x, (3.26)

leading to

lim
σ2→∞

∆γ̂ = lim
σ2→∞

1 + α2 − σ2

4β

(
2βα

σ2

)2

= 1 + α2 = ∆γ̄, (3.27)

so in the low SNR regime the power gain is much more important than the channel degradation,

and the ESG is always positive.

This difference can be contrasted by the propositions in Section 3.6, where it is shown that

for low SNR, the EESM tends to the average SNR, and for high SNR, the EESM tends to the

minimum SNR.
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3.4 Rayleigh channel

In the case of a Rayleigh channel, we have Hk ∼ CN
(
0, σ2

h

)
, Gk ∼ CN

(
0, σ2

g

)
. We obtain now

the ESM for a generic Rayleigh channel Fk ∼ CN
(

0, σ2
f

)
. We have that

Φ (γ̂) =
1

N

N∑

k=1

Φ

( |Fk|2
σ2

)
≈ EFk

[
Φ

( |Fk|2
σ2

)]
= (3.28)

EFk

[
L∑

l=1

φle
−βl

|Fk|
2

σ2

]

where the approximation holds for a sufficiently large number of carriers. We can write |Fk|2 =
σ2
f

2 X, with X ∼ χ2
2, so

Φ (γ̂) =

L∑

l=1

φl

∫ +∞

0

1

2
e−

x
2 e−

βlσ
2
f x

2σ2 dx (3.29)

=
L∑

l=1

φl
1

1 + βlσ
2
f/σ

2
=

L∑

l=1

φl
1

1 + βlγ̄

as the average SNR reads as

γ̄ =
1

N

N∑

k=1

|Fk|2
σ2
≈
σ2
f

σ2
(3.30)

for large N . Therefore, as Hk +Gk ∼ CN
(
0, σ2

h + σ2
g

)
, we have for the EESM metric

∆γ̂ =
log
(

1 + β
σ2
g+σ2

h

σ2

)

log
(

1 + β
σ2
h
σ2

) =
log (1 + βγ̄S)

log (1 + βγ̄0)
. (3.31)

In this case, as the Rayleigh channel can be thought to be the sum of infinite multipath compo-

nents, the insertion of the secondary transmitter does not cause the channel degradation as in

the AWGN case, so the power gain always provides ∆γ̂ > 1.

3.5 Rician channel

In the Rice case, both channels have a line of sight (LOS) and a non line of sight (NLOS)

component.

First, we will study the single transmitter case, with Hk ∼ CN
(
µh, σ

2
h

)
. Under the suffi-



3.5 Rician channel 61

ciently large number of carriers assumption, we have that

Φ (γ̂0) =
1

N

N∑

k=1

Φ

( |Hk|2
σ2

)
≈ Ex

[
Φ

(
x2

σ2

)]
(3.32)

where x is Rician distributed with parameters ν = |µh| and σ2
x = σ2

h/2. Therefore, we can write

Φ (γ̂0) =

∫ ∞

0

L∑

l=1

φle
−βlx

2

σ2 fx (x) dx

=
L∑

l=1

φl

∫ ∞

0
e−

βlx
2

σ2
x

σ2
x

e
−x

2+ν2

2σ2
x I0

(
xν

σ2
x

)
dx (3.33)

=

L∑

l=1

φle
− ν2

2σ2
x

1

σ2
x

∫ ∞

0
xe
−x

2

2

(
2βl
σ2 + 1

σ2
x

)
I0

(
xν

σ2
x

)
dx.

Now, if we denote pl =
√

2βl
σ2 + 1

σ2
x
, a = ν

σ2
x
, we can follow [87] and write

∫ ∞

0
xe−p

2
l x

2/2I0 (ax) dx =
1

p2
l

e
a2

2p2
l Q (a/pl, 0) =

1

p2
l

e
a2

2p2
l (3.34)

with Q(x, 0) = 0 ∀x the Marcum Q-function, so (3.33) can be written as

Φ (γ̂0) =

L∑

l=1

φl
1

σ2
xp

2
l

exp

(
− ν2

2σ2
x

(
1− 1

σ2
xp

2
l

))
, (3.35)

or, as

σ2
xp

2
l =

2βlσ
2
x

σ2
+ 1 (3.36)

we have that

Φ (γ̂0) =

L∑

l=1

φl
1

2βlσ2
x

σ2 + 1
exp

(
− ν2

2σ2
x

(
1− 1

2βlσ2
x

σ2 + 1

))
, (3.37)

or, equivalently

Φ (γ̂0) =

L∑

l=1

φl
σ2

βlσ
2
h + σ2

exp

(
− ν2βl
βlσ

2
h + σ2

)
. (3.38)

Note that if we force ν = 0 in (3.38), we arrive to the expression for the Rayleigh channel,

3.29), and if we force σ2
h = 0, we arrive to the expression for the AWGN channel (3.14). Like

in the previous cases, we will obtain a closed form expression for the EESM, in order to gain
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insight on the problem. In this case

γ̂0 = − 1

β
log

(
σ2

βσ2
h + σ2

exp

(
− ν2β

βσ2
h + σ2

))
(3.39)

=
ν2

βσ2
h + σ2

+
1

β
log

(
1 + β

σ2
h

σ2

)
.

Now, if we define γ̄N ,
σ2
h
σ2 the average SNR due to the multipath component, and γ̄L , ν2

σ2 the

average SNR caused by the direct component, we can write

γ̂0 =
γ̄L

βγ̄N + 1
+

1

β
log (1 + βγ̄N ) , (3.40)

so we can find two different contributions to the ESM

• The LOS component γ̄L
βγ̄N+1 is similar to the one in AWGN, but in this case the NLOS

contribution acts as an additional noise source (it could be thought as a self-interference

term).

• The NLOS component 1
β log (1 + βγ̄N ) is the same as in the Rayleigh case.

At this point, it is not clear what the effect of γ̄N is in the performance of the system. The

LOS contribution to (3.40) decreases with γ̄N , but the logarithmic term increases with γ̄N . The

question is equivalent to determining whether a system with direct and multipath components

performs better than a system with only a direct component. In the following, we analyze this

effect in the high and low SNR regimes.

3.5.1 NLOS effect in low SNR

We will write γ̄N = sγ̃N , γ̄L = sγ̃L, and calculate the ESM gain with respect to an AWGN

channel with only the LOS component. In this case

∆γ̂ = lim
s→0

sγ̃L
βsγ̃N+1 + 1

β log (1 + βsγ̃N )

sγ̃L
(3.41)

= lim
s→0

1

βsγ̃N + 1
+

1

βsγ̃L
log (1 + βs̄γ̃N )

= 1 +
γ̃N
γ̃L

= 1 +
γ̄N
γ̄L

= ∆γ̄

so in the low SNR regime, once again, we verify that the power gain is much more important

than the channel degradation.
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3.5.2 NLOS effect in high SNR

Following the same approach as in the low SNR case,

∆γ̂ = lim
s→∞

sγ̃L
βsγ̃N+1 + 1

β log (1 + βsγ̃N )

sγ̃L
= 0. (3.42)

As in the high SNR regime the ESM γ̂ increases logarithmically while the ASM γ̄ increases

linearly.

Now, we proceed to calculate the ESM in an SFN scenario with two transmitters. In this

case, we have that Hk = CN
(
1, σ2

h

)
and Gk = CN

(
αe−j(θ+2πn0

k
N ), σ2

g

)
. Like in the AWGN

case, we will assume that the phase term in Gk conforms an approximately uniform sampling of

the interval [0, 2π), so we have a ∼ U [0, 2π), and, therefore, the distribution of Zk = Gk + Hk

conditioned on a is Zk = CN
(
1 + αe−ja, σ2

g + σ2
h

)
. With this, we can approximate

Φ (γ̂S) =
1

N

N∑

k=1

Φ

( |Zk|2
σ2

)
≈ EZ

[ |Z2|
σ2

]
. (3.43)

We will solve the expectation by conditioning on a

Φ (γ̂S) =

∫ 2π

0
EZ|a

[ |Z2|
σ2

∣∣∣∣ a
]
fa(a)da. (3.44)

Now, note that EZ|a
{
|Z2|
σ2

∣∣∣ a
}

is a particular case of (3.32), so a closed form expression follows

(3.38) with ν = |1 +αe−ja| and the variance of the NLOS component is σ2
z = σ2

g + σ2
h instead of

σ2
h. Therefore Φ (γ̂S) can be obtained by just averaging over a as

Φ (γ̂S) =
1

2π

∫ 2π

0

L∑

l=1

φl
σ2

βlσ2
z + σ2

exp

(
− ν2βl
βlσ2

z + σ2

)
da (3.45)

=

L∑

l=1

φl
σ2

βlσ2
z + σ2

exp

(
−βl

(
1 + α2

)

βlσ2
z + σ2

)
1

2π

∫ 2π

0
exp

(
−2αβl cos (a)

βlσ2
z + σ2

)
da

=
L∑

l=1

φl
σ2

βlσ2
z + σ2

exp

(
−βl(1 + α2)

βlσ2
z + σ2

)
I0

(
2βlα

βlσ2
z + σ2

)
.

Finally, γ̂S for L = 1 can be written as

γ̂S =
1

β
log

(
1 + β

σ2
z

σ2

)
+

1 + α2

βσ2
z + σ2

− 1

β
log

(
I0

(
2βα

βσ2
z + σ2

))
(3.47)
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which has three different terms:

• 1
β log

(
1 + β σ

2
z
σ2

)
reflects the ESM gain due to the NLOS component.

• 1+α2

βσ2
z+σ2 includes the power gain (1 + α2) due to the insertion of LOS component coming

from the secondary transmitter, and includes the channel degradation due to the presence

of an NLOS component of power σ2
z .

• 1
β log

(
I0

(
2βα

βσ2
z+σ2

))
reflects the channel degradation due to the LOS component of the

secondary transmitter.

Finally, if we assume the same power ratio between the LOS and NLOS components in both

transmitters (theK Rician factor), soHk ∼ CN
(
1,K−1

)
andGk ∼ CN

(
αe−j(θ+2πn0

k
N ), α2K−1

)
,

then the ESG can be written as

∆γ̂ =

1
β log

(
1 + β 1+α2

Kσ2

)
+ 1+α2

β 1+α2

K
+σ2
− 1

β log

(
I0

(
2βα

β 1+α2

K
+σ2

))

1
βK̄−1+σ2 + 1

β log
(

1 + βK
−1

σ2

) . (3.48)

3.6 Effect of SNR regime for general frequency selective chan-

nels

From the previous sections we can extract that in the low SNR regime the SFN gain is always

greater than zero, while in the high SNR regime the results depend on the underlying channel

structure. In this section, we present a general result that explains the behavior of a family of

ESMs (including the EESM) for general frequency selective channels in high and low SNR: for

low SNR values, the EESM tends to the average SNR, while for high SNR values it tends to the

minimum SNR.

Proposition 3.1. Let

γ̂ = Φ−1

(
1

N

N∑

k=1

Φ (γk)

)
(3.49)

be an ESM with the following properties:

∂Φ (γ)

∂γ

∣∣∣∣
γ=0

6= 0 (3.50)
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lim
t→∞

Φ (t (x+ ε))

Φ (tx)
= 0 ∀ε > 0. (3.51)

lim
t→0

Φ−1 (at)

Φ−1 (t)
= 1 ∀a > 0. (3.52)

Then,

• if γk → 0 ∀γk then γ̂
γ̄ = 1, with γ̄ , 1

N

∑N
k=1 γk

• if γk → +∞ ∀γk then γ̂
γmin

= 1, with γmin , mink {γk}.

Proof. The proof for the low SNR case is straightforward, and follows after applying a Taylor

expansion of the ESM (3.49) around 0 and using property (3.50). We can study the high SNR

case by writing γk , tγ̃k, γmin , tγ̃min and making t tend to infinity, so

lim
t→∞

γ̂

γmin
= lim

t→∞

Φ−1

(
1

N

N∑

k=1

Φ (tγ̃k)

)

tγ̃min
(3.53)

= lim
t→∞

Φ−1

(
Φ (tγ̃min)

1

N

N∑

k=1

Φ (tγ̃k)

Φ (tγ̃min)

)

tγ̃min

(i)
= lim

t→∞

Φ−1
(

1
NΦ (tγ̃min)

)

Φ−1 (Φ (tγ̃min))

(ii)
= 1

where (i) is due to (3.51) and (ii) is due to (3.52).

3.7 Alamouti preprocessing

The use of Alamouti space time codes (STC) in multiple input single output (MISO) processing

[88] can be used to overcome the channel degradation problem. With this kind of precoding,

present in state of the art standards like DVB-T2 [69], the secondary transmitter does not convey

the same message as the primary one, but a slightly modified constellation point.

After the processing performed at the receiver, which requires to estimate the channel from

both transmitters separately, the resulting SNR at the k-th carrier is

γk =
|Hk|2 + |Gk|2

σ2
. (3.54)



66 Chapter 3. Broadcast Networks with Multiple Transmitters: Extension of Performance Results to NLOS Scenarios

Note that the two channel contributions are added after the modulus squared operation, as

opposed to (3.7). This preprocessing ensures that the SNR at each carrier is greater than or

equal to that in absence of the secondary transmitter, so a positive ESG is always attained.

Now, we derive the expression for the ESM (3.6) in the Rician scenario with primary and

secondary transmiters (for the primary-only scenario, the ESM follows (3.45)). By combining

(3.6) and (3.54) we have that

γ̂S = Φ−1

(
1

N

N∑

k=1

Φ

(
|Hk|2 + |Gk|2

σ2

))
(3.55)

so, if we assume a sufficiently large number of carriers, we can write

Φ (γ̂S) = EH,G
[
Φ

( |H|2 + |G|2
σ2

)]
(3.56)

with H ∼ CN
(
1, σ2

h

)
and G ∼ CN

(
α, σ2

g

)
. Substituting Φ by its approximation (3.9) we arrive

to

Φ (γ̂S) =

L∑

l=1

φlEH,G
[
e−βl|Hk|

2

e−βl|Gk|
2
]

(3.57)

=
L∑

l=1

φlEH
[
e−βl|Hk|

2
]
EG

[
e−βl|Gk|

2
]

since H and G are assumed to be independent. The two expected values in (3.57) can be solved

following the same procedure as in (3.32) to obtain

Φ (γ̂S) =

L∑

l=1

φl
σ2

βlσ
2
h + σ2

exp

(
− βl
βlσ

2
h + σ2

)
× (3.58)

× σ2

βlσ2
g + σ2

exp

(
− βlα

2

βlσ2
g + σ2

)
.

If we set L = 1 a closed form expression for γH can be found as

γ̂S =
1

β
log

(
1 + β

σ2
h

σ2

)
+

1

βσ2
h + σ2

+ (3.59)

+
α2

βσ2
g + σ2

+
1

β
log

(
1 + β

σ2
g

σ2

)

= γ̂0 + γ̂T
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with

γ̂T , Φ−1

(
1

N

N∑

k=1

Φ

(
|Gk|2
σ2

))
(3.60)

the ESM of an only-secondary scenario. It is clear that. since

∆γ̂ = 1 +
γ̂T
γ̂0
≥ 1. (3.61)

the system performance is always improved.

Although it can seem that this distributed MISO processing clearly solves the channel

degradation problem, it presents some serious drawbacks:

• Standard dependency Receivers have to be designed to be able to perform the necessary

processing in order to properly obtain the transmitted symbols, thus requiring that the

standard they are based on includes Alamouti STC as an option. If this is not the case,

the standard should be updated to include it, which is usually undesirable. For example,

DVB-SH does not support this kind of MISO processing.

• Increased overhead As the receiver has to estimate the channels with both the primary

and secondary transmitters, the pilot density has to be doubled with respect to the SISO

operation, which significantly increases the signaling overhead.

• Increased complexity The receiver has to include additional hardware, mainly the pres-

ence of additional multipliers for the Alamouti processing, and the duplication of the

channel estimation stage.

• Extension to more transmitters The extension of the Alamouti STC (which is a full-

diversity rate-one STC) to more than two transmitters (or transmit antennas) is not possi-

ble without a rate loss [89]. Moreover, the pilot density should be increased proportionally

to the number of transmitters, which is not scalable in practice.

In the next section we introduce an alternative method to avoid the channel degradation

problem that, despite not achieving the same gain as the Alamouti preprocessing, does not

present the previous drawbacks.

3.8 Pre-filtering

In this section we will explain how an appropriate filtering at the secondary transmitter can

improve the performance of the system and avoid the channel degradation problem. This is
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the approach presented in Chapter 2 to introduce a secondary signal. We will illustrate the

usefulness of this filtering for the AWGN channel, although simulations will be performed for

general Rician channels.

If we assume an uniform phase distribution, we can write

Tk , |Hk +Gk|2 = 1 + α2 + 2α cos (ak) (3.62)

with ak ∼ U (0, 2π] independent and identically distributed. Note that the channel degradation

problem is caused by some of the Tk suffering a destructive interference so Tk < 1 = |Hk|2. In

fact, the values of Tk are contained in the interval
[
(1− α)2, (1 + α)2

]
, so Tk > 1 = |Hk|2 ∀K,

i.e., an SNR gain in every carrier can be assured if α ≥ 2. Unfortunately, the parameter α

cannot be modified by the secondary transmitter, as it would require to increase the transmit

power or change the secondary location, which is usually not possible.

However, if α < 2, the secondary transmitter could perform a filtering in the time domain

(or, alternatively, a power weighting in the DFT domain) so the power is concentrated in a

fraction of carriers. If we denote by Fk the DFT response of the filter, the channel model (3.2)

reads for the k-th carrier as

Yk = (Hk +GkFk)Xk +Wk =
(
1 + ejakαFk

)
Xk +Wk. (3.63)

We will consider the following structure for the filter Fk:

• A fraction 1− α2

4 of the carriers will be weighted with Fk = 0. As the ESM does not depend

on the particular position of this carriers, we will assume, without loss of generality, that

the first N
(
1− 4

α2

)
carriers are nulled by the transmit filter Fk. Obviously, the power

spent on these carriers is zero, and Tk = |Hk|2 = 1.

• The remaining carriers (this is, a fraction ϕ , α2

4 of them) are weighted with Fk = 2
α . The

average power consumption of this group of carriers is 4
α2 , and we have that

Tk = |1 + 2ejak |2 ≥ 1 = |Hk|2. (3.64)

Note that with this approach we assure that no carrier suffers a power loss (Tk ≥ 1∀ k),

and the transmit power is not increased, as

1

N

N∑

k=1

|Fk|2 = ϕ
4

α2
= 1, (3.65)
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so the power consumption is the same as in the absence of Fk (or, equivalently, Fk = 1∀ k).

This filter was shown in Chapter 2 to be optimal in the high SNR regime for the AWGN

channel, while for lower SNR values the two-level filter was shown to be optimal, but the optimum

fraction of active carriers is no longer α2

4 and has to be computed numerically.

Now, we proceed to calculate the ESM of a system where the secondary transmitter uses

this kind of filtering. Similarly to (3.32), we have

γ̂S = Φ−1

(
1

N

N∑

k=1

Φ

(
|Hk + FkGk|2

σ2

))
(3.66)

= Φ−1


 1

N



Nϕ∑

k=1

Φ

(∣∣1 + 2ejak
∣∣2

σ2

)
+

N∑

Nϕ+1

Φ

(
1

σ2

)


 .

Once again, if we assume a sufficiently large number of carriers4, we can approximate (3.66) by

Φ (γ̂S) ≈ (1− ϕ)

L∑

l=1

φle
− βl
σ2 + ϕ

L∑

l=1

φlEa

{
e−

βl(1+2eja)
σ2

}
(3.67)

=
L∑

l=1

φl exp

(
− βl
σ2

)(
(1− ϕ) + ϕ exp

(
−4βl
σ2

)
I0

(
4βl
σ2

))
.

Note that in the only-primary scenario we have

Φ (γ̂0) =

L∑

l=1

φl exp

(
− βl
σ2

)
, (3.68)

and since ex ≥ I0(x) [85],

(1− ϕ) + ϕ exp

(
−4βl
σ2

)
I0

(
4βl
σ2

)
≤ 1, (3.69)

we have that γ̂S ≥ γ̂0, as Φ is a monotonic decreasing function.

Like in the previous cases, we will provide a closed-form expression for L = 1. It can be

easily seen that the EESM reads as

γ̂S =
1

σ2
− 1

β
log

(
1− ϕ+ ϕ exp

(
−4βl
σ2

)
I0

(
4βl
σ2

))
(3.70)

4In this case, the sufficiently large approximation must hold not only for the overall system, but also for each
of the two groups of carriers.
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and the ESG is

∆γ̂ = 1− σ2

β
log

(
1− ϕ+ ϕ exp

(
−4βl
σ2

)
I0

(
4βl
σ2

))
(3.71)

which is always greater than or equal to one, since (3.69) holds.

This result for the AWGN channel can be extended to a general Rician channel following
similar steps. The ESM of the two transmitter system follows

γ̂S = − 1

β
log

(
(1− ϕ)

σ2

βσ2
h + σ2

exp

(
− β

βσ2
h + σ2

)
+ ϕ

σ2

βσ2
z + σ2

exp

(
−β

1 + α2

ϕ

βσ2
z + σ2

)
I0

(
2β
(
α/
√
ϕ
)

βσ2
z + σ2

))
(3.72)

while the ESG assuming the same Rician K factor from both transmitter is

∆γ̂ =

− 1
β

log

(1− ϕ) σ2

βK−1+σ2 exp

(
− β

βK−1+σ2

)
+ ϕ σ2

βK−1(1+α2/ϕ)+σ2 exp

−β 1+α2

ϕ

βK−1(1+α2
ϕ

)+σ2

 I0
 2β(α/

√
ϕ)

βK−1(1+α2
ϕ

)+σ2


1

βK̄−1+σ2 + 1
β

log
(
1 + βK

−1

σ2

) . (3.73)

These two formulas can be obtained following the same steps that led to (3.45).

This preprocessing offers some clear advantages with respect to the Alamouti preprocessing,

but it also presents some drawbacks:

• The power gain is smaller than the one attained with Alamouti STC.

• The fraction of active carriers ϕ depends on the value of α (the relative amplitude between

the primary and secondary components) and, therefore, on the position of the receiver.

The design of the filter is more involved if several receivers with a huge range of values of

α are present.

3.9 Results

The obtained closed form expressions for the EESM were verified in OFDM channels with a finite

number of carriers, correlated carriers in the frequency domain (as a result of a channel with a

limited length in the time domain) and various values of n0 and θ. Although simulations with

several values of α (the relative amplitude between contributions) and β (the EESM parameter)

were conducted, the provided results are shown for values of α = 1 (same power coming from

both primary and secondary transmitters) and α =
√

1/5, and β = βQPSK ≈ 0.64, which is the

value obtained via mean squared error (MSE) fitting of the MIESM function (3.8) for a QPSK

constellation by the parametrized function (3.9) with L = 1. All the channels were generated in

the time domain with an impulse response of N
4 samples, that would be the case of an OFDM

system working with a 1/4 CP.
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Figure 3.1: Analytical and simulated effective SNR as a function of the initial average SNR in
the presence of one and two transmitters, and different K factors.

In Figure 3.1 the analytical expressions (3.45) and (3.33) are compared with the actual

EESM obtained by simulation5 for different K factors, and in the single transmitter (1 Tx) and

two transmitters (2 Tx) case. In this case, the number of carriers was N = 1024, the selected

value for n0 was of 10 samples, and the phase difference θ = 0, although other simulations were

conducted for non-extreme values of n0 with similar results. It can be seen that the analytical

expressions fit almost perfectly the simulation results. Note that the scenario with a high value

of K and two transmitters, that could seem the most favorable a priori, is indeed the worst case

scenario in the high SNR regime due to the strong impact of channel degradation. Moreover,

it can be seen that the analytical approximation is accurate even in the presence of correlation

among carriers (introduced by the limited length of the channel in the time domain).

In Figure 3.2a a similar simulation is shown, but now with K = 103, N = 128 carriers

and different values of n0 and θ. Recall that the approximation for the computation of the

ESM contribution of the two line of sight components consisted on assuming a uniform phase

distribution, which is not a good approximation in the cases of n0 ≈ 0, as briefly depicted

in Section 3.3. In this case, it can be clearly seen that the analytical approximation is no

longer valid for the case n0 ≈ 0, as it produces a constant positive or negative interference,

depending on the value of θ and, therefore, the relative phase in the different carriers cannot be

approximated by a uniform distribution, as seen in Figure 3.2b. It is also remarkable that the

5Note that the channel is random but the obtained analytical approximations are deterministic, so each point
in the simulations correspond to one different realization of the channels H and G, i.e., no averaging is performed
among different realizations.
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Figure 3.2: Analytical and simulated effective SNR as a function of the initial average SNR in
the presence of one and two transmitters for different delay n0 and phase θ values.

analytical approximation is still quite accurate even for N = 128 carriers (that may contradict

the sufficiently large number of carriers assumption) and a small delay as n0 = 2.3 samples.

In Figure 3.3 we show the evolution of the SFN gain with the average SNR for different

K values. As predicted, in the low SNR regime the gain is positive and equal for all channels,

while for higher SNR values the behavior is highly dependent on the Rician factor: while for low

K values the gain is always positive and rapidly tends to zero, for stronger LOS environments

there is an increasing loss at moderate SNR values. Note that the gain in all Rician channels

tends to zero as the SNR increases due to the fact that, as shown in Section 3.5.2, in the high

SNR regime the ESM increases logarithmically and, therefore, the behavior is similar to that of

a Rayleigh channel.

The contour plot in Figure 3.4 shows the ESG in different multipath (values of K) and

average SNR scenarios, and characterizes the region where a positive gain is attained by the

insertion of the secondary transmitter, i.e., those points where the power gain is more important

than the channel degradation. It can be seen that Rayleigh or low-SNR channels are easily

enforced, but those receivers with large values of bothK and γ̄0 are degraded after the insertion of

the secondary transmitter. These results provide an analytical justification of the measurements

in [90], and predict that the degradation in strong line of sight environments does not happen in

the low SNR regime6. It is also observed that the case with a low power secondary transmitter

6Although in a somehow different scenario, a similar result was obtained in [15] for the cognitive radio channel,
where it was shown that channel state information (CSI) is not that important in the low SNR regime, as long
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has a larger region with negative ESG, but the degradation is smaller in the high SNR - high

K region (observe the numbers in the contour plot in the upper-right part).
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Figure 3.5: Effective SNR as a function of the initial average SNR in the presence of one and
two transmitters for different scenarios.

We focus now on the countermeasures to prevent the channel degradation. We illustrate

first the effect of the different approaches in the resulting channel seen by a given receiver. In

Figure 3.5b we show a plot of the channels obtained with the different approaches in a scenario

with α = 1, i.e., same power coming from the primary and the secondary transmitters, and

K = 25dB. As we are assuming an almost pure LOS scenario, the squared modulus of the

primary and secondary channels is similar for all carriers, and approximately equal to 1 (these

channels are not shown for the sake of clarity). The effects on the channel of the different

preprocessing strategies are:

• With no preprocessing, the channels are directly added in the air with different phases,

thus resulting in a sequence of carriers suffering negative and positive interference. As both

primary and secondary channels are approximately equal to 1, the squared modulus of the

sum channel is concentrated between maxk
{
|Hk +Gk|2

}
≈ 4 and mink

{
|Hk +Gk|2

}
≈ 0.

It is clear that those carriers with |Hk + Gk|2 < 1 will achieve a lower SNR than in the

only-primary scenario, thus potentially harming the performance of the system.

• With the proposed pre-filtering, part of the carriers are nulled at the secondary, so the

resulting channel is equal to that in the only-primary scenario. All the available power is

concentrated in a group of carriers (from k = 769 to k = 1024), being the filter coefficient

as the channels from both transmitters can be considered to be ergodic, which can be seen to be similar to our
uniform phase assumption.



3.9 Results 75

in these carriers set to Fk = 2. Similarly to the non-preprocessing case, the channels are

added prior to the squared-modulus operation, so the resulting channel is concentrated

between maxk
{
|Hk + FkGk|2

}
≈ 9 and mink

{
|Hk + FkGk|2

}
≈ 1. Note that in this case

the minimum value is approximately equal to 1, which was the channel value in the only-

primary scenario, so no carrier suffers an SNR loss (up to the random but weak multipath

component).

• With Alamouti preprocessing, the squared modulus of both channels are added following

(3.54). Therefore, the resulting channel is almost flat (except for the weak multipath

component), and approximately equal to 2, as the result of |Hk|2 + |Gk|2 ≈ 2.

In Figure 3.5a we show the analytical and simulated ESM as a function of the average

SNR γ̄0 for the different approaches. It can be seen that the Alamouti preprocessing clearly

outperforms the other strategies, specially for high SNR, and that the insertion of the secondary

transmitter with no preprocessing leads to a lower ESM than the only-primary scenario (this

implies that the channel degradation is larger than the power gain). For low SNR values the

channel degradation is not that important, and the insertion of a secondary transmitter clearly

increases the performance of the system.

The pre-filtering approach provides a smaller gain than the Alamouti preprocessing, but

can be seen to clearly avoid the channel degradation problem, as the pre-Filtering curve is always

above the No Preprocessing one.
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In Figure 3.6 we present similar results for a scenario with a stronger multipath component
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(K = 5dB). In this case we are representing the ESG ∆γ̂ instead of the ESM γ̂ for different

values of fraction of active carriers ϕ as a function of the average SNR in an only-primary

scenario. It can be seen that the selection of ϕ is quite involved, as it depends on the SNR

working point: for low SNR ϕ = 1 provides a higher gain, for medium SNR (around 5dB) the

curve ϕ = 3/4 is above the others, while for high SNR the best option is ϕ = 1/4. It is also

noticeable that the losses due to the channel degradation are much smaller than the ones shown

in Figure 3.5a: note that for γ̄S = 10dB there is a loss of approximately 0.25dB for the No

Preprocessing curve, while Figure 3.5a shows a loss of approximately 5dB for the same SNR

value.

3.10 Conclusions

In this chapter we derived simple closed form expressions for the SFN gain based on effective

SNR metrics. These expressions are applicable to scenarios with one and two transmitters

in Rician channels, and provides an analytical justification of previous empirical results that

showed a performance degradation due to the presence of SFN echoes. We conclude that this

degradation is specially noticeable in those receivers with both a high SNR and a strong line

of sight reception. We also introduce two possible techniques that can be used to alleviate the

degradation caused by the insertion of a secondary transmitter. These analytical results could

be useful for SFN planning, design of cooperative communications services or cognitive radio

architectures, among others.

This chapter contains the results of two conference papers published in ASMS 2012 [91]

and ISWCS 2013 [92] with Prof. Carlos Mosquera.
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4.1 Introduction

In Chapter 2 we analyzed the insertion of a secondary transmitter in a broadcast network with

dominant line of sight reception, and a secondary receiver that is able to decode the primary

information and, therefore, subtract it from the received signal. In Chapter 3 we extended the

analysis to the case of Rician channels. In this chapter, we extend the analysis of Chapter 2

to the case of secondary receivers that are placed outside the primary user coverage area, so

decoding of the primary message is not possible.

In this chapter we assume that the secondary transmitter is not able to use dirty paper

coding [14], as it would require almost perfect channel state information at the transmitter [70].

However, interference cancellation can be performed at the secondary receiver, provided it is able

to decode the primary message. This approach has been followed in [18] to study a secondary

cellular system located inside the coverage area of a primary broadcast network, so interference

cancellation is always possible. A similar analysis was performed in Chapter 2. In this chapter

we study the case of secondary access in different positions with respect to the coverage zone

of a broadcast network, so interference cancellation is not always possible unless the secondary

transmitter expanded the coverage zone.

We will treat the previous idea by resorting to the concept of different spaces, similarly

to [7]:

• White Spaces The secondary system is far from the primary coverage zone, so its per-

formance is noise or power limited.

• Black Spaces The secondary system is inside the primary coverage zone, so it is able to

decode the primary message and, therefore, cancel the interference.

• Gray Spaces The secondary system is outside the primary coverage zone, but it receives

a considerably large amount of interference (that is not able to decode in principle) from

the primary transmitter. Moreover, the interference caused to the primary system has to

be properly controlled due to the proximity to the coverage zone.

The remaining of the chapter is structured as follows: Section 4.2 introduces the system

model; Section 4.3 presents the coding and decoding strategies for interference cancellation;

Section 4.4 presents the power allocation problem for a single secondary receiver; Section 4.5

extends the previous result to multiple secondary receivers; Section 4.6 presents some comments

on practical impairments; finally, Section 4.7 concludes the chapter.
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4.2 System model

Consider a single primary transmitter (PT) transmitting at a rate Rp using Pp units of power,

which is communicating with Nr primary receivers (PRs).

A secondary transmitter (ST) with a total available power Ps is inserted in the network.

We will assume that the ST has prior knowledge of the primary message, so the total power Ps

has to be shared between the powers γ and ρ, allocated to the primary and secondary messages,

respectively, so γ + ρ ≤ Ps. The knowledge of the primary message can be obtained, for

example, if the primary system operates as a Single Frequency Network (SFN), so the contents

are delivered by a distribution network (DN), and the ST can obtain the primary waveform

just by connecting to this DN [18]. The objective of the ST is to communicate with one or

more secondary receivers (SRs) at the highest possible rate while meeting a set of interference

constraints regarding the correct reception of the primary message at the PRs.

If we denote as hp,i the (complex) channel gain from the PT to the i-th PR, then the

capacity of the associated link, in absence of the ST, can be written as

C0
P,i = C

( |hp,i|2Pp
σ2

)
(4.1)

with σ2 the noise variance, assumed to be constant at all the receivers, and C(x) , log2(1 + x).

After the insertion of the ST, we will assume that the capacity can be expressed as

CP,i = C

( |hp,i|2Pp + |hs,i|2γ
σ2 + |hs,i|2ρ

)
(4.2)

with hs,i the channel gain from the ST to the i-th PR. Note that we are assuming that the primary

signal contributions coming from both primary and secondary transmitters are added, that would

be the case of a cooperative transmission using an Alamouti space time code (STC) [88], for

example. Note that if the PT and ST transmit the same waveform (i.e., without STC) the

channel gain will be of the form |hp,iPp + γhs,i|2, so the interference will be constructive or

destructive depending on the relative phase between channels [15]; in the case of an orthogonal

frequency division multiplexing (OFDM) system, which has to be used in SFNs, this interference

is going to be constructive on some carriers and destructive in others, so an alternative analysis

like the one in Chapters 2-3 should be performed. In any case, we will restrict our analysis

to the use of STC so the powers coming from both primary and secondary transmitter can be

assumed to be added, like in (4.2).

The PT is conveying data at a rate Rp, so the i-th PR is able to decode the primary message
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provided that CP,i ≥ Rp or, equivalently

γ ≥ 1

|hs,i|2
(
Υ0σ

2 − |hp,i|2Pp
)

+ ρΥ0 = ρΥ0 −Mi, i = 1, ..., Nr (4.3)

with Υ0 , 2Rp − 1 the required signal to interference plus noise ratio (SINR) for a correct

reception of the primary message, and Nr the number of secondary receivers. We denoted

Mi ,
1

|hs,i|2
(
|hp,i|2Pp −Υ0σ

2
)
, i = 1, ..., Nr (4.4)

for the sake of clarity. Note that |hs,i|2Mi can be thought to be the power margin of the i-th

PR before the insertion of the ST: Mi > 0 means that the PR lies inside the primary coverage

area, Mi < 0 means that the PR lies outside the coverage area, and the receivers with Mi = 0

are located at the coverage area edge. We consider that the primary service is not compromised

if the Nr linear constraints in (4.3) are met or, equivalently, if the interference constraint is met

in the worst PR case:

γ ≥ max
i=1, ..., Nr

ρΥ0 −Mi, (4.5)

so we must only take into account the receiver with a lower Mi, M , mini=1, ..., NrMi or,

equivalently, the one with a lower power margin. This idea is similar to that of a critical TV

receiver in [18].

In Figure 4.1 there is a plot of the proposed system model.

Figure 4.1: System model: the primary and secondary systems interfere with each other, so the
ST has to exploit the available side information (which can be obtained by connecting the ST
to a Distribution Network [18], for example) to control the interference caused to the primary
system.
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4.3 Coding/decoding strategies

Now, we proceed to characterize the capacity of the secondary link. It is usually assumed in the

literature that the ST uses dirty paper coding (DPC) [14] to cancel the (a priori known) inter-

ference caused by the PT. However, the use of DPC requires complete channel state information

(CSI) at the transmitter, both in magnitude and phase [70]. Therefore, we will assume that the

available CSI at the ST is similar to the channel quality indicator (CQI) present in LTE [93], or

obtained by means of field level measurements, so no phase information is available.

The channel seen from the SR is a multiple access channel (MAC), so the capacity of a

secondary link Cs depends on the decodability of the primary message. In this section, we will

fix the power allocation values (γ, ρ) and characterize the different decoding strategies a SR can

use to recover the secondary message. Note that the power constraint γ + ρ ≤ Ps has to be met

in all the cases and, as we will see next, sometimes this constraint is met with strict inequality

at the optimum power allocation point. In the following, as depicted in Figure 4.1, we denote

as hs,r and hp,r the channels from the ST and PT to the SR under study, respectively.

4.3.1 Treat as noise

With this approach, the secondary receiver treats the primary interference as an additional noise

source. Although this decoding strategy can be used in any interference regime, it is the only

possible decoding procedure if the interference is weak even in absence of the ST transmitting

the secondary message, i.e., the signal to interference plus noise ration (SINR) of the primary

signal at the SR is below the required SINR for decoding:

|hp,r|2Pp + |hs,r|2γ
σ2

< Υ0. (4.6)

If this is the case, the primary rate Rp lies outside the capacity region of the MAC, so the SR

has to treat the primary signal as noise. This strategy leads to the secondary link capacity

Cs = C

(
ρ|hs,r|2

σ2 + |hp,r|2Pp + |hs,r|2γ

)
. (4.7)
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4.3.2 Strong interference

If the primary interference is strong enough, even in presence of the secondary message

|hp,r|2Pp + |hs,r|2γ
σ2 + ρ|hs,r|2

≥ Υ0 (4.8)

the SINR of the primary signal at the SR is above the threshold SINR, and, therefore, the SR is

be able to decode the primary message and subtract it from the received signal, so the secondary

link capacity is

Cs = C

(
ρ|hs,r|2
σ2

)
. (4.9)

4.3.3 Medium interference

In this regime, the primary message is decodable prior to the transmission of the secondary

message, but after its insertion is not:

|hp,r|2Pp + |hs,r|2γ
σ2 + ρ|hs,r|2

< Υ0 ≤
|hp,r|2Pp + |hs,r|2γ

σ2
, (4.10)

i.e., the SINR of the primary signal is above the threshold SINR if we do not take into account

the interference caused by the insertion of the secondary message, and below the required SINR

if we include this additional noise term.

This region corresponds to the classical time-sharing segment of the MAC. As time-sharing

would imply the existence of synchronization between PT and ST, which is not desirable, the

ST must resort to the use of superposition coding (SC) like in [72], which achieves the same

capacity region, with the corresponding secondary link capacity given by

Cs = C

(
(ρ+ γ) |hs,r|2 + |hp,r|2Pp

σ2

)
−Rp. (4.11)

Note that this strategy requires the ST to split its secondary power ρ into ρ1 and ρ2 units

of power, allocated to two different sources S1 and S2, respectively. In such a case, ρ1 is chosen

to meet

C

( |hs,r|2γ + |hp,r|2Pp
σ2 + |hs,r|2ρ1

)
≥ Rp (4.12)

while ρ2 = ρ − ρ1. The encoding process is performed as follows: encode the message from



4.4 Optimum power allocation for a single secondary receiver 83

source S1 into the codeword x1 at a rate

R1 = C

( |hs,r|2ρ1

σ2

)
(4.13)

with ρ1 the value obtained from (4.12) with equality; encode the message from source S2 into

the codeword x2 at a rate

R2 = C

( |hs,r|2ρ2

σ2 + |hs,r|2ρ1 + |hp,r|2Pp

)
. (4.14)

Decoding is performed as follows: first, decode x2 treating x1 and the primary message as noise,

subtracting it from the received signal; then, decode the primary message treating x1 as noise,

subtracting it from the received signal; finally, decode x1. It can be seen that the three rates

(4.12), (4.13) and (4.14) lie inside the three dimensional MAC region, so the proposed decoding

sequence is possible. The total rate is given by

R1 +R2 = C

(
(ρ+ γ) |hs,r|2 + |hp,r|2Pp

σ2

)
−Rp. (4.15)

4.4 Optimum power allocation for a single secondary receiver

As the capacity function is defined in a piecewise way and, therefore, is not differentiable,

we propose to solve three different optimization problems (one for each of the three decoding

strategies) and afterwards select the one that leads to a higher capacity. The two last decoding

strategies conform problems with a different associated region constraint (4.8) and (4.10), and

the three of them share both a power constraint γ + ρ ≤ Ps and Nr interference constraints (or

a worst case constraint (4.5)). In order to define in a compact way the region constraints we

denote

Ms ,
1

|hs,r|2
(
|hp,r|2Pp −Υ0σ

2
)

(4.16)

as the power margin for the primary signal at the SR under study. Note that, unlike M, which

is related to the interference constraints at the primary receivers, we will use this parameter

to constrain the operation of the different decoding strategies at the SR to the corresponding

interference regimes.

Now, we proceed to enunciate the three different problems:
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4.4.1 Treat as noise

With this decoding strategy, we can enunciate the optimization problem as

max. f (ρ, γ) ,
ρ|hs,r|2

σ2 + γ|hs,r|2 + |hp,r|2Pp
s.t. γ + ρ ≤ Ps

γ ≥ ρΥ0 −M
γ ≥ 0

ρ ≥ 0.

(4.17)

This is a linear-fractional program, which can be easily converted to a linear program (LP) by

the Charnes-Cooper transformation [94]. It is clear that if Ms > 0, i.e., if the primary signal

is decodable at the SR in absence of the ST, or if M ≤Ms, i.e., if the reinforcement of one of

the primary receivers forces the SR to be able to decode the primary signal, then the SR could

operate in the medium or strong interference regimes, thus leading to a higher capacity. Also,

if some Mi < 0 (so M < 0) we are introducing a constraint on some PRs that are not able to

decode the primary signal prior to the insertion of the ST - these receivers could be thought

to be lying outside the primary coverage area, and the ST would be constrained to extend that

coverage area.

Note that the objective function f is increasing with ρ and decreasing with γ, so the allo-

cation of power to the primary message decreases the capacity of the secondary user. Therefore,

it would be desirable to allocate power only to the secondary message, but the presence of an

active interference constraint forces to allocate ∆γ = Υ0∆ρ units of power to the primary mes-

sage for every ∆ρ units of power allocated to the secondary message or, equivalently, to move

in the direction x given by

x =

[
∆ρ

∆γ

]
= k

[
1

Υ0

]
. (4.18)

We can check if the objective function is increasing in the direction dictated by the constraint

just by calculating the gradient ∇f of the objective function

[
∂f
∂ρ
∂f
∂γ

]
= ∇f =

|hs,r|2
σ2 + γ|hs,r|2 + |hp,r|2Pp

(4.19)

×




1

− |hs,r|2
σ2 + γ|hs,r|2 + |hp,r|2Pp
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so if ∇fTx > 0 the function is increasing in the constraint direction or, equivalently, if

Υ (γ, ρ) <
1

Υ0
(4.20)

with

Υ (γ, ρ) =
|hs,r|2ρ

σ2 + γ|hs,r|2 + |hp,r|2Pp
(4.21)

the current SINR of the secondary link. Therefore, we conclude that allocating extra power x

to both primary and secondary signal components in the direction dictated by the interference

constraint is beneficial if the current SINR of the secondary link meets Υ (γ, ρ) < 1
Υ0

. If this is

not the case, then the optimum power allocation leaves some power without being used. A plot

explaining the geometrical interpretation of this constraint is shown in Figure 4.2.

ρ

γ

σ2 = 0.3, hs,r = 1, hp,r = 0.3, M = 0.6, Υ0 = 2, Pp = 2, Ps = 1
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Figure 4.2: Level curves for the objective function f (those zones with lighter colors achieve
a larger capacity) and constraints of the optimization problem. If we are using an active set
method [66], for example, starting at point (ρ, γ) = (0, 0), on the first iteration we will get to
the point (0.3, 0). At this point, the interference constraint forces us to move along the direction
in (4.18), which leads to lower levels of the objective function. Therefore, the optimum point is
reached at (ρ, γ) = (0.3, 0).
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4.4.2 Strong interference

In this case, the optimization problem is stated as

max.
ρ|hs,r|2
σ2

(4.22)

s.t. γ + ρ ≤ Ps (4.23)

γ ≥ ρΥ0 −M (4.24)

γ ≥ ρΥ0 −Ms (4.25)

γ ≥ 0

ρ ≥ 0

which is a LP. Note that if Ms < M then this region is forced, as the worst case PR has a

smaller power margin than the SR; this could be the case of having a SR inside the primary

coverage zone, for example. It is clear that in this region the ST is going to use all its available

power, so by forcing an active power constraint (4.23) we can jointly write the interference (4.24)

and region (4.25) constraints as

ρ ≤ Ps + min {M,Ms}
1 + Υ0

, (4.26)

so the optimum value of ρ is

ρ = min

{
Ps,

Ps + min {M,Ms}
1 + Υ0

}
. (4.27)

Note that if Ps < −min {M,Ms} (4.27) is negative, then the problem is infeasible, as the

available secondary power is not enough to allow the SR (or the worst case PR) to decode the

primary message. If this is not the case, a rate

Cs = min

{
C

(
Ps|hs,r|2
σ2

)
, C

( |hs,r|2
σ2

Ps + max {M,Ms}
1 + Υ0

)}
(4.28)

is achievable.
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4.4.3 Medium interference

Finally, the third decoding strategy can be solved by the following optimization problem

max.
(ρ+ γ) |hs,r|2

σ2
(4.29)

s.t. γ + ρ ≤ Ps (4.30)

γ ≥ ρΥ0 −M (4.31)

γ ≤ ρΥ0 −Ms (4.32)

γ ≥ −Ms (4.33)

γ ≥ 0

ρ ≥ 0.

Remark that the feasibility of this problem requires Ms ≤M, −Ms ≤ Ps and PsΥ0 ≥Ms. If

we assume an active power constraint (4.30), the region (4.32) and interference (4.31) constraints

can be written as
Υ0Ps −Ms

1 + Υ0
≥ γ ≥ Υ0Ps −M

1 + Υ0
(4.34)

so after taking into account the other region constraint (4.33), if we set γ = max
{
−Ms, Υ0Ps−M

1+Υ0

}

and the problem is feasible then the achievable capacity is

Cs = C

( |hs,r|2Ps + |hp,r|2Pp
σ2

)
−Rp. (4.35)

Note that the medium and strong interference regimes lead to different power allocation

policies, since in the former the primary message is not directly decodable, whereas in the latter it

is. However, it can be seen that the optimum power allocation in both regimes leads to the same

capacity for the secondary system. In order to prove it, we will assume that Ps ≥ −Ms ≥ −M
and PsΥ0 ≥ Ms, which is the condition for joint feasibility of (4.29) and (4.22). Therefore, by

substituting (4.16) in (4.28), the capacity in strong interference can be written as

CS,Strong = C

( |hs,r|2
σ2

Ps +Ms

1 + Υ0

)
(4.36)

= log2

(
1 +
|hs,r|2Ps −Υ0σ

2 + |hp,r|2Pp
σ2 (1 + Υ0)

)

= log2

( |hs,r|2Ps + σ2 + |hp,r|2Pp
σ2 (1 + Υ0)

)
.
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Now, since Rp = log2 (1 + Υ0), we can write (4.35) as

CS,Medium = log2

(
1 +
|hs,r|2Ps + |hp,r|2Pp

σ2

)
(4.37)

− log2 (1 + Υ0)

= log2

(
σ2 + |hs,r|2Ps + |hp,r|2Pp

σ2(1 + Υ0)

)

= CS,Strong.

Note that the implications of this equality are quite significant, as a secondary transmission link

working with this decoding strategy can be transformed into an equivalent system (i.e., with

the same capacity) working with a strong interference and, therefore, the coverage area of the

primary system could be extended.

4.4.4 Numerical results

The power allocation results were evaluated in different scenarios to obtain the resulting sec-

ondary user capacity. In order to get insight on the implications of the secondary system

position, the results are shown as a function of this location. We assume that the PT is located

at xp = (0, 0), the ST at xs = (r, 0) and the SR at xr = (r + d, 0). We also assume a free space

propagation loss model, so the attenuation between two different points separated x units of

distance can be written as x2/k, with k =
(
λ
4π

)2
. In the numerical results, we have set d = 2

and k = 2.

In order to properly describe the interference constraint, we define

∆Pi , |hp,i|2Pp −Υ0σ
2, (4.38)

so Mi = 1
|hs,i|2 ∆Pi, and we define ∆P , min {∆Pi}.

If we restrict our secondary system to keep the same original coverage area, the worst case

receiver would be located at the edge of the coverage zone, so |hp,i|2Pp/σ2 = Υ0 and, therefore,

∆P = 0, i.e., the worst case receiver has a zero power margin. If this is the case, the existence of

a white space is impossible, strictly speaking, as even an infinitesimal extra interference coming

from the ST would cause this extreme worst case receiver to fail.

The capacity results are shown in Figure 4.3 for different positions of the ST. The coverage

limit ≈ 4.3 is the position of the ST for which the SR crosses the coverage edge ≈ 6.3. It can be

seen that the optimum power allocation forces to be in the medium/high interference regimes,

while the treat as noise scenario tends to the limit capacity of log2

(
1 + Υ−1

0

)
, as depicted in
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Section 4.4. Moreover, the system is quite far away from its performance in a true white space,

with a capacity of CnoPU = log2

(
1 +

|hs,r|2Ps
σ2

)
.
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Figure 4.3: Capacity for the different decoding strategies with no coverage margin (∆P = 0).

Now, we propose to include a power margin that allows the existence of a smooth transition

from the black space to a true white space. This could be the case, for example, of knowing the

absence of PRs near the coverage edge. In this scenario, if the ST is inside the coverage zone we

setM = 0, as a PR could be located near the ST and, therefore, have a large |hs,i|2 value. When

the ST is outside the coverage zone, the worst case receiver leads to a value of M = 1
|hs,i|2 ∆P ,

with |hs,i|2 calculated following the free space loss formula. Note that as the ST moves away

from the coverage area |hs,i|2 → 0, so the interference constraint (4.5) tends to γ ≥ −∞ for a

positive ∆P , which is indeed a true white space, as there is no limit for the power allocated to

the secondary message. In Figure 4.4 the achievable capacity results are shown for the three

different decoding strategies. It can be seen that the behavior of the functions in the gray space

is quite curious, as two clearly different zones exist: in the first one, near the coverage limit, the

optimum power allocation forces to expand the coverage area and work in the medium-strong

decoding region, thus blackening this gray space. However, as gray tends to white, the optimum

decoding strategy consists on treating the primary interference as noise. Finally, when the ST is

located very far from the coverage area, the secondary system capacity tends to the white space

capacity.

In Figures 4.5a and 4.5b we show the fraction of power allocated to the primary and

secondary messages at the ST, respectively. It is remarkable the big difference between the

medium and strong interference optimum power allocation, as they lead to quite different values,
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but to the same achievable rate for the ST. Another interesting result is the evolution of the

power allocated to the primary and secondary message when using the treat as noise decoding:

inside the coverage area this power is constant, and it can be seen that no power remains unused.

When the ST leaves the coverage area no power is allocated to the primary message (γ = 0),

and ρ starts to grow rapidly. In this zone (gray space), the capacity increases substantially with

the distance as a result of two different effects: as both the ST and SR are moving away from

the coverage area, the interference coming from the PT is clearly reduced, and also the value

ofM increases, so more power can be allocated to the secondary message without breaking the

interference constraint. When the interference constraint allows to allocate all the power to the

secondary message (white space), it can be seen that the capacity continues to increase, but in

this case much slower, as we have only one of the two effects in the gray space: the decrease of

the interference coming from the PT.
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Figure 4.4: Capacity for the different power decoding strategies with a coverage margin (∆P =
1).

4.5 Optimum power allocation for multiple receivers

In this section we will study the effect of having multiple SRs on the capacity of the system.

Depending on the nature of the secondary system, we can clearly distinguish two different

scenarios:

• Unicast If this is the case, each SR is interested on a different message. An example of

this kind of system could be a cellular network.
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Figure 4.5: Power allocation as a function of the position of the ST.

• Multicast/Broadcast Multiple SRs are interested in the same message. The main issue

with this kind of systems is to adapt the transmission rate of the ST to deal with SRs in

very different situations. An example of this type of system could be the insertion of a

local TV transmitter overlaid on a global one, or the use of cellular-based multicast service

like 3GPP multimedia broadcast multicast service (MBMS) in LTE [95].

Note that the unicast case can be solved just by considering one SR at a time (i.e., applying

time division multiplexing - TDM), and afterwards adopting the optimum power allocation and

decoding strategy for that SR. The case of having multiple multicast groups can be reduced to the

broadcast case just by applying TDM again. However, the broadcast case is more complicated.

Consider a broadcast scenario with Ns SRs. We will extend the notation from the previous

section to denote as hs,rk and hp,rk the channels from the ST and PT to the k-th SR, for

k = 1 ..., Ns. In this broadcast analysis, we will only take into account the treat as noise

and strong interference decoding strategies, as the medium interference one achieves the same

capacity as the latter, and it requires an optimum power splitting (into ρ1 and ρ2) which heavily

depends on the channels seen by a given receiver, thus being unpractical for multiple receivers.

We will denote as

Dk ∈ {N ,S} (4.39)

the decoding strategy of the k-th SR, where Dk = N denotes that the k-th SR is decoding the

secondary message treating the primary one as noise, and Dk = S denotes a strong interference
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operation. We denote the capacity under both operation modes as

CNk (ρ, γ) = C

( |hs,rk |2ρ
σ2 + |hp,rk |2Pp + |hs,rk |2γ

)
(4.40)

for the N operation and

CSk (ρ, γ) = C

( |hs,rk |2ρ
σ2

)
(4.41)

for the S operation. The latter requires the constraint

fSk (ρ, γ) , Υ0ρ− γ −Ms
rk
≤ 0 (4.42)

to be met, where we have defined

Ms
rk
,

1

|hs,rk |2
(
|hp,rk |2Pp −Υ0σ

2
)
. (4.43)

Our objective is to obtain, given Ns receivers, the maximum rate Rs such that no PR

is compromised and the Ns SRs are able to decode the secondary message. In the single re-

ceiver approach we had to solve a different optimization problem for each of the three decoding

strategies. In this case, after dropping the medium interference strategy, we have that every

receiver can operate with two different decoding procedures. Thus, our design variables are,

in this case, the power allocation weights (ρ, γ) as well as the vector of decoding strategies

D = (D1, ..., DNs) ∈ {N ,S}Ns :

max. mink=1, ..., Ns

{
CDkk (ρ, γ)

}

s.t. γ + ρ ≤ Ps
γ ≥ ρΥ0 −M
fDkk (ρ, γ) ≤ 0, k = 1, ..., Ns

γ ≥ 0

ρ ≥ 0

(4.44)

where we have introduced a dummy constraint fNk (ρ, γ) , 0 for clarity in the notation. Note

that for a given D, the optimization problem (4.44) is a generalized linear fractional program [94],

which is quasiconvex and, therefore, can be efficiently solved.

Thus, the main problem is to choose the optimum value of D among the 2Ns possible

vectors, which could be computationally infeasible for a large number of receivers. However,

note that:
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• For a given power allocation (ρ, γ), if a receiver is able to decode the primary message,

then treating it as noise is suboptimal.

• If the j-th user chooses to decode the primary message, i.e., Dj = S, then the constraint

fSj ≤ 0 has to be met, and can be rewritten as γ ≥ Υ0ρ−Ms
rj , so if fSj ≤ 0 then fSk ≤ 0

for k such thatMs
rk
≥Ms

rj . This means that if a given user is able to decode the primary

message, then all the receivers with a larger power margin will also be able to decode it.

These two facts have a very strong implication, as it suffices to try at most1 Ns+1 different

decoding strategies, so the complexity of the problem is substantially reduced. If we assume

that the receivers are ordered in decreasing order of Ms
rk

, i.e., Ms
rk
≥ Ms

rj ∀j ≥ k, then only

the following strategy vectors can be optimum

D(0 = (N , N , ..., N ) (4.45)

D(1 = (S, N , ..., N )

D(2 = (S, S, ..., N )

...

D(Ns = (S, S, ..., S)

so it suffices to solve Ns + 1 quasiconvex optimization problems to obtain the optimum power

allocation and strategy vector.

4.5.1 Numerical results

We have numerically solved the optimization problem in (4.44) in different scenarios. In all the

simulations we have set Pp = 20, σ2 = 0.1, Υ0 = 10, and a free space propagation model was

assumed, with k = 2. The positions of the PRs were generated following an uniform distribution

inside the coverage area, leaving a small portion as a protection area that allows the existence of

a white space, similarly to the single receiver study. The positions of the SRs were also generated

following an uniform distribution in circles of different dimensions, depending on the scenario.

Figure 4.6 shows a secondary system positioned near the primary coverage edge, with the

SRs concentrated near the ST. In this case, the optimum decoding strategy is to decode the

primary message for all the SRs, so the primary coverage area is clearly extended. Moreover,

due to the proximity of the SRs to the ST, a relatively high rate is achieved.

1This number can be further reduced if the interference constraint forces some of the SRs to be able to decode
the primary message.
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Figure 4.6: Initial and final coverage area for a scenario with a ST with SRs concentrated
near the transmitter. In this case, the optimum decoding strategy is to decode the primary
transmitter in all the receivers, so the coverage area is expanded.

The picture changes dramatically if the SRs can be situated far away from the ST. In Figure

4.7 the optimum decoding strategy is N for the SRs situated far away from the primary coverage

area, and S for those clearly inside it. In this case, there are some SRs that are situated far

from the ST and near the coverage edge, so the signal coming from the ST is very attenuated

and they receive a large amount of interference (which are not able to decode) from the PT. The

achievable rate in this case is much smaller and the primary coverage area is slightly diminished.

If we move the secondary system far from the primary coverage edge, we end up in a

white space scenario, which is shown in Figure 4.8. In this case all the power is allocated to

the secondary message and the optimum decoding strategy is to treat as noise the very weak

interference coming from the PT. The primary coverage area is also reduced in this case.

A case of special interest can be the one where the insertion of the ST is clearly beneficial for

the primary system: in many real-world cases a broadcaster (e.g. TV operators) needs to extend

its coverage area to give its service to some new receivers. In this case, the primary operator

could incur in a relatively high expense to cover a small number of new receivers. Following the

overlay paradigm, the primary operator could allow the existence of a secondary system with the

condition of extending the primary coverage zone to a set of new PRs. This scenario is shown

in Figure 4.9, which is identical to that in Figure 4.6 except for the presence of PRs outside

the original coverage area. The resulting coverage area can be seen to be substantially larger
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Figure 4.7: Initial and final coverage area for a scenario with a ST with some SRs situated
far away from the transmitter. In this case, the optimum decoding strategy is to decode the
primary transmitter for the receivers inside the final coverage zone, and to treat it as noise for
those outside it. The final coverage area is slightly smaller than the initial one.

than the one in Figure 4.6 so the new PRs lie inside it. This larger coverage area forces the ST

to allocate more power to the primary message, so a smaller rate is achieved for the secondary

system.

4.6 Realistic impairments: directive antennas, propagation mod-

els and receiver overloading

4.6.1 Introduction

In this section we present some practical impairments that might arise in a realistic scenario.

Throughout this chapter, we assumed that the receivers used omnidirectional antennas and

a deterministic free space loss model was used in the simulations. Another practical problem

appears when the transmitters and receivers are located nearby so that the received power is too

large. In this case, the power amplifiers of the receivers suffer from overloading, and reception

quality is severely degraded due to non linearities. This is a problem that has been studied in

the scenario of coexistence between television and cellular systems [96]. In this section we focus

on the effect of receiver overloading, that arises in a black space scenario. The analysis in this

section is focused on transmit and received signal power, so the notation is slightly different
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Figure 4.8: Initial and final coverage area for a ST operating in a white space. In this case, all the
power can be allocated to the secondary message without breaking the interference constraint.
The transmit power of the secondary transmitter has been diminished to Ps = 1 to force the
existence of the white space near the primary coverage zone.

from the previous sections.

4.6.2 Problem statement

Consider a scenario with a single primary transmitter, located at xp = 0 ∈ R2 that transmits

with an equivalent isotropic radiated power (EIRP) of Pp milliwatts and a secondary transmitter

located at xs ∈ R2 with an EIRP of Ps. In this section, we denote with capital P the transmit

power in milliwatts, and with lowercase p the power in dBm2. For example, Ps , 10ps/10 and

Pp , 10pp/10. We use capital R for the received power in milliwatts, and lowercase r for the

received power in dBm. In general, depending on the scenario, the secondary transmitter can

use all its available power to transmit the secondary message (in an underlay scenario) or split

the power between ρ and γ, such that Ps = ρ+ γ.

For a given primary receiver located at xr, the primary message is received with power

Rp (xr) = Rp,p (xr) +Rs,p (xr) (4.46)

where Rp,p and Rs,p denote the received power of the primary message, received from the primary

2Although the usual notation is the opposite (capital P for dBm), we prefer this one for consistency with the
previous sections.
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Figure 4.9: Initial and final coverage zone for a ST forced to enlarge the primary coverage area
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and secondary transmitters, respectively. These quantities can be readily obtained in dBm as

rp,p (xr) , pp + g (θp)− ` (xp,xr) (4.47)

and

rs,p (xr) , 10 log10 (γ) + g (θs)− ` (xs,xr) (4.48)

with ` (x1,x2) the (random) propagation losses in dB between a transmitter located at x1 and

a receiver located at x2, and g (θ) the receive antenna gain in dB for an incoming angle θ.

Note that in general the incoming angles for the signal coming from the primary and secondary

transmitters, θp and θs respectively, are not equal. In practice, the primary receive antennas

are aimed at the primary transmitter to maximize the amount of received power, so we assume

θp = 0. The incoming angle for the secondary transmitter can be calculated as the angle between

xs and xp:

θs = cos−1

(
xTs xr

‖xs‖2‖xp‖2

)
. (4.49)

We define in the same way the received power for the secondary message:

rs (xr) = 10 log10(ρ) + g (θs)− ` (xs,xr) . (4.50)
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The signal to interference plus noise ratio (SINR) at a primary receiver can be written as

Υ (xr) =
Rp (xr)

Rs (xr) + Ω (xr)
(4.51)

with Ω the receiver noise power in milliwatts. The total received power is

R (xr) = Rp (xr) +Rs (xr) (4.52)

where the noise power was assumed to be negligible with respect to the total received power

from the primary and secondary transmitters.

In general, the propagation loss ` is modeled as a random variable, so following the usual

approach in broadcasting scenarios [96] we can define the overloading probability as

O (xr) , P [r (xr) > r0] . (4.53)

To assess the effect of overloading on coverage probability, we assume that an overloaded receiver

is not able to successfully decode the primary message. This degradation is caused by the non-

linearities introduced in the signal by the excessive amount of received power. Thus, the coverage

probability for the primary user is defined as

C (xr) , P [(r (xr) ≤ r0) ∩ (Υ (xr) ≥ Υ0)] (4.54)

with r0 the overloading threshold, and Υ0 the necessary SINR for decoding the primary message.

4.6.3 Power allocation

The coverage probability of a primary receiver is highly dependent on the power allocation at

the secondary transmitter between the primary and secondary messages γ and ρ. In general,

the optimum power allocation depends on the position of the closest primary receiver and the

strategy used by the secondary receiver to decode the secondary message, as seen in the previous

sections.

If the secondary transmitter is placed inside the primary coverage area, then it is likely to

find a primary receiver close to it. This is the scenario in which overloading is more likely to

occur. In such a case, the power received from the primary transmitter and the noise can be

considered negligible with respect to the one received from the secondary transmitter, so the
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SINR can be approximated as

Υ (xr) =
Rp (xr)

Rs (xr) + Ω (xr)
≈ γ

ρ
, (4.55)

i.e., the SINR equals the ratio between the power allocated to the primary and secondary

messages. Therefore, the power ratio between primary and secondary messages must meet
γ
ρ ≥ Υ0. The optimum power allocation for a transmitter operating in a black space is γ

ρ = Υ0,

as shown in the previous sections.

We do not discuss in more depth the power weighting between primary and secondary

messages, as the aim of this section is to analyze the effect of overloading in cognitive radio

networks. In the simulations, we set the ratio γ
ρ > Υ0, so the coverage holes created by the

secondary transmitters are exclusively due to receiver overloading.

4.6.4 Propagation and antenna model

The SINR and overloading probability and, consequently, the coverage probability, are highly

dependent on the geometry of the receive antenna. In this section we describe the models for

the propagation losses and the antenna gain.

The propagation model we consider is a modified Okumura-Hata model, taken from [80].

Under this model, the pathloss is modeled as a Gaussian random variable in dB (a lognormal

random variable in natural units), and its median and typical deviation depend on parameters

like the distance between transmitter and receiver, the height of both antennas, etc.

Let us denote by d , ‖xr − x‖ the distance between a receiver located at xr and a transmit-

ter located at x. The transmit and receive antennas have a height of HT and Hr, respectively.

We define the minimum and maximum heights as Hm , min {HT , Hr} and Hb = max {HT , Hr}.
The median pathloss µ , E [L] is given by (4.56), where a, b and α are defined in (4.57-4.59).

The standard deviation of the propagation losses σ ,

√
E
[
(µ− L)2

]
is given by (4.60) as a

function of the distance d.

The antenna gain for the primary receivers is shown in Figure 4.10, and corresponds to a

standard Yagi antenna, frequently used for the reception of terrestrial television.

4.6.5 Results

We simulated a simple scenario with a primary transmitter and a secondary transmitter, placed

at xs = (0, 4)km. The EIRP of the primary transmitter was set to pp = 60dBm, and that of the
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E [` (xr,x)] =





32.4 + 20 log10(f) + 10 log10(d2 + (Hb −Hm)2/106) if d ≤ 0.04km
69.6 + 26.2 log10(f)− 13.82 log10 max {30, Hb}+
[44.9− 6.55 log10(max {30, Hb})] log10(d)α − a (Hm)− b (Hb) d > 0.04km

(4.56)

a(Hm) = (1.1 log10(f)− 0.7) min{10, Hm} − (1.56 log10(f)− 0.8) + max{0, 20 log10(Hm/10)}
(4.57)

b(Hb) = min {0, 20 log10 (Hb/30)} (4.58)

α =

{
1 if d ≤ 20km

1 +
(
0.14 + 1.87 · 10−4f + 1.07 · 10−3Hb

) (
log10

d
20

)0.8
if d > 20km

(4.59)

σ =





3.5 if d ≤ 0.04km
3.5 + 12−3.5

0.1−0.04 (d− 0.04) if 0.04km < d ≤ 0.1km

12 if 0.1km < d ≤ 0.2km
12 + 9−12

0.6−0.2 (d− 0.2) if 0.2km < d ≤ 0.6km

9 if 0.2km < d ≤ 0.6km

(4.60)

secondary transmitter to 10 log10 (γ) =50dBm, 10 log10 (ρ) = 35dBm. The limit SINR for de-

coding was set to Υ0 = 10dB, so the transmit SINR of the secondary transmitter 10 log10

(
γ
ρ

)
=

15dB is enough for decoding the primary message in the neighborhood of the secondary trans-

mitter with a 5dB margin. The frequency of operation is 830MHz.

The height of the primary transmitter was set to 100m, while the height of the secondary

transmitter and all primary receivers was set to 20m. Propagation over the roofs in an urban

scenario was always assumed.

The noise power was set to Ω =-98dBm, and the overloading limit to r0 =-15dBm (the

same limit used in [96]).

With these simulation parameters the average SINR E [Υ] map shown in Figure 4.11 was

obtained. It can be seen that in the neighborhood of the secondary transmitter the SINR is

reduced but it is always above the correct reception threshold. Note that the irregular shapes

of the curves are due to the directivity of the receive antenna, as the receivers with an incoming

angle θs corresponding to a secondary lobe will be more affected than others with θs situated

in a null gain angle. This effect is not observed in Figures 4.6-4.9 due to the assumption of

omnidirectional antennas. Also, the receivers that are aiming at the secondary transmitter

(those with xr = (x0, 0) with x0 > 4) are even more affected by the presence of the secondary
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Figure 4.10: Antenna gain for the primary receivers, corresponding to a Yagi antenna.

transmitter.

x (km)

y
(k
m
)

Average SINR (dB) for the primary message

93.641271.7848
49.9283

35.3574

57.2138
42.6429

28.0719

20.7865

20.7865

20
.78

65

 

 

−6 −4 −2 0 2 4
−6

−4

−2

0

2

4

Primary Transmitter

Secondary Transmitter

20

40

60

80

100

120

140
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transmitter is reduced, but is always kept above the desired threshold.

In Figure 4.12 we show a map with the evolution of the overloading probability. It can

be seen that, as expected, the receivers near the secondary transmitter experience high over-

loading probabilities. Note that the receivers near the primary transmitter do also suffer from

overloading, but it is usual that the receiver infrastructure in that zone is prepared to deal with

this problem (for example, by the insertion of a attenuator after the receive antenna, and before

the power amplifier). The case of the zone near the secondary transmitter is different, as the

receivers are not prepared for such a high signal level, and they will require to modify the receive
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chain, thus disabling the possibility of unplanned deployment of secondary networks. Note that

the overloading caused by the secondary transmitter is not isotropic due to the directivity of

the receive antennas.
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Figure 4.12: Overloading probability of the primary receivers. The overloading area around the
secondary transmitter is not circular due to the directivity of the receive antennas.

Finally, in Figure 4.13 the probability of coverage is shown, taken into account both the

SINR and the overloading probability. Not surprisingly, the zones near the transmitters appear

as coverage holes due to the receive overloading. Moreover, it can be seen that the insertion of the

secondary transmitter is beneficial for the primary system, as the (approximately probability

one, lightest zone) coverage area reaches more than 5 kilometers to the east of the primary

transmitter (where the secondary transmitter is located) and only about 3 kilometers to the

west, north and south.

4.7 Concluding remarks

In this chapter we analyzed the problem of overlay cognitive access to the spectrum licensed to

a primary broadcast user. We show that, in some cases the insertion of the secondary network is

beneficial for the primary system, as it expands its coverage area. This kind of overlay operation

could result of special interest in those cases where the primary service provider outsources the

extension of his coverage area to a secondary operator. We also studied the problems arising

from a high power secondary transmitter, which can overload the primary receivers.

The content in this chapter is an extended version of a joint paper with Prof. Carlos
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Figure 4.13: Coverage probability of the primary system. The probability of correct reception
is calculated by taking into account the SINR and overloading probabilities.

Mosquera presented in DySPAN 2012 [97].
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5.1 Introduction

In the previous chapters we analyzed the insertion of a secondary transmitter in a primary

broadcast network. One of the main problems we dealt with is the absence of channel state

information (CSI) at the transmitter. This information cannot be acquired due to the broadcast

nature of the primary user, as the primary receivers are not able to feed any information back

even to the primary transmitter. In point to point systems, however, the secondary transmit-

ter can exploit some degree of CSI to access the spectrum. In this chapter, we explore simple

techniques that allow gaining access to CSI, and show how a properly designed secondary trans-

mitter can improve the rate of the primary system to gain access to a fraction of the transmit

resources.

In point to point systems, some CSI information can be obtained by analyzing the message

exchange between primary transmitter and receiver. Depending on the nature of the system,

and especially on the existence of feedback channels and adaptive transmission, the primary

transmitter can change its behavior in presence of a secondary transmitter that conveys the

primary information. For example, in the case of point to point communications it is usual to

have a feedback channel from the receiver to the transmitter to perform some tasks such as

adaptive modulation and coding (AMC), power and bit loading, etc. In this case the secondary

transmitter can obtain additional information about the primary link if it is able to demodulate

the feedback signal. In these systems, the primary transmitter can operate in different modes,

trying to maximize the spectral efficiency for a given channel quality. Thus, the correct metric

for the primary user communication is the resulting bit rate. If the bit rate is larger than the one

the primary communication needs, the primary transmitter will be able to free some transmission

resources (in the frequency or time domain) [16,17]. If this is the case, the secondary information

can be transmitted in the released resources due to the increased capacity of the primary link.

It is usually assumed, however, that the secondary transmitter has full CSI, or, if measured

in capacity terms, that the contributions from the primary and secondary transmitters are

coherently added at the primary receiver location [16]. As opposed to this, in this chapter we

focus on a point to point scenario where the secondary transmitter maximizes the rate of the

primary link based on partial CSI. This partial CSI is obtained by means of the primary feedback

containing the measured signal to noise ratio (SNR). We show how to exploit this information

to obtain CSI.

As we will show, it is possible to acquire CSI based on SNR information, but the analysis

and generalization of this method is somehow complicated. To overcome this problem, we extend

the analysis to the case of having a primary receiver feeding back a complex channel estimate,
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following ideas taken from [15]. Under this setting, we develop CSI acquisition strategies for

multiple input multiple output (MIMO) and time varying channels.

This chapter is organized as follows: in Section 5.2 the proposed scenario is presented;

in Section 5.3 a general optimization problem, based on effective SNR metrics, is introduced;

in Section 5.4 different approximations for the mutual information effective SNR metric are

presented, and the optimization problem is solved assuming perfect CSI; in Section 5.5 the

problem of obtaining CSI by exploiting the primary feedback channel is stated and the effects of

imperfect CSI in the previously solved optimization problem are presented; Section 5.6 presents

the CSI acquisition problem with complex channel feedback, and the extension to MIMO and

time varying channels; finally, Section 5.7 concludes the chapter.

5.2 Proposed scenario

Consider an orthogonal frequency division multiplexing (OFDM) point to point communication

system where a primary transmitter (PT) is communicating with a single primary receiver (PR).

A secondary transmitter (ST) tries to exploit the knowledge of the primary signal in order to

communicate with a secondary receiver (SR). The PR conveys CSI to the PT, so the latter can

use AMC to maximize the link throughput, or minimize the communication time. Assume that

the communication needs of the primary system can be set to Rp bits per time unit. For the

sake of simplicity, we assume that the OFDM symbols have constant length, and use the OFDM

block as the time unit. In this case, Rp denotes the necessary bit rate for the primary system,

measured in terms of bits per OFDM symbol.

Depending on the quality of the link, the resulting AMC mode will set the transmission

rate to Rs bits per OFDM block. It is clear that if Rs < Rp the link does not provide enough

quality for the transmission, but if Rs ≥ Rp only a fraction ρ , Rp
Rs

of the transmission resources

will be used, and the remaining (1−ρ) could be used by the secondary transmitter. For a system

using adaptive repeat request (ARQ), another convenient figure of merit is the throughput or

the goodput, metrics that include the performance loss due to the presence of message errors and

the corresponding retransmissions. In this case, the fraction of used resources can be written

as ρ =
µp
µs

, where µp denotes the throughput required by the primary system, and µs the total

throughput after the insertion of the secondary transmitter. Thus, the maximization of the

secondary user rate is equivalent to the minimization of ρ or, equivalently, the maximization of

Rs or µs.

In general, choosing the correct AMC mode for a given channel state is not a trivial problem

when facing frequency selective channels in OFDM communications, as the mean SNR is not
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a good indicator of the channel quality. In order to face this problem, different effective SNR

metrics (ESM) were recently developed [39]. These metrics can be expressed as a generalized

mean, parametrized1 by the function Φ (·), of the SNR at each carrier

ψe = Φ−1

(
1

N

N∑

i=1

Φ (ψi)

)
(5.1)

where ψe denotes the effective SNR, N denotes the number of carriers, and ψi denotes the SNR

of the i-th carrier. The AMC mode (also known as modulation and coding scheme - MCS) will

be selected depending on the value ψe from a set M = {m1, ..., mM} of M different modes,

each one with an associated rate of Ri i = 1 ...M bits per OFDM block. Without loss of

generality, we will order the modes in such a way that R1 < R2 < ... < RM , with associated

mode thresholds 0 = t0 < t1 < ... < tM−1 < tM = +∞ such that the mode mi is selected

if ti−1 < ψe < ti. In general, the throughput function is more difficult to approximate, as

it must take into account packet errors and retransmissions. In this chapter, we approximate

the throughput µ(ψe) by the linear interpolation of the rate at the MCS threshold values, i.e.

µ(ψe) = Ri−Ri−1

ti−ti−1
(ψe − ti−1) +Ri−1, with ti−1 ≤ ψe < ti.

Let us denote by ηi the complex channel coefficient on the i-th carrier of the PT to PR

link, and by σ2 the noise power at the PR, assumed to be constant through all carreirs. Thus,

in absence of the ST, and assuming a unit power primary signal, we can write ψi = |ηi|2
σ2 . With

the insertion of the ST, the resulting SNR can be written as

ψi =
|αiγi + ηi|2

σ2
(5.2)

where αi is the complex channel coefficient of the i-th carrier of the ST to PR link, and γi

is a one tap pre-equalizer at the ST that allows us to change the amplitude and phase of the

transmitted symbols. If the ST had access to perfect CSI, then the role of γi would be to perform

power allocation and distributed beamforming, so that the replicas from the PT and ST were

coherently added at the PR. This scenario is depicted in Figure 5.1.

5.3 Problem statement

The objective of the secondary user is to maximize the quality of the primary link (measured in

terms of ESM) to obtain a fraction of released resources 1− ρ as large as possible. In our first

1For example, following expression (5.1), the arithmetic mean is parametrized by the function Φ(x) = x, and
the geometric mean by Φ(x) = log(x).
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Figure 5.1: Diagram of the proposed scenario. The ST uses a one-tap per carrier pre-equalizer
to maximize the primary link ESM. The PR feeds back information related to the SNR of each
carrier (see Section 5.5). ci is the symbol to be transmitted in the i-th carrier in a given OFDM
block, assumed to have unit variance, and wi ∼ CN (0, σ2).

approach, we assume that the channel coefficients αi, ηi are perfectly known at the secondary

transmitter, and in Section 5.5 a method that estimates these parameters exploiting the feedback

channel will be described.

The design variables in our optimization problem are the complex values γi for a total

transmit power below a given value P . For a given power allocated to the i-th carrier |γi|2,

the optimum value for γi is γi = |γi|ej(∠ηi−∠αi), so the signals are coherently combined at the

receiver, and ψi =
(
|αiγi|2 + |ηi|2 + 2|αiγiηi|

)
/σ2. Therefore, and without loss of generality, we

assume that αi, γi and ηi are real and non-negative values (just by taking the modulus of the

complex coefficients), so the optimization problem can be stated as

minimize −Φ−1
(

1
N

∑N
i=1 Φ (ψi)

)

subject to 1
N

∑N
i=1 γ

2
i ≤ P
−γ � 0

(5.3)

with ψi = (αiγi+ηi)
2

σ2 , and γ = [γ1, ... γN ]T . Obviously, the result of the optimization problem

will vary depending on the function Φ. In the following section, we will study the optimum

power allocation corresponding to the mutual information ESM (MIESM).
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5.4 Power allocation for MIESM metric

The MIESM is based on the mutual information per bit. The expression for Φ, taken from [73],

is

Φ (ψ) = 1− 1

M log2M

M∑

m=1

EU

[
log2

(
M∑

k=1

e
− |Xm−Xk+U|−|U|2

1/ψ

)]
(5.4)

where M is the number of symbols in the constellation, and U is a complex Gaussian random

variable of zero mean and variance 1/ψ (1/(2ψ) per real dimension). We also denote by Xm,

m = 1, ..., M the M complex constellation points. Note that this metric does not depend on

the code rate being used, but only on the constellation.

As there is not a closed-form expression for (5.4), we will approximate Φ by two different

functions in order to obtain analytical results of interest, although these results will be evaluated

using the actual value of Φ, obtained by Monte Carlo integration.

On a first approach, we will approximate Φ by a parametrized exponential function, simi-

larly to [41],

Φ(ψ) = 1−
L∑

l=1

φle
−βlψ (5.5)

where
∑L

l=1 φl = 1, and φl ≥ 0 and βl ≥ 0 are parameters that have to be properly chosen in

order to fit the actual value of (5.4). Note that the approximation with L = 1 makes this metric

equivalent to the exponential ESM (EESM) [39], so we can think of this approximation as a gen-

eralized exponential ESM of degree L (L-GEESM). Therefore, the results for this approximation

can be directly applied to the EESM metric just by setting L = 1.

Additionally, we propose to approximate the function Φ by a piecewise linear function

(PLF) in the logarithmic domain

Φ(ψ) =





0 ψ < ψ0
log10(ψ)−log10(ψ0)
log10(ψ1)−log10(ψ0) ψ0 ≤ ψ ≤ ψ1

1 ψ > ψ1

(5.6)

where ψ0 and ψ1 have to be adjusted to approximate (5.4). Note that this PLF approximation

makes the ESM ψe equal to the arithmetic mean of the SNR values ψi in the logarithmic domain,

where extreme values for ψi are not taken into account, as values of ψi > ψ1 and ψi < ψ0 are

clipped to ψ1 and ψ0 respectively.
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The results of the fitting, performed with the MATLAB Curve Fitting toolbox, are shown in

Figure 7.2. The approximation with the L-GEESM is only shown for values of L = 1, 2, 3, as

the benefit of using higher order approximation is almost unnoticeable. In the following, we will

try to maximize the MIESM by using these two approximations in (5.3).

−10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR(dB)

Θ

 

 

Montecarlo

1-GEESM

2-GEESM

3-GEESM

PLF

Figure 5.2: Approximations for the mutual information Φ for a 16-QAM constellation.

5.4.1 L-GEESM approximation

The maximization of the L-GEESM can be seen to be equivalent to maximizing Φ (ψe) =
1
N

∑N
i=1 Φ (ψi), as in this case Φ is given by (5.5), which is a monotonic increasing function.

Therefore, by removing constant terms in the objective function and adding a power constraint

on γ, we arrive to

minimize f0 (γ) ,
1

N

N∑

i=1

L∑

l=1

φle
−βl

(αiγi+ηi)
2

σ2 (5.7)

subject to f1 (γ) ,
1

N

N∑

i=1

γ2
i − P ≤ 0

f2 (γ) , − 1

N
γ � 0

where the factor 1/N has been introduced in the last constraint in order to simplify the upcoming

expressions, and f2 (γ) = [f2,1 (γ) , ..., f2,N (γ)]T = − 1
N [γ1, ..., γN ]T .

The Karush-Kuhn-Tucker (KKT) conditions for the problem (5.7) are
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−
L∑

l=1

φl
2βl
σ2

αi (αiγi + ηi) e
−βl(αiγi+ηi)

2

σ2 + 2λ1γi − λ2,i = 0 (5.8)

λ1f1 (γ) = 0 (5.9)

λ1 ≥ 0 (5.10)

λT2 f2 (γ) = 0 (5.11)

λ2 � 0 (5.12)

where γ is a feasible point of (5.7). We will study the conditions by making assumptions about

the different constraints being active or not.

If f1 is not active (f1 (γ) < 0), then we have from (5.9) that λ1 = 0, so (5.8) reads as

−
L∑

l=1

φl
2βl
σ2

αi (αiγi + ηi) e
−βl(αiγi+ηi)

2

σ2 − λ2,i = 0∀ i = 1 ..., N. (5.13)

As the values αi,γi, ηi, βl, σ
2 and λ2,i are non-negative, the N equalities in (5.13) will never be

met, except in some degenerate cases, such as αi = 0 ∀i, which are not of interest. This means

that if the point γ is optimum, f1 (γ) = 0. This fact can be easily seen in problem (5.7), where

the terms in the sum of the objective function are decreasing functions of γi, so allocating the

remaining power to any of the terms will make the objective function decrease and, therefore, a

point with non-active f1 cannot be optimum.

If f2,i and f1 are active, i.e., γi = 0, then (5.8) reads as −∑L
l=1 φl

2βl
σ2 αiηie

− ηiβl
σ2 = λ2,i,

or, as the left part of the equation is non-positive, and condition (5.12) constraints λ2,i to be

non-negative,
∑L

l=1 φl
2βl
σ2 αiηie

− ηiβl
σ2 = 0, so the condition is only met if αi or ηi are equal to zero.

Note that in the case αi = 0 it is clear that allocating power to the i-th carrier is not going

to change the objective function value, so that power consumption is useless. Since these are

again degenerate cases, we can state that for a non-degenerate problem (αi and ηi being strictly

positive), the power constraint f1 is going to be active (f1 (γ) = 0), and the N constraints f2

are going to be inactive (γi > 0 ∀i).

Therefore, the condition (5.8) for a non-degenerate problem is

L∑

l=1

φl
βl
σ2
αi

(
αi +

ηi
γi

)
e−

βl(αiγi+ηi)
2

σ2 = λ1, (5.14)

with a value of λ1 such that the power constraint is met with equality. In order to obtain a
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solution, we define the following function

hi (γi) =

L∑

l=1

φl
βl
σ2
αi

(
αi +

ηi
γi

)
e−

βl(αiγi+ηi)
2

σ2 (5.15)

which is the sum of products of two strictly decreasing functions of γi and, therefore, is a

strictly decreasing function of γi. Taking this fact into account, we can state that the function

h is injective, so the inverse h−1 is unique.

From all the above, the optimum ST power distribution based on the L-GEESM approxi-

mation is computed in two steps:

• Obtain λ1 as the root for 1
N

∑N
i=1 h

−2
i (λ1) = P

• Obtain γi as h−1
i (λ1).

The inversion of h is a computationally expensive operation, and although its values could

be stored in a lookup table in order to speed up the optimization, it is convenient to have

an alternative computationally efficient approximation. In the following section we derive the

optimum power allocation for the PLF approximation, which is much simpler than the previous

approach.

5.4.2 PLF approximation

In this approximation, we have the problem that the objective function is not differentiable. In

a first approach, we will only take into account the logarithmic part of the piecewise function,

and afterwards we will add the upper part ψ > ψ1. The lower clipping ψ < ψ0 will be omitted

for convenience, as its effect in the final results was found to be negligible. For ψ0 < ψ < ψ1,

the optimum value of γ is obtained by solving

minimize f0 (γ) , − 1

N

N∑

l=1

2 log (ηi + αiγi)

subject to f1 (γ) ,
1

N

N∑

i=1

γ2
i − P ≤ 0

f2 (γ) , − 2

N
γ � 0

(5.16)
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which is a convex problem. The optimality conditions for this problem read as

− 2

γi + ηi/αi
+ 2λ1γi − 2λ2,i = 0 (5.17)

λ1f1 (γ) = 0 (5.18)

λ1 ≥ 0 (5.19)

λT2 f2 (γ) = 0 (5.20)

λ2 � 0. (5.21)

If the power constraint is not active (f1 (γ) < 0), following (5.18) we have that λ1 = 0. Thus, we

arrive to condition − 1
γi+ηi/αi

− λ2,i = 0, that will only be met in the case αi = 0 ∀ i. Similarly,

if γi = 0 for some values of i, then −αi
ηi
− λ2,i = 0, a condition that will only be met in the case

αi = 0. Therefore, for the non-degenerate cases we have that the power constraint is met with

equality, and the non-negativity constraint with inequality.

With the previous conditions, and for non-degenerate cases, we have that

γi =
−ηi +

√
4α2

i + η2
i λ1/
√
λ1

2αi
(5.22)

with a value of λ1 such that the power constraint is met with equality, i.e.,

1

N

N∑

i=1



−ηi +

√
4α2

i + η2
i λ1/
√
λ1

2αi




2

= P. (5.23)

If we add the upper clipping to the problem, it is clear that if (ηi + αiγi)
2 /σ2 > ψ1 some

power is being wasted on the i-th carrier, as a value of

γi =

√
ψ1σ − ηi
αi

(5.24)

will lead to the same objective function value with less power consumption. Therefore, we

propose to solve the optimization problem iteratively by clipping the values of γi with ψi > ψ1

according to (5.24), removing those γi from the optimization, and running the algorithm once

again. Algorithm 1 describes this iterative approximation.
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Algorithm 1: Iterative approximation for the upper-clipped PLF optimization

O = {i|ψi < ψ1};
end← false
while not end do

Solve Problem (5.16) over γi, i ∈ O
A ← {i|ψi > ψ1}
if A = ∅ then
end← true

else
γi =

√
ψ1σ−ηi
αi

∀ i ∈ A
O ← O \ A

end if
end while

5.4.3 Results

We analyzed the obtained MIESM values for the PLF and 2-GEESM approximations for a

16-QAM constellation. The noise variance was set to σ2 = 0.2, and the number of carriers

was N = 128. The optimization was run for different values of P . In Figure 5.3 we show

the coefficients of the simulated channel (recall that αi and ηi were assumed, without loss of

generality, to be non-negative values) and the resulting γ for different values of P for the 2-

GEESM approximation. It can be seen that the secondary power allocation concentrates on

those carriers with a weaker primary channel.

In Figure 5.4 we show the fraction of released resources 1− ρ as a function of the available

secondary power P . It can be seen that the PLF approximation offers a performance that is

comparable with the one offered by the GEESM approximation, and outperforms a uniform

power allocation policy (i.e., γi =
√
P ∀i). Thus, this PLF approximation can be of special

interest because of its reduced complexity. The fraction of released resources 1− ρ is shown to

increase with P , reaching near a 40% of released resources for values of P near 1. The thresholds

ti that conform the mapping from effective SNR to MCS rate and throughput were taken from

the LTE performance study in [98]. In our simulations, the MCS evolves from 16-QAM 1/3 to

16-QAM 4/5.

5.5 Channel estimation with SNR feedback

In the previous sections we assumed perfect knowledge of the channel coefficients αi and ηi.

In a practical scenario this perfect knowledge is not possible, so CSI has to be obtained by
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Figure 5.3: Channel under study, and optimum power allocation for different values of P . 2-
GEESM approximation.

exploiting the information exchanged between the primary transmitter and receiver. We consider

a simplified scenario where the channel coefficients αi, ηi are time invariant, and the noise power

σ2 is known at both PR and ST. After a group of OFDM symbols, in the n-th feedback message,

the PR conveys the square root of the SNR measured at each carrier, that we will model as

fi,n =
|ηi + γi,nαi + wi,n|√

(2σ2)
(5.25)

where the terms wi,n are independent and identically distributed random variables2 wi,n ∼
CN

(
0, 2σ2

)
that account for the SNR estimation error. This could be the case of an OFDM

system that uses a pilot-based estimation scheme where the pilot symbols have unit power, and

the PR just feeds back the modulus of the received pilot. ηi and αi are modeled as deterministic

but unknown parameters, so we will follow a maximum likelihood (ML) estimation approach.

As the SNR is fed back separately for each carrier, the estimation can be carried out

independently for every carrier, so we will drop the carrier index i in the following expressions.

For convenience, we will consider our observations xn to be

xn = fn
√

2σ2 = |η + γnα+ wn| . (5.26)

Let us denote xJ , [x1, ..., xJ ]T as the result of stacking J observations into a vector. It can

be seen that the observations are independently Rician distributed, so the probability density

2In this case, the noise variance was set to 2σ2 to keep the notation consistent with the usual representation
of a Rician random variable, where σ2 denotes the noise variance per dimension.
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function of xJ , parametrized by the unknown parameters η and α, is given by

p (xJ ; η, α) =
J∏

n=1

xn
σ2

exp

(
−x

2
n + ν2

n

2σ2

)
I0

(xnνn
σ2

)
(5.27)

where νn = |η + γnα|. In this case, γn can be seen as a training sequence for the estimation

procedure. With this, we can write the log-likelihood function of (η, α) as

L (η, α) =
J∑

n=1

−ν2
n

2σ2
+ log

(
I0

(xnνn
σ2

))
(5.28)

where I0 (·) is the zeroth order modified Bessel function of the first kind, and a constant term

that is independent of the parameters (η, α) has been omitted.

It is important to remark that the parameter νn is not constant with n, as γn can change

with time. In fact, if we try to simplify the log-likelihood function by making γn constant with

n an ambiguity will appear in the estimation procedure, as the likelihood function will have an

infinite number of maxima. This fact is illustrated in Figure 5.5, where the existence of multiple

(or even infinite) global and local maxima complicates the problem, even for a simple case with

real parameters (η = 3, α = 1,Φ = 0). In fact, there exists an additional ambiguity that cannot

be removed, as the points (η, α) and
(
ηejΦ0 , αejΦ0

)
lead to the same likelihood value. However,

this ambiguity does not affect our optimization procedure, as it only depends on the modulus

of the channels (|ηi| and |αi|) and the difference in its phase (Φ), as presented in Section 5.3.
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With this, we can rewrite L as a function of the parameters of interest

L (|η|, |α|,Φ) =

J∑

n=1

−
∣∣|η| ejΦ + γn |α|

∣∣2

2σ2
(5.29)

+ log

(
I0

(
xn
∣∣|η| ejΦ + γn |α|

∣∣
σ2

))
.

5.5.1 Results

The log-likelihood function was maximized using a gradient based algorithm with two initial

points (α, η,Φ) = (1, 1, π/2) and (1, 1,−π/2), selecting afterwards the one that led to a higher

value of L in order to cope with the presence of local maximum. The training sequence γ

was selected randomly following a complex Gaussian distribution, and normalized afterwards to

meet the power constraint P . The studied channel is the one in Figure 5.3 with additional phase

terms3 multiplying the coefficients ηi with ejΦi , Φi = 4πi/N . The estimation procedure was

run for different training sequence lengths J , and the PLF-based Algorithm 1 was run taking

as input the estimated (|αi|, |ηi|). The knowledge of Φi was used to make the primary and

secondary contributions to be coherently added at the primary receiver, as explained in Section

5.3. The conditions of the simulation are the same as in Section 5.4, and the estimation noise was

set to wk ∼ CN (0, 0.2). The obtained results are shown in Figure 5.6, where it can be seen that

even the scenario with a short training sequence (J = 5) outperforms the uniform allocation4,

especially for large values of P . For smaller values of P the estimation error is much larger, so

the fraction of released resources can be increased by the use of longer training sequences.

5.6 Other CSI acquisition schemes

5.6.1 Introduction

In the previous sections we showed how to exploit the primary feedback to obtain CSI. This CSI

acquisition scheme, however, is difficult to analyze due to the lack of phase information on the

channel. For example, it is difficult to obtain optimum training sequences γi, or a closed form

expression for the estimation mean squared error. In this section, we follow a different approach,

taken from [15]. We consider single carrier schemes, that can be extended to the OFDM case

3The obtained results were similar when a random phase component was applied to each carrier separately.
4In Section 5.4 the uniform power allocation assumed phase knowledge, so the primary and secondary contri-

butions were coherently added. In this case, no phase knowledge is assumed, so some of the carriers can experience
a lower SNR than that in absence of the ST, so the gain is much smaller.
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by repeating the process for each carrier. If we assume that the PR estimates the equivalent

channel (the channel resulting from the addition of the contributions coming from the ST and

the PT) and broadcasts its value, the ST might gain access to CSI in the following way: in the

first time slot, when the ST joins the network, it does not transmit the primary message, so the

received waveform at the PR is

ri = ηxi + zi, (5.30)

with xi the primary codeword, and zi a sample of Gaussian noise. At that time slot, the PR

broadcasts the estimated channel hi ≈ η. In the second time slot, the ST allocates |γ|2 units of

power to the primary message, so the received waveform is

ri+1 = (η + γα)xi+1 + zi+1. (5.31)

At this time, the PR broadcasts the estimated channel hi+1 ≈ η + γα, so the channel values α

and η can be approximately obtained as α ≈ hi+1−hi
γ , η ≈ hi. Note that the one-tap precoding

sequence γ = [0, γ] can be considered as a training sequence for the channel estimation

problem.

Although this simple interaction framework has been cited in other works like [99], and

even for a multiple antenna channel in [100], to the best of our knowledge this CSI acquisition

technique has not been sufficiently studied in the literature. In this section, we derive closed-form

expressions for the mean squared error (MSE) of the channel estimates in a single input single

output (SISO) channel, in a multiple input multiple output (MIMO) channel with transmit
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beamforming and in a SISO time varying channel.

5.6.2 SISO Channel

We assume α, η ∈ C are the time-invariant ST to PR and PT to PR channels, respectively, and

model the i-th feedback message as

yi = (αγi + η) + ni, ni ∼ CN
(
0, σ2

)
(5.32)

where ni is a zero-mean Gaussian random variable that accounts for the estimation error and

γi is the one-tap pre-equalizer previously introduced. We assume that feedback is error-free.

Note that if we remove the term γi, we have that the parameters α and η are not identifiable.

We define the vector observation y = [y1, ..., yM ]T resulting from stacking M scalar observations

as

y = γα+ 1Mη + n (5.33)

with γ = [γ1, ... γM ]T , 1M a column vector with its M entries equal to one and n ∼ N
(
0, σ2IM

)
.

The probability density function of the observations y, conditioned on the parameters to estimate

(α, η), is

p (y;α, η) =
(
πσ2

)−M
exp

(
−‖y − αγ − η1M‖

2

σ2

)
. (5.34)
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In this case, the Fisher Information Matrix (FIM) I reads as

I =
1

σ2

[
‖γ‖2 γ∗1TM
1TMγ M

]
. (5.35)

Note that if γi is constant ∀ i then the FIM is not invertible, thus leading to unidentifiable

parameters [101].

The Cramér-Rao bound (CRB) for the variance of any unbiased estimator α̂ and η̂ can be

obtained from (5.35) as

Var [α̂] ≥ M

σ2 detI
(5.36)

Var [η̂] ≥ ‖γ‖2
σ2 detI . (5.37)

The determinant of I can be written as

detI = σ−4
(
M ‖γ‖2 − ‖γ∗1M‖2

)
. (5.38)

For a given total power ‖γ‖2 ≤ P , the values of γ that maximize the determinant of I, and,

therefore, minimize the CRB, are those with γ∗1M = 0 and ‖γ‖2 = P . Just by taking any

vector of this family, we arrive to

Var [α̂] ≥ σ2

P
(5.39)

Var [η̂] ≥ σ2

M
. (5.40)

Moreover, it can be easily seen that, in this case, an efficient estimator exists [102], and is given

by

[α̂, η̂]T =




Mγ∗y − γ∗1M1TMy

M‖γ‖2−‖1Mγ‖2
‖γ‖21TMy − 1TMγγ∗y

M‖γ‖2−‖1Mγ‖2


 (5.41)

that for any optimum sequence γ reads as

[α̂, η̂]T =




γ∗y

P
1TMy

M


 . (5.42)

Note that this estimator, with the optimum training sequence, performs the following operations:

• For the estimation of α, it correlates the received signal with γ. As γ is zero mean, it

completely removes the parameter η. A power normalization is performed afterwards.
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• For the estimation of η, it averages the received signal, thus removing the parameter α, as

it is multiplied by a zero-mean sequence. A normalization is performed afterwards.

Thus, the mean and the correlation are sufficient statistics for the estimation.

At the view of these results, we conclude that the training sequence γ = [0, γ] introduced

in [15] is not optimum in the sense of minimum estimation variance for a given total power, as

γ∗12 = γ 6= 0.

5.6.3 MIMO channel

In this section we extend the results to the case of transmit MIMO channels with transmit

beamforming.

Let us denote by Hs ∈ CNr×Ns the (assumed to be flat fading) MIMO channel from the

ST to the PR, and as Hp ∈ CNr×Np the MIMO channel from the PT to the PR. We will assume

that the PT is transmitting only one data layer at a time by applying a fixed beamforming

vector wp ∈ CNp , and the ST is also conveying the primary information by using a beamforming

vector ws,i ∈ CNs , which can be time-varying. We will also assume that the PR is estimating

the SIMO channel (combination of the beamforming + MIMO channel) such that the SIMO

channel estimate yi ∈ CNr can be written as

yi = Hpwp + Hsws,i + ni, ni ∼ N (0,Cn) (5.43)

where ni accounts for the estimation error.

If the PR broadcast these channel estimates, then the PT would be able to acquire some

CSI. Note that the assumption of fixed beamforming wp makes the separate estimation of Hp and

wp impossible, so we will denote by g , Hpwp the SIMO channel comprising the combination of

beamforming and MIMO channel from the PT to the PR. The objective of the ST is to estimate

both g and Hs from the observations yi, by treating the sequence of beamforming vectors ws.i

as a training sequence.

Estimation problem

For notational simplicity we will denote H , Hs and wi , ws,i, as the primary MIMO channel

and beamforming vectors are included in the SIMO channel g. At a given time instant i, our

observation will be

yi = g + Hwi + ni. (5.44)
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If we stack M observations into a column vector we obtain the MNr × 1 vector y as follows:

y =




g

...

g


+




Hw1

...

HwM


+




n1

...

nM


 . (5.45)

As we are interested in estimating both the vector g and the matrix H, we will rewrite (5.45) as

y = (1M ⊗ INr) g + (W ⊗ INr) h + n (5.46)

with IM the M ×M identity matrix, ⊗ the Kronecker product operator, and h = vec H is the

result of stacking the columns of H into a vector, so h ∈ CNsNr . The training sequence matrix

is the result of stacking into a matrix the training sequence wT
i : W = [w1, ..., wM ]T ∈ CM×Ns .

The vector n ∼ CN (0,C), with C = Cn ⊗ IM , is the result of stacking the M noise vectors ni.

With this, we can rewrite (5.46) as

y = Kg + Rh + n (5.47)

with K , (1M ⊗ INr) ∈ CNrM×Nr and R , (W ⊗ INr) ∈ CNrM×NrNs . It can be easily seen

that (5.47) is a Gaussian linear model [102], so if we define A = [K R] and b =
[
gT hT

]T
the

minimum variance unbiased (MVU) estimator (which is efficient) is given by

b̂ =
(
A∗C−1A

)−1
A∗C−1y (5.48)

which is distributed according to

b̂ ∼ CN
(
b,
(
A∗C−1A

)−1
)
. (5.49)

Note that in the previous equations we have assumed M ≥ Ns + 1 so the provided inverse

matrices exist.

Training sequence design

We will design our training sequence W in order to minimize the total estimation variance,

subject to a total power constraint P :

minimize tr
(
A∗C−1A

)−1

subject to tr (W∗W) ≤ P.
(5.50)
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In the following, we will assume that C = σ2IMNr , so the matrix in the objective function reads

as

A∗C−1A =
1

σ2
M⊗ INr (5.51)

with

M ,

[
1TM
W∗

]
[1M , W] . (5.52)

Therefore, the objective function in (5.50) reads as

tr
(
A∗C−1A

)−1
= σ2Nr tr M−1. (5.53)

As Nr and σ2 do not depend on W, we can rewrite (5.50) as

minimize tr M−1

subject to tr (W∗W) ≤ P.
(5.54)

Note that

M =

[
M 1TMW

W∗1M W∗W

]
, (5.55)

so the trace of the inverse matrix of M can be written as a function of the Schur comple-

ments of the submatrices in M as tr M−1 = tr S−1
M + trS−1

WMW
, with SM and SW∗W the Schur

complements of M and W∗W in M. The inverse of the latter can be expanded by using the

Sherman-Morrison formula:

S−1
W∗W = (W∗W)−1 +

1

M

(W∗W)−1 W∗1M1TMW (W∗W)−1

M − 1TMW (W∗W)−1 W∗1M
(5.56)

so the objective function is

tr M−1 = c

(
1 +

tr Q

M

)
+ tr (W∗W)−1 (5.57)

where

Q , (W∗W)−1 W∗1M1TMW (W∗W)−1 (5.58)

and

c , S−1
W∗W =

(
M − 1TMW (W∗W)−1 W∗1M

)−1
(5.59)

In the following, we will minimize separately the two terms in the sum (5.57).
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Minimization of c
(

1 + trQ
M

)
:

If we define j = (W∗W)−1 W∗1M then we have that tr Q = tr jj∗ = ‖j‖2 so we can write

c

(
1 +

tr Q

M

)
=

1 + 1
M ‖j‖2

M − 1TMWj
. (5.60)

The denominator is always positive since

1TMWj = 1TMPW1M ≤M (5.61)

with PW = W (W∗W)−1 W∗ the projection matrix into the subspace spanned by the columns

of W, so (5.60) is minimized when j = 0 or, equivalently W∗1M = 0. Note that this minimization

is not affected by the power constraint.

Minimization of tr (W∗W)−1:

This minimization is affected by the power constraint tr W∗W ≤ P . As tr A =
∑N

i=1 λi (A)

and tr A−1 =
∑N

i=1 λi
(
A−1

)
=
∑N

i=1 λ
−1
i (A) for A ∈ CN×N we can state our optimization

problem as

minimize

Ns∑

i=1

1

λi

subject to

Ns∑

i=1

λi ≤ P, −λi ≤ 0

(5.62)

which is convex. If we define λ = [λ1, ..., λNs ], it can be proved by using the KKT conditions

that the optimum value is given by λ = P
Ns

1Ns , leading to an objective function value of

tr (W∗W)−1 = N2
s
P .

Putting all together:

From the previous results, if we can find a matrix that meets the following properties

1. The Ns eigenvalues of W∗W are all equal to P
Ns

, and

2. W∗1M = 0,

then the optimum training sequence will be given by W. We can write the Singular Value

Decomposition (SVD) of the matrix W as

W = U

[
Σ

0M−Ns×Ns

]
V∗ (5.63)
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with U ∈ CM×M and V ∈ CNs×Ns unitary matrices, and Σ = diag (σ1 ... σNs) is a diagonal

matrix containing the nonzero singular values of W.

Now, we have that λi (W∗W) = σ2
i , so property 1 does only depend on the values of the

matrix Σ.

In order to characterize the second property, we can rewrite (5.63) as the thin SVD

W = [U1 U2]

[
Σ

0M−Ns×Ns

]
V∗ = U1ΣV∗ (5.64)

with U1 ∈ CM×Ns the matrix containing the first Ns columns of U. Condition 2 can be rewritten

as V∗ΣU∗11M = 0. Note that V and Σ are invertible, so the previous condition is equivalent to

U∗11M = 0, that only depends on the submatrix U1. Therefore, it is possible to find a matrix

W that meets the two conditions at the same time by means of the following procedure:

1. Let U be an orthonormal base of CM with 1√
M

1M as a vector.

2. Choose Ns of the vectors in U except 1√
M

1M . Put them into the matrix U1.

3. Set Σ =
√
P/NsINs .

4. Let V be an orthonormal base of CNs .

5. Obtain the matrix training sequence as W = U1ΣV∗.

With this family of training sequences, the matrix M in (5.55) is block-diagonal, and the

optimization problem in (5.50) is solved with a value of

tr
(
A∗C−1A

)−1
= σ2Nr

(
1

M
+
N2
s

P

)
. (5.65)

5.6.4 Time varying channel

In this section we will study a scenario with time varying (TV) channels. We assume that for

a given observation period of M samples, the TV channels α = [α1 ..., αM ]T , η = [η1, ..., ηM ]T

can be written following a basis expansion model (BEM) as

α = Fαbα, η = Fηbη, (5.66)
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with bα ∈ CKα and bη ∈ CKη the BEM coefficients, and Fα and Fη the matrices containing the

Kα and Kη first columns of the M ×M Discrete Fourier Transform (DFT) matrix F:

F =
1√
M

[
f0 f1 ... fM−1

]
(5.67)

with f i =
[
1, e−j

2πi
M , e−j2

2πi
M , ... e−j(M−1) 2πi

M

]T
.

Note that F∗xFx = IKx but FxF
∗
x 6= IM in general, for x ∈ {η, α}.

Let γ = [γ1, ..., γM ]T be the sequence of pre-equalizers applied at the ST, and Γ = diag (γ).

We can write our observation vector y = [y1, ..., yM ]T as

y = ΓFαbα + Fηbη + n (5.68)

with n ∼ CN
(

0, σ
2

M IM

)
. The factor 1/M is introduced in the noise variance to have a constant

signal to noise ratio per observation, independently from the value of M .

The objective of the ST is to estimate the parameters bα and bη in order to predict the

channel. Since (5.68) is a linear model, an efficient estimator b̂ of b ,
[
bTα ,b

T
η

]T
can be found

with a distribution b̂ ∼ CN (b,Cb) where

Cb =
σ2

M
(H∗H)−1 (5.69)

and H =
[

ΓFα Fη

]
.

In the following we will assume that M ≥ Kα + Kη so the inverse in (5.69) exists. The

total estimation variance can be written as

σ2

M
tr (H∗H)−1 =

σ2

M
tr

[
A B

B∗ IKα

]−1

(5.70)

with A = F∗αΓ∗ΓFα and B = F∗αΓ∗Fη. Note that the trace can be written as a function of the

Schur complements of the block matrices as

tr

[
A B

B∗ IKα

]−1

= tr S−1
IKα

+ tr S−1
A (5.71)

that can be written, following the Woodbury matrix identity, as

S−1
IKα

= A−1 + A−1B∗
(
IKα + BA−1B∗

)−1
BA−1 (5.72)
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and

S−1
A = IKα + B

(
A−1 + B∗B

)−1
B∗. (5.73)

Now, we proceed to separately minimize the traces of the inverses of the Schur complements.

Minimization of tr S−1
A

Note that

tr S−1
A = Kα + tr B

(
A−1 + B∗B

)−1
B∗ ≥ Kα (5.74)

since the second term in the sum is a positive semidefinite matrix. Recall that B = F∗ηΓFα, so

(5.74) will be minimized when B = 0. If we set

γi =
√
re−j

2πiKη
M , i = 1, ..., M (5.75)

with r a positive number, we have that

ΓFα =

√
r

M

[
fKη fKη+1 ... fKη+Kα−1

]
(5.76)

so B = F∗ηΓFα = 0. In this case, the training sequence γ is modulating the channel, thus

artificially introducing a faster time variation in the channel from the ST to the PR. In this

case, the estimator is able to distinguish the lowpass variations of the channel, which correspond

to η, from those variations at higher frequencies, which correspond to α. With this training

sequence we have that tr S−1
A = Kα.

Minimization of tr S−1
IKα

Since

tr S−1
IKα

= tr A−1 + tr A−1B∗
(
IKα + BA−1B∗

)−1
BA−1 ≥ tr A−1, (5.77)

the second term of the sum is also minimized when B = 0.

We can find an optimum training sequence for the first term tr A−1 = tr (F∗Γ∗ΓF)−1 as

follows. Let Σ , Γ∗Γ. Since A is positive definite we have that (see Appendix 5.A for a proof)

tr A−1 ≥
Kα∑

i=1

1

ai
(5.78)
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with equality if and only if A is diagonal, and where

ai = f∗i−1Σf i−1 =
1

M
tr Σ (5.79)

is the i-th element of the diagonal of A. Therefore, the optimum value of Σ, subject to tr Σ ≤ P
is

Σ =
P

M
IM (5.80)

so that A is diagonal and tr A−1 = KαM
P .

Putting all together

It can be easily seen that the optimality conditions obtained in (5.6.4) and (5.6.4) are compatible,

since a training sequence

γ =

√
P

M

[
1, e−j

2πKη
M , · · · e−j(M−1)

2πKη
M

]
(5.81)

meets (5.80) and (5.75). Therefore, the total estimation variance is σ2
(
Kη
M + Kα

P

)
.

5.6.5 Results

In Table 5.1 we summarize the results obtained in this section. In Figures 5.7a-5.7c the esti-

mation variance results for the SISO, MIMO and TV channels are shown. In all cases, dashed

lines represent the analytical expression for the MSE with the On-Off 5 procedure described

in [15], solid lines those of the optimum training sequence, and squares and circles the results of

the Monte Carlo simulations in the On-Off and optimum cases, respectively. As expected, the

optimum training clearly outperforms the On-Off one, being this difference specially noticeable

in the TV channel.

5.7 Conclusions

In this chapter we presented a scenario where a secondary transmitter is aware of the primary

message, and exploits this knowledge to free some primary transmission resources to convey

a secondary message. Channel knowledge is obtained by exploiting the SNR-based feedback

5For the MIMO case, the On-Off approach uses only one transmit antenna in each time slot. For the SISO
case, when more than two time slots are used, the On-Off sequence is of the form 0, γ, 0, γ . . ..
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Channel SISO MIMO SISO-TV

Signal Model y = γα+ 1Mη + n y = (1M ⊗ INr) g+
(W ⊗ INr) h + n

y = ΓFαbα + Fηbη + n

Signal Model Pa-
rameters

M : Number of Obser-
vations.
σ2: Noise Variance.
P : Power of the train-
ing sequence.

M : Number of Obser-
vations.
σ2: Noise Variance.
P : Power of the train-
ing sequence.
Nr: Number of receive
antennas.
Ns: Number of transmit
antennas at the ST.

M : Number of Observations.
σ2: Noise Variance.
P : Power of the training se-
quence.
Kα: Number of BEM coeffi-
cients of the ST to PR channel.
Kη: Number of BEM coeffi-
cients of the PT to PR channel.

Parameters to es-
timate

α, η g, h bα, bη

Optimum Train-
ing Sequence

γ |γT1 = 0, ‖γ‖2= P W = U1ΣVH with

Σ =
√

P
Ns

I, UT
1 1 = 0

γ =
√

P
M




e−j0
2πKη
M

...

e−j(M−1)
2πKη
M




Estimation Vari-
ance

σ2
(

1
P + 1

M

)
σ2Nr

(
N2
s
P + 1

M

)
σ2
(
Kα
P +

Kη
M

)

Table 5.1: Summary of results
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Figure 5.7: Channel estimation error for SISO, MIMO and time-varying channels. Solid lines
represent the MSE obtained by using the training sequences in Table 5.1. Lines represent the
analytical MSE, and circles/squares the simulation results.
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from the primary receiver. This knowledge is shown to dramatically increase the fraction of

released resources with respect to a non-CSI aware secondary transmitter. We also analyzed

the CSI acquisition problem as presented in [15], and extended its results to the case of MIMO

and time-varying channels. We derived closed form expressions for the variance of the channel

estimators and designed optimum training sequences that minimize such a variance.

The content of this chapter was partially published in the conference proceedings of CIP

2012 and Asilomar 2012 [103,104] with Prof. Carlos Mosquera as a co-author.

Appendix 5.A Trace inverse inequality

We will prove that if A � 0, A ∈ CN×N then

tr A−1 ≥
N∑

i=1

1

ai
(5.82)

with ai the i-th element of the diagonal of A. Note that

tr A−1 = tr
adjA

det A
=

1

det A

N∑

i=1

det Ai (5.83)

with Ai the matrix resulting from the removal of the i-th row and column of matrix A.

It suffices to prove that

det A ≤ ai det Ai ∀ i. (5.84)

More specifically, it suffices to prove (5.84) for i = 1 (for other values of i just apply a permu-

tation). If we write

A =

[
a1 xT

x A1

]
(5.85)

we have that

det A = det A1

(
a1 − xTA−1

1 x
)
≤ det A1a1 (5.86)

since A−1 � 0.
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6.1 Introduction

In mobile satellite communications, there is an increasing need for more efficient transmission

techniques that enable higher bit-rates at an affordable cost. To this extent, adaptive modulation

and coding (AMC) allows the provision of broadband services to large user populations at lower

costs, since it makes it possible to operate the links more efficiently by selecting the most

suitable modulation and coding scheme (MCS) at each time [36]. However, the use of AMC for

mobile links operating at S-band is hindered by the behavior of the land mobile satellite (LMS)

channel [105]. This channel is usually modeled by a fast fading component, whose spectrum is

related to the mobile speed by the Doppler effect, superimposed on a slow shadowing component;

the parameters of both fading and shadowing depend on the environment in which the receiver

happens to be. In short, the mobility of the user terminal will cause fast, difficult to predict

channel variations, which will pose additional difficulties on the design of both forward and

return link strategies.

Elaborating more on this issue, adaptation can be performed in open-loop or closed loop

mode. In an open-loop scheme, the transmitter directly measures the signal quality from the

reverse link and changes the parameters accordingly; it usually enjoys negligible delays, although

at the price of having only partial information when both links are not perfectly correlated. On

the other hand, closed-loop strategies wait for the other end to process their data and operate

upon receiving some information about its reception. This makes them more accurate, although

the experienced delay is much higher. In Figure 6.1 we show a diagram with the difference

between closed loop and open loop adaptation.

Another key problem is that it is difficult to relate the channel statistics -even if we knew

them- to the performance of the link because the channel is time varying. For example, it is

difficult to tell what is best, a fixed channel with low quality or a fast varying channel with sharp

transitions and a higher average quality. In an LMS channel, where transmission usually entails

the use of complicated channel codes, if is difficult to do this without resorting to extensive

simulations. This, however, is highly undesired for the design of an AMC strategy. In order to

overcome this problem, we propose to use physical layer abstraction techniques. Thus, we will

use effective SNR metrics (ESM) that have been reported to map complicated channel profiles

with their actual performance in a one-to-one manner [106]. Therefore, our key assumption will

be the following: a codeword will be correctly transmitted if the ESM of the channel that it

undergoes is higher than or equal to the decoding threshold specified for the MCS in use in a

static channel.

Focusing firstly on the forward link, the fading is attached to the receiver and, as a conse-
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(a) Open loop adaptation. (b) Closed loop adaptation.

Figure 6.1: Example of link adaptation in the return link. In open loop mode, the terminal
observes the forward link signal and selects the MCS based on this value. In closed loop mode,
the gateway measures the return link channel and feeds back the optimum MCS value to the
terminal.

quence, the delay experienced by the CSI will be much longer than the channel coherence time

for most speeds of practical interest. Therefore, the received CSI will be completely outdated

-even if considering an open-loop scheme [107]- and rate adaptation will be of no use. However,

if frames can be retransmitted or, at least, some additional redundancy or parity bits can be

sent, then higher throughputs can be achieved at the cost of some latency. The underlying idea

would be to transmit at a higher rate during good states of the channel, while somehow keeping

the outage probability low. To achieve this, we propose two different strategies. The first one

suggest resorting to superposition or multi-layer coding (MLC) with retransmissions, in a spirit

close to hybrid-ARQ systems or layered rateless codes [108]. Particularly, we consider the use

of two layers of information, each of them modulated at a different power. Upon reception,

a decoding performance indicator will be sent and those bits which were not decoded by the

receiver will be resent in a robust way (that is, in the high power layer) in order to keep the

latency low. The second strategy for the forward link relies on the use of different MCS for

different retransmission indexes. A high throughput is achieved by using high rate MCS in the

first transmissions, and an outage constraint is met by reducing the rate when the retransmission

index is high. A similar idea was presented in [108], where MLC and MCS that change with the

retransmissions are used.

On the other hand, the return link enjoys timely channel information when operating in

open-loop mode, but at the cost of having only partial CSI. This partial CSI knowledge is caused
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by the operation of forward and return links on different frequency bands, so the multipath

fading is uncorrelated [109]. The shadowing component, however, is the same for both channels.

In some cases, open loop adaptation might offer a better performance than closed loop, but

selecting the optimum operating regime is not a simple task. We propose to adaptively weight

the open loop and closed loop CSI using only the ACK/NAK interchange.

The remaining of the chapter is structured as follows. Section 6.2 describes the system

model; Section 6.3 contains the multi-layer coding approach to adaptation in the forward link;

Section 6.4 describes the variable MCS adaptation in the forward link; Section 6.5 explains the

adaptive CSI balancing for adaptation in the return link; Section 6.6 concludes the chapter.

6.2 System model

Consider a mobile satellite link operating at the L-band; the forward link band is centered at

a frequency of 1550 MHz and the return link at a frequency of 1650 MHz. In the following we

describe the signal model in detail, along with some key system assumptions.

6.2.1 Signal model

The signal model at a given time instant i, for both the forward and return link, is

yi =
√

snr · hxl
i xi + wi (6.1)

with yi the received symbol, si the transmitted symbol, hxl
i the channel coefficient, with xl ∈

{fl, rl} the channel in the forward or return link1, and snr the signal to noise ratio; we also define

σ2 , snr−1. Accordingly, wi is the unit-power noise contribution.

In the following, we describe the channel model and present some assumptions on the coding

of the system under study. The methods developed in this chapter do not depend in the specific

channel model, that will be abstracted by the use of ESM.

Channel model

We assume hxl
i follows a Loo distribution [110]: slow variations in the LOS component (shadow-

ing) are described by a log-normal distribution, whereas fast fluctuations of the signal amplitude

(fading) are given by a Rician distribution. The PDF of the signal amplitude at a given time

1Throughout the chapter, the subscript fl or rl might be removed if the context is clear.
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instant would be given by

fr(x) =
x

b0
√

2πd0

∫ ∞

0

1

z
exp

(
−(log z − µ)2

2d0
− x2 + z2

2b0

)
I0

(
x · z
b0

)
dz (6.2)

where d0 and µ are the scale parameter and the location parameter of the log-normal distribution,

respectively, and b0 is the variance of the Rician distribution; to determine these parameters

we follow the Fontan 3-state model [105]. If we average over the different states of the Fontan

model, the resulting channel amplitude has the form of a Loo mixture, with PDF

fr(x) =
N∑

i=1

pi
x

b0
√

2πd0,i

∫ ∞

0

1

z
exp

(
−(log z − µi)2

2d0,i
− x2 + z2

2b0,i

)
I0

(
x · z
b0,i

)
∂z (6.3)

From an implementation point of view, [105] advocates for generating the LOS component

by first obtaining independent Gaussian samples n, exponentiating them 10(n/20) to obtain log-

normally distributed numbers, and finally interpolating them to obtain the correlation properties

specified by the model. This procedure, followed by many more references afterwards, has two

main drawbacks: the resulting sequence is not log-normal (interpolating a log-normal sequence

does not preserve the original distribution), and the resulting process is not stationary.

A different procedure that preserves log-normality and ensures stationarity is proposed

here. Starting from i.i.d. Gaussian samples, the correlation properties are introduced before the

exponentiation [111] by a low pass filter whose cutoff frequency is given by fLOS = v · Tsymb/dc

where v is the terminal speed, Tsymb is the symbol period and dc is the measured correlation

distance of the LOS component, which we have obtained from [112]. We assume that the

bandwidth of the system in both forward and return links is of 33.6 KHz, which leads to

Tsymb = 1/(33.6 103) s.

The NLOS component, on the other hand, is obtained by filtering complex Gaussian samples

with a low-pass filter whose cutoff frequency is given by the Doppler spread. Through this work

we will assume that forward and return link channels experience the exact same LOS realization,

but independent NLOS components with the same b0 parameter and equal Doppler frequencies2.

To sum up, the forward and return link channels are generated by

hrl
i = hLOS

i + hNLOS,rl
i , hfl

i = hLOS
i + hNLOS,fl

i . (6.4)

2This is a simplification, as return and forward link operate in different frequencies. The difference between
them, however, is less than 7%.
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Figure 6.2: Diagram of the channel generation process. α and Ψ denote the mean and standard
deviation of the lognormal shadowing when expressed in dB.

MCS Coding rate γth (dB)

QPSK 1/4 0.357 -1.5

QPSK 1/3 0.616 -0.3

QPSK 2/5 0.745 0.6

QPSK 1/2 0.831 1.9

QPSK 3/5 1.132 3.1

QPSK 2/3 1.261 4

QPSK 3/4 1.390 4.9

QPSK 4/5 1.476 5.6

QPSK 5/6 1.562 6.1

QPSK 8/9 1.691 7.1

MCS Coding rate γth (dB)

L8 QPSK 0.34 -2.1534

L7 QPSK 0.39 -1.3663

L6 QPSK 0.46 -0.3605

L5 QPSK 0.53 0.5733

L4 QPSK 0.61 1.5948

L3 QPSK 0.69 2.6092

L2 QPSK 0.73 3.1288

L1 QPSK 0.77 3.6674

R QPSK 0.81 4.2367

Table 6.1: MCS for forward (left) and return links (right). The MCS for the forward link are
the ones used ind DVB-S2 [24], and the return link ones are the used in BGAN [61].

A block diagram of the channel generation process is shown in Figure 6.2.

Transmitted and received symbols

The transmitted symbols are the result of applying forward error correction coding and constel-

lation mapping to a stream of bits; we consider a finite set of available codes, as described in

Table 6.1 for the forward and return links. Throughout the chapter we will denote as γth,j the

threshold SNR for the i-th MCS, and drop the index i when its meaning is clear. We denote as

rj the spectral efficiency of the j-th MCS, that is obtained by multiplying the code rate with

the log2 of the constellation size (2 for QPSK). In the following, we describe the input-output

relationship of a channel using single layer coding. We denote the number of MCS as K. The

definitions for multi-layer coding are similar, and will be introduced in Section 6.3.
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Symbols form codewords xi =
[
xiN , xiN+1, . . . , x(i+1)N−1

]
of constant length N , such that

they see the channel samples

hxl
i ,

[
hxl
iN , h

xl
iN+1, . . . , h

xl
(i+1)N−1

]
(6.5)

with xl ∈ {fl, rl}. For each codeword sent, we assume that the other end feeds back an ACK if

decoding was possible, and a NAK otherwise. We assume that N = 2700, which gives codewords

of approximately 80ms. We neglect the effect of headers or other sort of overhead.

Determining whether a codeword seeing different channel samples will be correctly decoded

or not is a tough task. In general, the average SNR (possibly estimated from pilot symbols

scattered through the codeword) is a poor indicator, as very different channel realizations could

share the same value. To ease the simulation part, we use the effective SNR metrics (ESM)

instead, which is given by

γxl
eff,i , Φ−1


 1

N

(i+1)N−1∑

k=iN

Φ

(
snr ·

∣∣∣hxl
k

∣∣∣
2
)
 , (6.6)

that is the SNR of an additive white Gaussian noise channel with the same mutual information

as the faded channel hxl
i , and with Φ (γ) the mutual information over a Gaussian channel with

SNR γ and input restricted to a certain constellation {X1, . . . , XL}

Φ (γ) = 1− 1

L log2 L
×

L∑

`=1

Ew

[
log2

(
M∑

k=1

e
− |X`−Xk+w|−|w|2

1/γ

)]
(6.7)

with w ∼ CN
(

0, 1
γ

)
.

Using this metric, we assume that the transmission of the i-th codeword fails when γeff,k

is below the threshold SNR of the MCS used, and that it succeeds otherwise. In the case of

multi-layer coding, each layer has a different SNR value. Define εi ∈ {0, 1} as the error event of

the i-th codeword, then

εi =

{
1 if γeff,i < γth

0 otherwise.
(6.8)
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6.3 Forward link: multi-layer coding

6.3.1 Introduction

If the transmitter uses Multi-Level Coding (MLC), the received signal can be written for the

two-layer case as

yi =
√

snr · hi
(√
αxHi +

√
1− αxLi

)
+ wi (6.9)

with xHi and xLi the i-th symbols of the H (High priority) and L (Low priority) levels, and α a

parameter that weights the power sharing between the two layers. Note that for α = 1 we have

a single-layer transmission. This MLC scheme is depicted in Figure 6.3.

Long Term Adaptation

Bit Allocation

XFECFRAME1

XFECFRAME2

Input 

bits

MCS

Channel 

statistics

Figure 6.3: Schematic of the MLC scheme: the input bits are divided into two different layers,
and the transmission parameters are selected according to long-term channel statistics. Although
two different DVB-S2 XFECFRAME are transmitted, they are restricted to be coded with the
same MCS to ease implementation.

For the sake of clarity, we define the SNR of the i-th symbol of the H and L levels as

γHi =
|hi|2 α

σ2 + (1− α) |hi|2
(6.10)

γLi =
|hi|2 (1− α)

σ2
. (6.11)

Note that this approach is conservative, as the interference caused by the L layer to the H layer

is treated as Gaussian noise, when it is clear that it has a lower entropy, thus leading to a higher

mutual information. The effective snr values γLeff,i and γHeff,i are defined by combining (6.10-6.11)

and (6.6).

The L layer will be correctly decoded if theH layer was correctly decoded (i.e., if γHeff,i > γth)
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and if γLeff,i > γth, or, equivalently, if the following condition is met:

γHeff,i ≥ γth ∩ γLeff,i ≥ γth. (6.12)

Note that we are restricting both layers to have the same constellation and code rates,

which is desirable for implementation issues. In the following, we will restrict our analysis to

the first codeword i = 0, without loss of generality, and drop the indexes that take into account

the codeword number.

Our objective function will be the average spectral efficiency (ASE), which is defined for

an MCS index j and power weighting α as

η (j, α) , rj ·
(
P
[
γHeff ≥ γth,j

]
+ P

[
γHeff ≥ γth,j ∩ γLeff ≥ γth,j

])
(6.13)

with rj the spectral efficiency of the j-th MCS. The outage probability constraint is defined as

g (j, α) , P
[
γHeff < γth,j

]
≤ p0. (6.14)

Therefore, our design problem is stated as

maximize η (j, α)

subject to g (j, α) ≤ p0

0 ≤ α ≤ 1

(6.15)

where the maximization is performed over the MCS index j and α ∈ R. The MCS choice

is assuming the knowledge of the channel statistics, which we consider to be available at the

gateway.

In the following, we analyze the problem by assuming a block fading channel, which is a

realistic assumption if the mobile speed is small enough, and makes the problem analytically

tractable, and afterwards evaluate the evolution of throughput and outage probability as a

function of the mobile speed.

6.3.2 Block fading

The histogram of the effective SNR in a Fontan channel has been obtained for different mobile

speeds and for different average SNR values. In Figure 6.4 we can see the variation of the

effective SNR with speed. Clearly, as the speed increases the effective SNR variance diminishes

as the result of averaging more channel states in the same codeword.
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Figure 6.4: Histogram of the effective SNR for different speed values, ITS environment, very
low SNR.

Unfortunately, obtaining the pdf of the effective SNR for a mobile seems to be analytically

intractable, so we will assume that all the channel states seen by a codeword are approximately

the same (block fading):

h1 ≈ hi, i = 2, ..., N (6.16)

so we can approximate

γHeff ≈ γH (6.17)

with γH ≈ γH1 , ..., γHN . If this is the case we can define the event of decodability of the H layer

as

γH ≥ γth,j (6.18)

Analogously, we can rewrite the event of decodability of the L layer as

(
γH ≥ γth,j

)
∩
(
γL ≥ γth,j

)
. (6.19)

Following (6.10) we can rewrite (6.18) as

|h|2 ≥ σ2γth,j

α− (1− α) γth,j
, (6.20)
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and (6.19) according to (6.11) as

|h|2 ≥ max

{
σ2γth,j

α− (1− α) γth,j
,
γth,jσ

2

1− α

}
. (6.21)

Note that if we choose a value of α such that

σ2γth,j

α− (1− α) γth,j
>
γth,jσ

2

1− α (6.22)

then the L layer will be only limited by the decodability of the H layer, which is clearly not

optimum. Therefore, we might want to choose a value of α such that

α ≥ γth,j + 1

γth,j + 2
. (6.23)

By adding this constraint to α, the ASE can be written as

η (j, α) = rj

(
P
[
|h|2 ≥ σ2γth,j

α− (1− α) γth,j

]
+ P

[
|h|2 ≥ γth,jσ

2

1− α

])
(6.24)

and the outage probability

g (j, α) = P

[
|h|2 ≤ σ2γth,j

α− (1− α) γth,j

]
≤ p0. (6.25)

Note that the outage probability applies to the H layer and, in consequence, g (j, α) is a mono-

tonic decreasing function of α, as it is clear that allocating more power to the H layer will

decrease the outage probability. Therefore, if we assume that g (j, 1) ≤ p0 (otherwise the prob-

lem will be infeasible for the MCS j), constraint (6.25) is equivalent to

α ≥ α0,j (6.26)

with α0,j such that g (j, α0,j) = p0. Therefore, for a given j such that the problem is feasible,

the optimum value η?j is obtained as

η?j = max
αmin,j≤α≤1

{η (j, α)} (6.27)

with

αminj , max

{
α0,j ,

γth,j + 1

γth,j + 2

}
, (6.28)

η? = max
{
η?j
}K
j=1

. (6.29)
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Note that the previous expressions involving probabilities of the channel power |h|2 being smaller

than a given threshold k can be easily rewritten as

P
[
|h|2 ≤ a

]
= Fr

(√
a
)

(6.30)

where

Fr
(√
a
)

=

∫ √a

0
fr (x) ∂x, (6.31)

being fr the pdf of the Loo mixture (6.3).

6.3.3 Evolution of outage probability with speed and environment

It is clear that for a given line of sight SNR (the SNR a receiver would experience without

shadowing and fading), the performance of a receiver (in terms of ASE or outage probability) is

going to be heavily dependent on the environment, which determines the fading and shadowing

statistical characterization. Moreover, as we have already seen, an increasing mobile speed

causes different channel states to be averaged during the same codeword, thus reducing the

variance of the effective SNR and, as a consequence, reducing the outage probability.

Therefore, as we are constraining the outage probability to lie below a given threshold

(according to (6.15)), it would be useful to analyze the outage probability performance of the

most protected MCS for different speeds and environments. Note that if the most protected

MCS does not provide the desired outage probability, then it is clear that the optimization

problem (6.15) is unfeasible.

In order to anticipate the performance of the MLC strategy for the LMS channel, we

have simulated its performance for different values of α and speed, as we can see in Figure

6.5. Obviously, the larger α is, the less interference we receive from the L layer, so the outage

probability decreases as α increases. Moreover, we have seen in Figure 6.4 that the effect of

incrementing the speed is to reduce the variance of the ESM, as more states are averaged for

the same codeword. As an outage event occurs when the ESM of a codeword is very small, the

variance reduction implies that this event is less likely. As a consequence, the outage probability

decreases with the speed3.

Results for the intermediate-tree shadowing, heavy-tree shadowing, open and suburban

3A different effect is observed in [113,114] where the ergodic capacity is shown to decrease with speed if pilots
are used to estimate the channel. In our case, we assume perfect CSI and measure the outage capacity. The
analysis of outage capacity in fading channels is quite involved even for the simple case of correlated Rayleigh
taps with perfect CSI [115]. Therefore, the evolution of outage capacity with imperfect CSI does not seem to be
tractable.
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Figure 6.5: Outage probability for different values of α and speed.

environments are shown for mobile speeds of 0.1 m/s and 40 m/s on Figure 6.6. It is easy to

conclude that higher speeds dramatically reduce the required SNR for a given outage probability,

thus allowing the system to operate with lower SNR values. As an example, note that enforcing

an outage probability of 0.1 in the 0.1 m/s case under the heavy-tree shadowing environment

requires the received LOS SNR to be larger than 16 dB; this value is reduced to 10 dB if the

speed is increased up to 40 m/s.
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Figure 6.6: Outage probability for the most protected MCS in different environments.
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6.3.4 Performance of the proposed optimized MCS

We have evaluated the outage and throughput of the forward link with the optimized MCSs,

assuming that the gateway is aware of the statistics of the channel. First of all, we have solved

the optimization for a constraint on the outage probability of p0 = 2 · 10−2. The LOS SNR was

set to a relatively high –and maybe unrealistic– value, in order to be able to use some higher

rate MCSs. In Figure 6.7, it can be seen that the outage probability constraint is met for all

speeds, and specially for the larger ones. Therefore, the block fading approach turns out to be

quite conservative.
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Figure 6.7: Outage probability with the parameters obtained from the optimization (assuming
block fading), compared with the SLC case (α = 1). Target p0 = 0.02.

Similarly to the results on the outage probability presented in the previous section, we

will evaluate the performance of the proposed scheme as a function of the LOS SNR. In this

case we have set the outage probability constraint to 0.1 in order to have a feasible problem

for realistic SNR values. In Figure 6.8 there is a plot of the ASE as a function of the LOS

SNR for the heavy-tree, suburban and intermediate-tree scenarios, respectively, for both MLC

and SLC (α = 1). It can be seen that the MLC outperforms SLC for almost every SNR value,

while meeting the outage probability constraint due to the selection of the parameter α. It

is worth remarking that the throughput does not change with the speed in most of the cases,

although higher speeds obviously attain a lower outage probability. Note that an ASE equal to

zero indicates that the problem is unfeasible for the selected SNR value. The obtained values of
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outage probability stayed below the target value in both cases, with lower values in the case of

v = 20 m/s.
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Figure 6.8: Average spectral efficiency with SLC and MLC in ITS environment. Target p0 = 0.1.

6.4 Forward link: ARQ with different MCS

6.4.1 Introduction

In the previous section we used multi-layer coding to increase the throughput in the forward

link of a mobile satellite scenario. Although not explicitly noted, the proposed retransmission

strategy, together with the outage constraint, introduces a constraint in the maximum allowed

delay.

The use of multi-layer coding allows to increase the spectral efficiency, but the receivers are

more complex (they have to perform inter-layer interference cancellation) and the statistics of

the channel are needed to design the optimum power weighting and MCS index. In this section,

we propose to use a simpler single-layer transmission, but with the possibility of using different

MCS in each retransmission index. The outage probability is defined in terms of the post-ARQ

packet error probability, and the objective is once again to maximize the throughput subject to

a packet error rate constraint.
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6.4.2 Link adaptation

Problem statement

The objective of link adaptation is to maximize the throughput guaranteeing the data-link layer

QoS, expressed in terms of outage or packet error rate and maximum delay. For a maximum

delay or, equivalently, for a maximum number of transmissions t, our design variables are the

MCS indexes to use on each attempt {s1, . . . , st} ∈ [1, . . . , K]t. These values must satisfy an

outage constraint given by p0, so
t∏

i=1

Psi ≤ p. (6.32)

Each bit waiting to be transmitted can be in one of t different states denoted by Mi, i =

1, . . . , t, with i the number of maximum attempts before being discarded. In state Mi the data

still has i transmissions available. Decoding will fail with a probability Psi , and data will move

onto the next state, Mi−1, with i− 1 transmissions left; on the other hand, if the transmission

is successful -with probability (1− Psi)- the system moves back to the first state. The Markov

chain representing this transmission procedure is depicted in Figure 6.9.

Figure 6.9: Markov model representing the transitions between states.

With this, we have that the ASE is given by

η =

t∑

i=1

P [Mi] rsi (1− Psi) (6.33)

where the probability for a given bit to belong to state i is easily obtained from the diagram in



6.4 Forward link: ARQ with different MCS 151

Figure 6.9 as

P [Mt] = 1/P

P [Mt−1] = Pst/P

P [Mt−2] = Pst · Pst−1/P

. . .

P [M1] = Pst · Pst−1 · . . . · Ps2/P.

(6.34)

For notational convenience, we have defined P , 1+Pst +Pst−1 ·Pst−1 + · · ·+Pst ·Pst−1 · . . . ·Ps2 .

Note that the outage probability of the last state Ps1 does not affect the probability of the

different states, but only the average spectral efficiency of the last retransmission and the overall

outage probability. The input bit rate is supposed to be such that these probabilities remain

stationary with time.

Based on the previous considerations, the choice of the MCS indexes can be recast as the

following optimization problem:

maximize
∑t

i=1 P [Mi] rsi(1− Psi)
subject to

∏t
i=1 Psi ≤ p0.

(6.35)

This problem seems hard to solve, at least for the general case of different rates being assigned

to subsequent retransmissions. We will now present some simplifications to this problem.

Simplifying the optimization problem

There are some optimality properties that can be exploited to avoid the need for an exhaustive

search over the whole set of codes. Intuitively, for example, it seems plausible to expect higher

rates at earlier attempts and more robust MCS for the subsequent retransmissions. Next we

will prove this for t = 2, with the conjecture, supported by practical optimizations, that this is

also the case for any t.

Proposition 6.1. If t=2, then the solution to (6.35) meets the following two propositions:

1. if ∃ j 6= si such that rsi (1− Psi) < rj (1− Pj) then Psi ≤ Pj ∀i=1, 2

2. rs2 ≥ rs1 (or, equivalently, Ps2 ≥ Ps1).

Proof. The first proposition is easy to prove for i = 1. Let us assume (s∗2, s
∗
1) is optimum, and
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denote Tx , rx (1− Px), so we can write the objective function as

r =
Ts∗2 + Ps∗2Ts∗1

1 + Ps∗2
. (6.36)

It is easy to see that if there exists j such that Tj > Ts∗1 and Pj < Ps∗1 the outage constraint will

be met if it was met for (s∗2, s
∗
1) and the objective function will increase, so (s∗2, s

∗
1) cannot be

optimum.

Next, assume that (s∗2, s
∗
1) is optimum with Ps∗1 > Ps∗2 . This implies that Ts∗1 > Ts∗2 from

the previous property. Also, we have that the outage probability of (s∗2, s
∗
1) is the same as that

of (s∗1, s
∗
2). Therefore, to prove that (s∗2, s

∗
1) is not optimum it suffices to prove that

Ts∗1θs∗1 + Ts∗2(1− θs∗1) ≥ Ts∗2θs∗2 + Ts∗1(1− θs∗2) (6.37)

where θs∗2 , 1/(1+Ps∗2) is the probability of a bit being transmitted in the first state if the order

is (s∗2, s
∗
1), and θs∗1 , 1/(1 + Ps∗1) is the probability of a bit being transmitted in the first state

if the order is (s∗1, s
∗
2). Note also that θi ≥ (1− θi), and θs∗2 ≥ θs∗1 . With this, we have that

Ts∗1θs∗1 + Ts∗2(1− θs∗1) = θs∗1
(
Ts∗1 − Ts∗2

)
+ Ts∗2

(i)

≥
(
1− θs∗1

) (
Ts∗1 − Ts∗2

)
+ Ts∗2

= Ts∗1 + θs∗1
(
Ts∗2 − Ts∗1

)

(ii)

≥ Ts∗1 + θs∗2
(
Ts∗2 − Ts∗1

)

= Ts∗1
(
1− θs∗2

)
+ Ts∗2θs∗2

(6.38)

where (i) is due to Ts∗1 > Ts∗2 and θs∗1 > (1 − θs∗1), and (ii) is due to Ts∗1 > Ts∗2 and θs∗1 > θs∗2 .

With this, we prove that it is better to transmit first with the higher rate code, so (s∗2, s
∗
1) is

not optimum if Ps∗1 > Ps∗2 . Now, we have to prove proposition I for i = 2. This is easy to prove

since
dr

dPs2
=
Ts1 − Ts2
(1 + Ps2)

≤ 0 (6.39)

as Ts1 ≤ Ts2 , and
dr

dTs2
=

1

(1 + Ps2)
≥ 0 (6.40)

so decreasing the error probability of s2 while increasing Ts2 will increase the objective function.

This lemma proves that for t = 2 we only have to take into account those MCS where an

increment in the outage probability implies an increment in the throughput, and that the MCS

are of non-increasing rate. Note that this result is quite general, since the only assumption for
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the relationship between code rate and error probability is that higher rates imply higher error

probabilities.

Conjecture 6.1. For all t, the solution to (6.35) meets the following two propositions:

1. if ∃ j 6= si such that rsi (1− Psi) < rj (1− Pj) then Psi ≤ Pj ∀i = 1, . . . , t

2. rsi+1 ≥ rsi (or, equivalently, Psi+1 ≥ Psi) ∀i = 1, . . . , t− 1.

6.4.3 Optimization algorithm

With the above conjecture, the optimization algorithm could be written as follows: in a first

step, we will obtain the subset of K ′ MCS that meet Condition 1; then, we will perform the

optimization over them using Condition 2.

Require: MCS set sorted by descending rate, i < j ⇔ rj ≤ ri ∀ri, rj ∈ {ri}Mi=1

T0 ← 0

for i = 1 to K do

if ri(1− Pi) < Ti−1 then

Delete MCS i

else

Ti = ri (1− Pi)
end if

end for

We now compute all the valid combinations of MCS:

i← 0

for a1 = 1 to K ′ do

for a2 = 1 to a1 do
...

for at = 1 to at−1 do

Fi = {a1, a2, · · · , at}
if
∏t
j=1 Paj ≤ p0 then

Gi =
∑t

j=1 P
[
Maj

]
raj (1− Paj )

else

Gi =∞
end if

end for

end for
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end for

return Fopt = arg maxFi Gi

The complexity of this algorithm is less than that of a brute-force search over all the

possible combinations, which would result into Kt combinations; the complexity is now given

by the following proposition.

Lemma 6.1. The modified algorithm only needs to check
(
K′−1+t

t

)
combinations.

Proof. From the algorithm description, we have that the number of combinations will be given

by

N =
K′−1∑

a1=0

a1∑

a2=0

· · ·
at−3∑

at−2=0

at−2∑

at−1=0

at−1∑

at=0

1

=

K′−1∑

a1=0

a1∑

a2=0

· · ·
at−3∑

at−2=0

at−2∑

at−1=0

(
at−1 + 1

1

)

=
K′−1∑

a1=0

a1∑

a2=0

· · ·
at−3∑

at−2=0

(
at−2 + 2

2

)

=
K′−1∑

a1=0

(
a1 + (t− 1)

t− 1

)
=

(
K ′ − 1 + t

t

)

(6.41)

where we have used
∑k

j=0

(
n+j
n

)
=
(
k+n+1
n+1

)
.

The reduction in complexity with respect to the brute force solution is quite remarkable,

reaching almost an order of magnitude for t = 3 and K ′ = 20.

Knowledge of Pi

So far we have been implicitly assuming that the transmitter will know the pdf of γeff in order

to obtain Pk perfectly. But, indeed, the proposed link adaptation algorithm can be easily

implemented without this knowledge, in an online fashion. A similar idea was introduced in [116]

for link adaptation in MIMO-OFDM systems. Here, the transmit side would estimate directly

Pk by just observing the ACK/NAK of the ARQ protocol:

P̂k,nk+1
=

nk
nk + 1

P̂k,nk +
1

nk + 1
ak (6.42)



6.4 Forward link: ARQ with different MCS 155

with nk the number of ACK/NAK observations for MCS ck, ak = 1(0) if an ACK (NAK) is

received, and P̂k,nk the estimation of Pk after nk packets are received.

A transmitter selecting the MCS following the adaptation algorithm and updating the PER

estimations following (6.42) can be easily stuck in a suboptimal solution. If some of the optimum

MCS have not been explored, the corresponding PER estimation will have a large variance and

it can cause the adaptation algorithm not to select that MCS, thus disabling the possibility

of improving the estimation. To overcome this issue, we set a fraction ε of the packets to be

scheduled with a random MCS, so we can improve the estimation of the PER in case an MCS

is seldom selected. In our simulations we selected ε = 0.01.

6.4.4 Simulation results
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5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

LOS SNR (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 
Different MCS
Same MCS
No Retx
Outage Constraint

(b) Frame error rate.

Figure 6.10: Average spectral efficiency and outage probability. Receiver speed: 1 m/s.

We have simulated the performance of the proposed ARQ scheme; we simulated a 3-

transmission strategy (2 retransmissions) with an outage probability of 10−3. In this first

approximation, we assume perfect empirical knowledge of the probability density function of

γeff . We compare the results with the case of not allowing retransmissions at all (t = 1) with

the same outage probability constraint, that could be the constraint in interactive applications,

for example.

Results are shown on Figures 6.10-6.11 for speeds of 1 m/s and 5 m/s. The results are com-

pared with the case of using the same MCS for every retransmission (i.e., an outage probability

of 0.1 for each transmission). It can be seen that our approach outperforms the fixed MCS in

all scenarios, specially in the low speed ones due to the lower time diversity. Note that in some
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(a) Average Spectral Efficiency.
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Figure 6.11: Average spectral efficiency and outage probability. Receiver speed: 5 m/s.

cases the fixed MCS is the solution to our problem, leading to the same throughput and outage

probability. In the case of not allowing retransmissions the throughput is severely reduced due

to the smaller diversity. In fact, for the low speed case, the small diversity introduced by the

channel variations causes the system to be unable to meet the outage constraint for almost every

SNR.

The solution for 1 m/s for the different points is shown on Table 6.2, where it can be

seen that the MCS rate decreases with the transmission index, and that there can be a huge

variation between the first and last transmissions. In the simulations we solved the problem by

brute force, so these results agree with Conjecture 6.1.

In Figure 6.12 we show the evolution of the spectral efficiency with time (averaged over

a window of 700 packets) when online adaptation is used following (6.42). We can see that in

the high SNR case the offline optimization outperforms the online approach due to the perfect

knowledge of the error probabilities Pk. For the lower SNR case both approaches offer approxi-

mately the same performance. For the sake of simplicity, we used Stop-and-Wait ARQ for the

simulations, so only one packet is transmitted every RTT, although the method can be also

applied for more efficient protocols like Selective Repeat ARQ [117].
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Table 6.2: Optimum MCS evolution.

LOS SNR (dB) s3 s2 s1 Same MCS

23.9474 QPSK 8/9 QPSK 8/9 QPSK 8/9 QPSK 8/9
22.8947 QPSK 8/9 QPSK 8/9 QPSK 4/5 QPSK 5/6
21.8421 QPSK 8/9 QPSK 8/9 QPSK 3/4 QPSK 5/6
20.7895 QPSK 8/9 QPSK 8/9 QPSK 3/5 QPSK 3/4
19.7368 QPSK 8/9 QPSK 8/9 QPSK 2/5 QPSK 2/3
18.6842 QPSK 8/9 QPSK 5/6 QPSK 1/4 QPSK 2/3
17.6316 QPSK 8/9 QPSK 5/6 QPSK 1/4 QPSK 3/5
16.5789 QPSK 5/6 QPSK 2/3 QPSK 1/4 QPSK 1/2
15.5263 QPSK 3/4 QPSK 3/5 QPSK 1/4 QPSK 2/5
14.4737 QPSK 3/4 QPSK 1/3 QPSK 1/4 QPSK 2/5
13.4211 QPSK 3/5 QPSK 1/4 QPSK 1/4 QPSK 1/3
12.3684 QPSK 1/4 QPSK 1/4 QPSK 1/4 QPSK 1/4

6.5 Return link: automatic CSI balancing

6.5.1 Introduction

If the return link is operating in closed loop mode, then the previously described techniques for

the forward link can be applied without any change. The closed loop operation makes the CSI

delay be equal to one round-trip time and, therefore, strategies based on statistical CSI might

offer a good performance.

In some cases, open loop operation can offer advantages to closed loop, since the CSI is

timely (shadowing events occur next to the mobile terminal). The CSI accuracy, however, is

reduced due to uncorrelated multipath fading in return and forward link. Thus, scenarios with

strong multipath and low speed seem more favorable for closed loop operation, whereas open

loop would be a better choice for high speed and strong line of sight scenarios. Switching between

open and closed loop modes depending on the scenario is not a trivial task, and different methods

could be proposed. One possible option could be the use of a look-up table (LUT), built from

simulation results, and containing the optimum operating mode for different parameters (speed,

multipath, shadowing coherence distance, etc.). This option, however, requires the receiver to

estimate these parameters in an accurate way, and is not robust against practical impairments

not considered in the simulation step.

In this section we present a method to automatically balance the open loop and closed loop

CSI. This method relies only on the ACK/NAK interchange between transmitter and receiver,

and is able to exploit both CSI values at the same time. An automatic backoff margin is also
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Figure 6.12: Evolution of the average spectral efficiency with online adaptation, and comparison
with the offline approach.

designed as a byproduct of the proposed method.

6.5.2 Problem statement

+

+

Figure 6.13: Diagram of the information interchange and link adaptation procedure.

Let us denote by mi ∈ {1, . . . , M} the index of the MCS selected in time instant i. We also

assume that the error probability P [εk = 1] depends only on mk and hk, and thus is independent

of the transmitted message. This assumption is compatible with the proposed error function

(6.8), but includes other error functions that characterize coded transmission. We denote the

probability of error of the j-th MCS under channel h as E (j,h), and assume that E (j + 1,h) ≥
E (j,h), i.e., higher transmission rates imply higher error probabilities.

We consider two types of feedback: first, the receiver acknowledges the correct decoding of
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the (i−d)-th codeword, so the values ε0, . . . , εi−d are available at the transmitter at time instant

i, with d the feedback delay; second, the receiver estimates the channel quality in time instant

i − d and includes a channel quality indicator (CQI) in the feedback message. Although there

are different ways to calculate the CQI, we consider the index of the highest MCS supported by

channel hrl
i , i.e., CQIi = arg maxj

[
j|E

(
j,hrl

i

)
≤ pCQI

]
. If no MCS is supported, then CQIi = 1.

pCQI is a value that determines a limit on the error probability. In the case of using Gaussian

coding with a sufficiently large code size, for example, pCQI can be set to a number as close to

0 as desired. With the proposed error function (6.8), the error probability can be set to zero if

the channel is sufficiently favorable, so we assume pCQI = 0.

The CQI value can be obtained from the effective SNR value by means of a function Π.

The function Π(snr) is an LUT that maps SNR intervals to values. Throughout this section, we

assume that the SNR values are in decibels for convenience. For M MCS values, the function Π

can be parametrized by M−1 thresholds ti, i = 1, . . . ,M−1, such that Π(snr) = j ⇐⇒ tj−1 ≤
snr < tj , where the higher and lower thresholds are defined as t0 = −∞ and tM = +∞. The

function Π is usually referred to as inner loop for link adaptation, and we assume the thresholds

to be the γth values for each MCS4. If perfect SNR information was available at the transmitter,

the link adaptation procedure would be trivial for a calibrated receiver. In practice, however,

this information may not be available, so a correction has to be made to the estimated SNR

value.

We define the function q as a function that maps MCS indexes to SNR values, such that

Π (q (j)) = j. For example, a function that maps every MCS index to its SNR threshold γth

meets this requirement, and is the one we will use throughout this section. The objective of q
is to map CQI to SNR values. We also define snrcl

i , q
(
CQIi−d

)
as the SNR that the transmit

side gets to know about the received quality d frames earlier in closed loop mode. Note that

snrcl
i denotes an estimate of the effective SNR performed in time instant i − d, but used at

the terminal in instant i. In absence of feedback delay (d = 0), channel estimation error and

other impairments, the optimal MCS selection would be mi = Π (q (CQIi)) = CQIi. A common

practice to accommodate these impairments is the application of margins to the received CQI

value, so

mi = Π
(

snrcl
i + ccl

)
(6.43)

with ccl the SNR margin in dB. A possible approach to select c is by means of an LUT that stores

values of c for different scenarios, where parameters like channel distribution, Doppler, detection

complexity, etc. have to be taken into account. This approach has some drawbacks that limit its

application to practical settings. First, filling the LUT requires running exhaustive simulations

4Note that the γth for the first MCS is not used as a threshold.
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under many different settings to be applicable to practical scenarios, and its behavior will be

unpredictable under conditions that differ from the stored ones. Second, the receiver has to

estimate the required parameters, which can be computationally expensive, and errors in the

estimation of these parameters might lead to unexpected behavior. Thus, an adaptive method

to adjust ccl is required in many cases. An adaptation of ccl based on ACK/NAK reception was

proposed in [118], and applied to the satellite scenario in [36].

On top of the feedback information, the terminal is also observing the channel in the forward

link. If the duplexing scheme was TDD, the terminal might gain access to timely and accurate

CSI just by measuring the forward link channel. This sort of CSI is called open loop CSI. In

our setting, duplexing is performed by means of frequency separation, so this assumption does

not hold. Under our model, however, there is some degree of correlation between the forward

and return link, as the LOS component is the same for both links. Therefore, depending on the

scenario, the open loop CSI would be more or less accurate. Let us define snrol,i as the most

recent SNR estimation on the forward link. We assume that this SNR estimation is perfect,

and equal to the effective SNR of the previous codeword, i.e., snrol,i = γfl
eff,i−1. This assumption

does not affect the design of the method, and is made for the sole purpose of simplifying the

simulations. We might think of performing a similar adaptation as in the closed loop case (6.43)

mi = Π
(

snrol
i + col

)
. (6.44)

One again, the margin col should be obtained adaptively or by means of an LUT. In Figure 6.13

we show a diagram containing the main variables of the system model.

A further question is how to determine the scenarios where (6.44) or (6.43) are more appro-

priate to be used. It is expected that in scenarios with relatively low speed or strong multipath

the closed loop approach would perform better, while strong LOS and high speed scenarios are

more suitable for the open loop one. A possible approach is to perform parameter estimation

(speed, multipath, etc.) and obtain the optimum strategy from an LUT, which had to be pre-

viously filled according to exhaustive simulation results. In the following section we present an

adaptive approach that does not require to perform this parameter estimation, and solely relies

on the feedback of CQI and ACK/NAK, as well as in the open loop SNR estimation.

6.5.3 Adaptive CSI balancing

A key observation in (6.43)-(6.44) is that they can be jointly described by

mi = Π
(
ξolsnrol

i + ξclsnrcl
i + c

)
. (6.45)
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If we set ξol = 0, ξcl = 1 we arrive to (6.43), and ξcl = 0, ξol = 1 leads to (6.44). Note that

(6.45) includes any affine combination of snrol and snrcl, so it generalizes the open loop and

closed loop strategies. We now derive an adaptation method for general values of ξcl and ξol,

and in Section 6.5.4 we introduce an alternative formulation where their value is constrained to

sum one, i.e., ξcl + ξol = 1.

For simplicity, we denote snri ,
[
snrcl

i snrol
i

]T
and ξ ,

[
ξcl ξol

]T
; the derivations from now

on could be generalized for vectors snr and ξ of any size, so we could include channel prediction

in this framework, for example.

Following a similar approach as [119], we state the problem of finding the margin c and

SNR balancing weights ξ such that the PER converges to a fixed target PER p0. The desired

values can be obtained as the solution to the following optimization problem

min
c,ξ

J(c, ξ) = |E [ε]− p0|2. (6.46)

Note that (6.46) does not have any optimality properties in terms of throughput, but just sets

the mean packet error rate to the desired value p0. In practice, nevertheless, it is expected that

high SNR values will lead to the use of higher rate MCS to meet the target PER p0, so the

throughput is implicitly increased.

Problem (6.46) can be solved by performing a gradient descent on J (c, ξ). The gradient of

J(c, ξ) can be worked out as

∇J(c, ξ) = 2 (E [ε]− p0)∇E [ε] . (6.47)

A gradient descent iteration reads as

[
ci+1

ξi+1

]
=

[
ci

ξi

]
− µi · ∇ J(c, ξ)|ci,ξi . (6.48)

Obtaining a numerical expression for the gradient J(c, ξ)|ci,ξi is not possible: the expecta-

tion of ε depends on the PDF of the channel, which we assume unknown at the transmitter. On

top of this, the PDF of the channel might change over time. Instead, we propose a stochastic

gradient approach, where the expectations are substituted by instantaneous observations.

Let us define

Ω , ξT snr + c, (6.49)

as the indicator SNR with which the MCS mi is selected in (6.45). Ω is a function of c and ξ
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whose gradient is trivial to compute, so that applying the chain rule of differentiation in (6.47)

we arrive at

∇J(c, ξ) = 2 (E [ε]− p0)∇E [ε]

= 2 (E [ε]− p0)E
[
∂ε

∂Ω
∇Ω

]

= 2E
[
∂ε

∂Ω

]
(E [ε]− p0)

[
1

snr

] (6.50)

Following the stochastic gradient approach, we substitute E [ε] by the instantaneous value

εi−d; also, and since 2∂ε/∂Ω is positive5, we embed 2E [∂ε/∂Ω] into the positive adaptation

constant µi. The resulting expression for the update of c and ξ reads as (see Figure 6.14)

[
ci+1

ξi+1

]
=

[
ci

ξi

]
− µ (εi−d − p0)

[
1

snri−d

]
. (6.51)

where we removed the dependence of µ with time, so we are using a constant stepsize.

+x+ +

+ xx

+
xx

Figure 6.14: Diagram of the adaptation process

Note that in time instant i the last received feedback is the one corresponding to the

information transmitted in time i − d. The SNR values used for adaptation in (6.51) have to

5This can be proved by writing probability of error, averaged over all channel states, in integral form, and
using the assumption that for a channel state, the probability of error is higher for higher MCS. Higher values of
Ω lead to higher MCS values, which increase the probability of error.
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be the ones used for the MCS selection of the packet the ACK/NAK is referred to. If the

transmitter knows the delay introduced by the channel, a delay of z−d has to be introduced in

the adaptation algorithm, as shown in Figure 6.14. If the delay value is not known or is variable

(in case of ACK/NAK grouping, for example), then the transmitter should store in memory the

SNR values used for adaptation of every packet, indexed by a packet ID. When the ACK/NAK

for a packet ID is received, the parameter update is performed by recovering the corresponding

SNR values from memory. Note that the closed loop SNR value snrcl
i used for MCS selection

is the one generated by CQIi−d, but the one used for the adaptation of ξcl
i is snrcl

i−d, which is

generated by CQIi−2d.

Remark 6.1. Note that the adaptive margin algorithm proposed in [36,118] is equivalent to the

adaptation of c in (6.51). This adaptation is also the one described in [119]. More precisely, the

algorithm for update described in [36,118] is

ci+1 =

{
ci + δup if εi−d = 0

ci − δdown if εi−d = 1
(6.52)

with δup and δdown values such that6

δdown = δup
p0

1− p0
. (6.53)

It can be seen that (6.51) and (6.52) describe the same adaptation, provided that δup = µp0 and

δdown = µ (1− p0).

6.5.4 Convergence enhancements

We observed that the adaptation method described by (6.51) offers a noisy behavior in con-

vergence, thus needing small values of µ. This affects the convergence speed of the algorithm,

dramatically decreasing it. Note that (6.51) resembles a least mean squares (LMS) adaptation

with input [1 snri−d]
T and error εi−d − p0. Normalized LMS (NLMS) [120] is well known to

outperform LMS in convergence speed. If the step-size is normalized in (6.51), the NLMS-like

version reads as

[
ci+1

ξi+1

]
=

[
ci

ξi

]
− µ

1 + ‖snri−d‖2
(εi−d − p̃0,i)

[
1

snri−d

]
. (6.54)

Note that we substituted p0 by p̃0,i. In general, (6.54) does not converge to a PER of p̂0,i,

6In [36] the steps are selected to meet δdown = δupp0 instead of (6.53). Both formulations, however, are
equivalent for low values of p0.
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since the first component of a stationary point meets

E
[

εi − p̃0,i

1 + ‖snri−d‖2
]

= 0 (6.55)

which does no necessarily imply E [εi] = p̃0,i. It is expected, however, that an appropriate choice

of p̃0,i (not equal to p0) led to a PER of p0. We propose to adjust p̃0,i following a recursion

p̃0,i+1 = p̃0,i − λ (εi−d − p0) (6.56)

It is clear that E [εi] = p0 is a stationary point of (6.56), thus leading to the desired PER. A

block diagram of this NLMS adaptation is shown in Figure 6.15.

+x+ +

+ xx

+
xx

+

x

+

x

Figure 6.15: Diagram of NLMS adaptation

It has been also observed that the NLMS adaptation offers a good convergence performance

for the terms ξ, but not for the margin c. This might be caused because the corrections to this

term are smaller in absolute value than those for ξ because snrol and snrcl are usually bigger

than 1. To overcome this problem, we propose an alternative formulation that increases the

speed of convergence of c

[
ci+1

ξi+1

]
=

[
ci

ξi

]
− µ

θ2 + ‖snri−d‖2
(εi−d − p̃0,i)

[
θ

snri−d

]
. (6.57)

We also performed experiments with only one weight ξ instead of two. In this case, we defined

the MCS selection rule as
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mi = Π
((

1− ξcl
)

snrol
i + ξclsnrcl

i + c
)
, (6.58)

and the corresponding adaptation rule as

[
ci+1

ξcl
i+1

]
=

[
ci

ξcl
i

]
− µ

θ2 +
(
snrcl

i−d − snrol
i−d
)2× (6.59)

(εi−d − p̃0,i)

[
θ

snrcl
i−d − snrol

i−d

]
.

and p̃o,i following the recursion in (6.56).

The convergence properties of the methods described in this section are object of future re-

search. Nevertheless, their convergence to the desired PER value has been empirically observed,

as described the next section.

6.5.5 Simulation results
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(a) Average Spectral Efficiency.
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(b) Frame error rate.

Figure 6.16: PER and throughput for different methods in intermediate tree shadowed environ-
ment, state 1, 0.3 m/s, p0 = 0.1

We performed simulations of the proposed methods, given by equations (6.59) and (6.57),

and compare them with open loop and closed loop with automatic margin adaptation, given

by (6.52). The adaptation was performed with θ = 10, λ = 10−3 and µ = 1 for the case of

the proposed methods, and µ = 10−2 for the open and closed loop cases, which correspond to

δup = 0.001 and δdown = 0.009 for a target PER of 10−1. The parameters were initialized as
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(a) Average Spectral Efficiency.
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(b) Frame error rate.

Figure 6.17: PER and throughput for different methods in intermediate tree shadowed environ-
ment, state 1, 3 m/s, p0 = 0.01
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Figure 6.18: PER and throughput for different methods in intermediate tree shadowed environ-
ment, state 1, 15 m/s, p0 = 0.1
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c0 = 0, ξcl
0 = 0.5, and ξol

0 = 0.5. We set the feedback delay to d = 5 codewords to model the

round trip time in a GEO satellite.

We performed simulations over a Loo channel with the parameters for intermediate tree

shadowed environment, state 1. Simulations were also carried out for other settings, with similar

results observed. We simulated three different terminal speeds, corresponding to 0.3 m/s, 3 m/s

and 15 m/s. The target PER was set to p0 = 0.1 in the first and last speeds, and to p0 = 0.01

for the 3 m/s case. Average spectral efficiency and throughput results were averaged over the

transmission of 6 · 104 packets. Results are shown in Figures 6.16-6.18. Spectral efficiency is

defined as 1
N

∑N
i=1 εirmi , with rj the rate of the j-th MCS.

We see that the lower speed scenario shows a better performance of closed loop with respect

to open loop, and that the adaptation with two ξ performs worse than closed loop, and similarly

to open loop. Adaptation with one ξ offers approximately the same performance as closed loop.

For higher speeds, open loop performs better than closed loop, and so do the proposed methods.

For the 15m/s case, adaptation with one and two ξ outperform both open loop and closed loop

adaptation. It is also noticeable that the proposed methods are more accurate in converging to

the desired PER p0 than the open and closed loop ones. A PER p0 might not be achievable

in very high or very low SNR scenarios. In these cases, the PER converges to the minimum or

maximum possible PER values, respectively. The method with one ξ seems to be more robust

than the one with two ξ, and offers a better or at least the same performance than closed loop

link adaptation in all the cases, even beating the open loop adaptation for high speeds.

6.5.6 Implementation aspects

In this chapter we made some simplifications to make the link adaptation problem more tractable.

In the following, we make comments about some possible implementation aspects of the proposed

algorithm

• CQI feedback Throughout the section, it was assumed that a CQI value was fed back

for every packet. In modern communication standards this is not usually the case, so

some packets would have a more outdated CQI than others. Assume that a CQI value is

transmitted every K packets. Applying the same weight ξcl in all K time instants could

be suboptimal, since the first packet in every period has much more precise CSI than the

last one. A possible approach to overcome this problem is to have a different adaptation

loop for each of the possible CQI delays.

• Use of effective SNR Although in this section we used effective SNR for convenience,

the proposed method is expected to work with other CSI metrics, such as average SNR or
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RSSI. This can be convenient in case the effective SNR calculation could not be performed

by the receiver because of computational complexity.

• Interference in return link We neglected the possible interference in the return link,

which is impossible to estimate from open loop observations [109]. In this case, the pro-

posed method is expected to converge to weights ξ that reduce the impact of errors in

open loop CSI.

• Estimation errors and uncalibrated receivers We assumed in the simulations that

CQI and SNR estimates in the forward link were perfect, as well as the knowledge of the

SNR thresholds for decoding. In practice, there might be some non-negligible errors in the

SNR estimation, and the performance of a receiver might not be known a priori. In these

cases, the proposed adaptive method should be able to adjust the parameters to meet the

PER constraint, although possibly reducing the throughput with respect to the ideal case.

• Divergence of parameters In cases of very high or very low SNR, the adaptation pa-

rameters ξ and c diverge, as it is not possible to converge to the desired PER p0. A

threshold should be included in the adaptation to prevent this behavior.

6.6 Conclusions

In this chapter we proposed different link adaptation techniques for mobile satellite channels.

We focused first on the return link, where timely CSI is difficult to obtain, and proposed adap-

tation techniques based only on statistical CSI. The first technique uses multi-layer coding to

increase the spectral efficiency while controlling the outage of the system, and relies on statis-

tical information on the channel to perform adaptation. The second technique uses different

MCS in different retransmission index, and the needed statistical CSI can be acquired online by

observing the ACK/NAK interchange.

The return link is studied in a different way, and open loop CSI is proposed to be used.

We focus on the problematic of switching between open loop and closed loop in an automatic

manner, just from the observation of ACK/NAK feeds.

The content of this chapter is the result of a collaboration with Jesus Arnau and Prof.

Carlos Mosquera, and was partially published in ICSSC 2012 and Globecom 2013 [121,122], and

submitted to ASMS 2014 [123].
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7.1 Introduction

Dynamically adapting the transmitter in response to changing channel conditions is key to

achieving both throughput and reliability on wireless communication links. Reconfiguring the

link requires adjusting several transmission parameters: the modulation and coding scheme

(MCS), the multiple input multiple output (MIMO) precoding matrices in multiple antenna

systems, the spatial mode (number of spatial data streams for each user), and the assignment of

transmit resources for the different users, among other parameters. In this chapter we consider

a learning-based approach to link adaptation in multiuser (MU) MIMO orthogonal frequency

division multiplexing (OFDM) systems.

We present a data-driven link adaptation method that includes user selection, mode se-

lection, precoding, MCS selection, and limited feedback. The main objective of this chapter is

to give insight into the effect of limited feedback in MU-MIMO systems with link adaptation.

To do so, our solution assumes perfect channel state information (CSI) at the receivers, and

different degrees of CSI at the transmitter. With this information, and taking into account the

degradation due to CSI inaccuracy, the transmitter is able to perform link adaptation. Our

work is different from previous approaches in several ways. The focus of [124, 125] is to study

fairness in a multiuser setting, with limited feedback information not taken into account, and

MCS selection is performed by means of effective signal to noise ratio (SNR). In [126], only a

single spatial stream is allowed per user, and the effective SNR approach is followed for MCS

selection. In [127], adaptation is performed following a data-driven approach, and limited feed-

back is taken into account, but the communication scenario is multicast (i.e., there is only a

common message for all receivers). This chapter studies the broadcast scenario, takes into ac-

count limited feedback, includes the possibility of transmitting more than one spatial stream to

each user, and performs MCS selection following a data driven approach.

We focus on the multiuser capabilities of IEEE 802.11ac [62] to develop our link adaptation

method. We consider this standard due to its novelty and the challenging constraint of not

allowing user allocation among subcarriers, like in LTE or WIMAX. The adaptation is performed

at the access point (AP), thus requiring a minimum communication overhead with the user

stations (STA) to obtain CSI. This AP-centric approach is specially suitable for link adaptation

in scenarios with cheap STAs, as they might not implement some of the optional features in

IEEE 802.11ac to perform MCS selection.

The main contributions of this chapter are summarized as follows.

• We derive a closed form approximation of the interuser interference leakage due to the use

of block diagonalization precoding with zero forcing (ZF) receivers. This approximation,
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unlike previous approaches, is not based on a random vector quantization analysis. We

exploit the particular codebook structure used in IEEE 802.11ac, which is induced by the

use of Givens decompositions, to derive our approximation. This approximation is shown

to be very accurate for different feedback rates. We restrict our analysis to ZF receivers

as a worst-case scenario, so our interference estimation will be conservative if the receiver

employs more advanced algorithms, such as minimum mean squared error (MMSE) or

maximum likelihood detectors.

• We apply previous data-driven approaches [47–51], which are limited to the single user, to

a multiuser setting with a variable number of spatial streams per user. We show that the

MCS selection accuracy of the data-driven approach outperforms unidimensional metrics

such as average SNR or effective SNR. The machine learning classifier is shown to be

robust to changes in the statistical distribution of the channel, i.e., is able to correctly

perform MCS selection even when the training is done with channel samples taken from a

different statistical distribution.

• We use a greedy algorithm that performs mode and user selection, inspired on previous

work like [128–130]. This algorithm exploits information on the feedback rate, the SNR

regime and the number of users to perform user and mode selection. The greedy algorithm

sequentially adds spatial layers from the different users until the maximum number of

spatial streams is reached, or the throughput is no longer increased. This algorithm,

with a complexity that is linear in the maximum number of spatial streams and in the

number of users, allows solving the user and mode selection problem without resorting to

an exhaustive search.

The remaining of the chapter is organized as follows: Section 7.2 describes the mechanisms

in IEEE 802.11ac that enable MU-MIMO operation; Section 7.3 presents the system model;

Section 7.4 introduces the problem statement. The following sections present the main contri-

butions of the chapter: Section 7.5 describes the MU-MIMO precoding problem, and presents

an approximation for the interference leakage due to limited feedback precoding; Section 7.6

describes the data-driven MCS selection; Section 7.7 presents a greedy algorithm for user and

mode selection; Section 7.8 presents the simulation results; Section 7.9 concludes the chapter.

7.2 MU-MIMO in IEEE 802.11ac

IEEE 802.11ac is an emerging wireless standard that supports MU-MIMO, single user MIMO,

OFDM modulation, and thus needs sophisticated link adaptation algorithms. In this section we
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summarize some of the mechanisms that enable MU-MIMO link adaptation in IEEE 802.11ac,

and explain how they relate to our system assumptions. Given the functionality required in

this chapter, we divide the MU-MIMO operation into three different tasks: CSI acquisition, link

adaptation and MU-MIMO transmission.

7.2.1 CSI acquisition

Despite being a time division duplexing system, channel reciprocity is not natively supported

by IEEE 802.11ac to obtain CSI at the transmitter (CSIT). IEEE 802.11n [23] describes a

procedure to obtain CSI at the AP by the transmission of a training sequence in the uplink [23,

Sec. 9.29.2.2] and a calibration procedure to identify the differences between the transmit and

receive chains at the STA. These mechanisms are not present in IEEE 802.11ac, so acquisition

of CSI based on channel reciprocity cannot rely on any information exchange with the receivers.

Although there is some research in estimating the channel from the normal packet exchange in

IEEE 802.11ac [131, Sec. 2.3.3], we only consider CSI acquisition at the AP by the mechanism

described in the standard. This mechanism comprises sending a sounding sequence in the

downlink and feeding back the estimated channel to the AP. In the following, we describe these

two tasks.

Sounding

Channel sounding is initiated by an AP by transmitting a very high throughput (VHT - name

of the new transmission modes in IEEE 802.11ac) null data packet (NDP) announcement, which

is a control frame that includes the identifiers of the set of users which are potentially going

to be polled for feedback. Together with the identifiers, the frame carries information on the

requested feedback (there are two different types, single user - SU or multiuser - MU) and the

number of columns (spatial streams, only for the MU case) in the requested feedback matrix.

This frame is described in more detail in [62, Sec. 8.3.1.19].

After the NDP announcement, the AP transmits an NDP, which is used by the receivers

to estimate the MIMO channel. After estimating the channel, the first user in the list of the

NDP announcement sends feedback information, and the remaining users (if any) transmit their

CSI by responding to subsequent beamforming (BF) report polls. This operation is depicted in

Figure 7.1.
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Figure 7.1: Typical message interchange for sounding and feedback.

Quantization and Feedback

The CSI obtained after the training phase is quantized prior to the transmission on the feedback

channel. The most relevant parameters for the MU-MIMO operation are the preferred beam-

forming matrices, which contain the right eigenvectors associated to the largest singular values

of the channel matrix. These matrices are represented using a Givens decomposition. The angles

resulting from this decomposition are the parameters that are fed back to the AP. The feedback

message contains the beamforming matrices plus some additional information. This information

depends on the selected feedback mode (MU or SU) indicated by the AP in the feedback request

message [62, Sec. 8.4.1.48].

• Grouping: Determines if the carriers are grouped in the feedback message, or if feedback

is provided for every carrier. We assume no grouping.

• Codebook information: Determines the number of bits for the codebook entries. This

parameter is selected by the STA. In this chapter, we treat different feedback rates, but

the problem of selecting an appropriate feedback rate is out of the scope of this work.

• Beamforming matrices and SNR information: Includes preferred beamforming ma-

trix, average SNR for each spatial stream, and SNR for each carrier (or group of carriers)

if feedback is in MU mode.

7.2.2 Link adaptation

The objective of link adaptation is to perform user selection, mode selection, MCS selection

and MIMO precoding design. This can be done in a centralized way at the transmitter, taking

as input the limited feedback described in the previous section, or in a distributed way by

requesting an STA to select the preferred mode and MCS for a given MIMO configuration. We

follow a centralized approach, since our solution involves joint scheduling and MCS selection.

The distributed MCS selection mechanism is an optional feature in IEEE 802.11ac, thus it

cannot be expected to be implemented in all devices. The distributed MCS feedback can be

used to refine the results when implementing the proposed link adaptation algorithm.
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The mechanism for communicating MCS and mode is described in [62, Sec. 9.28.3], and

is an optional feature of IEEE 802.11ac. The information is contained in the VHT variant HT

Control field, present in the MAC header of all data packets. Roughly speaking, the AP can send

a data packet with the bit MRQ (MCS request) set to 1, so the STA piggybacks the preferred

MCS and number of spatial streams (NSS) in the following data packet. The MCS and NSS

can be fed back in an unsolicited way, without being polled by the AP. The content of the link

adaptation message is

• Preferred number of spatial streams.

• Preferred MCS.

• Preferred bandwidth.

• SNR, averaged over all carriers and spatial streams.

The way an STA selects the values of the feedback fields is implementation dependent.

7.2.3 MU-MIMO transmission

Once the users, MCS, mode and precoders are selected, MU-MIMO transmission takes place.

MU-MIMO in IEEE 802.11ac is non-transparent, meaning that the STAs are aware they will be

jointly scheduled with other STAs. This allows a given STA to use the training sequences not

only to estimate its own MIMO channel, but also the interference [62, Sec. 22.3.11.4], which

allows performing some advanced tasks such as the modification of the receive precoders, or the

correct calculation of the Viterbi weights for decoding.

7.3 System model

Consider the downlink of an N -carrier OFDM wireless network where an AP equipped with Ntx

antennas communicates with U STAs, U = {1, . . . , U} where the u-th user has Nrx,u receive

antennas. At a given time instant, the transmitter conveys information to a subset of the users

T ⊆ U . In a given time slot all users use all subcarriers.

We assume that the transmitter employs linear precoding, and the receivers use linear

equalizers. A single modulation Mu =
{
m1, . . . , m|Mu|

}
⊂ C is selected for the u-th user,

constant over all carriers and spatial streams1. For a given carrier n, su[n] ∈ MLu
u is the Lu

1Although in IEEE 802.11n the use of different modulations in each spatial stream was allowed, it was appar-
ently not implemented in most commercial devices, and finally discarded for 802.11ac.
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spatial streams modulated signal containing the information for the u-th user, Fu[n] ∈ CNtx×Lu

is the transmit precoding matrix for the u-th user, Hu[n] ∈ CNrx,u×Ntx is the flat-fading MIMO

channel from the transmitter to the u-th receiver, Bu[n] ∈ CLu×Nrx,u is the interference removal

matrix, and Gu[n] ∈ CLu×Lu is the linear equalizer applied at the u-th receiver. We divide the

receive processing into two different matrices for simplicity in the treatment of the multiuser

precoding. The objective of Bu[n] is to reject the interuser interference, while the equalizer

Gu[n] removes the intrauser interference. To limit the transmit power per carrier, we define

the power normalization factor P [n] ,
∑

u∈T tr (Fu[n]F∗u[n]) . We use nu[n] ∼ CN
(
0, σ2I

)
to

denote the received noise vector at the u-th receiver. Given these definitions, the post-processed

signal at the u-th receiver yu[n] ∈ CLu is

yu[n] = Gu[n]Bu[n]Hu[n]
∑

i∈T

1√
P [n]

Fi[n]si[n] + Gu[n]Bu[n]nu[n] (7.1)

with E (su[n]s∗u[n]) = ILu . For the sake of clarity, we define Ĥu,i[n] , 1√
P [n]

Gu[n]Bu[n]Hu[n]Fi[n],

and wu[n] , Gu[n]Bu[n]nu[n], so

yu[n] = Ĥu,u[n]su[n] +
∑

i∈T , i 6=u
Ĥu,i[n]si[n]

︸ ︷︷ ︸
Interuser interference

+ wu[n]

︸ ︷︷ ︸
Noise

. (7.2)

The transmit signal for each of the scheduled receivers is the result of performing coding,

interleaving and constellation mapping operations on a stream of source bits. The MCS for the

u-th user cu is selected from a finite set of MCS C. The selected number of spatial streams and

MCS for the u-th user has an associated rate of η (cu, Lu) bits per second.

In general, the probability that a frame is not correctly decoded at the u-th receiver (i.e., the

frame error rate - FER), depends on the transmit power, channel matrices, number of scheduled

users, selected MCS for the u-th user, and selected modulation for the interfering users. By treat-

ing the noise and residual multi-user interference as Gaussian, and assuming a linear receiver,

it is reasonable to write the FER of the u-th user pu as a function of the the selected MCS cu

and the post-processing SNR values γu = [γu,1 [1] , . . . , γu,1 [N ] , . . . , γu,Lu [1] , . . . , γu,Lu [N ]]T ,

where

pu = FER (γu, cu) . (7.3)

The post processing SNR of the u-th user in the i-th spatial stream and n-th carrier is defined

as

γu,i[n] =

∣∣[Du,u [n]]ii
∣∣2

[Ru[n]]ii
u = 1 . . . U, i = 1 . . . Lu (7.4)
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with

Ru[n] =
(
Ĥu,u[n]−Du,u[n]

)(
Ĥu,u[n]−Du,u[n]

)∗
+ (7.5)

∑

j∈T , j 6=u
Ĥu,j [n]Ĥ

∗
u,j [n] + σ2Gu[n]Bu[n]B∗u[n]G∗u[n]

the covariance matrix of interference plus noise, and Du,u , Ĥu,u � ILu . Based on the rate

η (cu, Lu) and the FER pu, we define the throughput of user u as

tu = η (cu, Lu) (1− pu) . (7.6)

7.4 Problem statement

In this section, we formulate the link adaptation problem. The adaptation problem in the

multiuser scenario is different from the single user scenario. In the single user case, the usual

objective of link adaptation is to maximize the (unique) link throughput subject to a constraint

on the FER. In the MU-MIMO case, each user has a different rate, so the objective might be

to maximize a function of the rates, subject to a FER constraint p0 > 0 (assumed to be equal

for all receivers). We consider the sum rate as the performance objective. If we denote by

t = [t1 . . . tU ] the vector containing the throughput (7.6) of all users, and by ν (t) ,
∑U

u=1 tu

the sum rate, the LA problem can be stated as

maximize ν (t) subject to pu ≤ p0 u = 1, . . . , U. (7.7)

We will assume tu = 0, pu = 0 if u /∈ T to be consistent with our approach, which involves

scheduling a subset of the users. Note that the LA problem can be modified to maximize another

utility metric besides the sum rate just by defining ν (t) accordingly. For example, we can include

proportional fairness in this setting by changing the objective function to ν (t) =
∑U

u=1 log tu

[132].

Trying to solve (7.7) directly is computationally intractable. Besides the difficulty of ob-

taining a mathematical model that maps the CSI to the FER pu, the number of design variables

is quite large and difficult to handle. The design variables include, among others, the set of

active users T , the streams per each active user Lu, the precoding matrices Fu[n], the inter-

ference removal matrices Bu[n], equalizers Gu[n] and MCS cu. Moreover, imperfect CSI at the

transmitter creates unknown interference leakage between the different receivers. We propose

a procedure for link adaptation that finds a good solution to the sum rate maximization prob-
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lem. Our solution has three operational blocks: precoding and equalization with interference

estimation, MCS selection and user and mode selection.

7.5 Precoding and equalization with interference estimation

In this section, we present the precoding technique for MU-MIMO transmission and obtain a

closed form approximation for the residual interuser interference caused by limited feedback

precoding. Given the subset of active users T and the number of streams per user Lu, the joint

problem of selecting optimum precoders2 Fu, interference rejection matrices Bu, and equalizers

Gu to maximize the sum rate does not have a closed form solution. Several approaches have

been proposed, e.g. block diagonalization (BD) [133] or minimizing signal leakage [134]. We

assume that the precoders and interference rejection matrices are obtained using BD. We choose

this precoding algorithm because of its simplicity and its low gap to capacity when used in

conjunction with user selection algorithms [135]. The proposed link adaptation framework,

however, can be used with other precoding techniques, although we restrict our analysis to BD.

7.5.1 Block diagionalization precoding

BD precoding removes the interference between the different users but not the interference

between streams associated to the same user. It is well suited for IEEE 802.11ac because the

precoders can be designed based on the feedback information provided. The BD precoder is

designed as follows. Let Hu = UuΣuV
∗
u be the SVD decomposition of Hu with the singular

values in Σu arranged in decreasing order. Note that Uu ∈ CNrx,u×Nrx,u , Σu ∈ RNrx,u×Ntx and

Vu ∈ CNtx×Ntx . The interference rejection matrix Bu is formed by taking the first Lu columns

of Uu (corresponding to the left singular vectors associated to the Lu largest singular values).

Let us denote H̃u , BuHu, and

H̄u ,
[

H̃1 . . . H̃u−1 H̃u+1 . . . H̃T

]T
. (7.8)

BD requires that the precoder F satisfies

H̄uFu = 0∀u. (7.9)

The set of precoders achieving (7.9) can be written as NuPu, where Nu is a basis of the nullspace

of H̄u, and Pu is an arbitrary matrix, that can be used to select the directions of transmission (in

2As the design of precoders is independent for each carrier, we will drop the index [n] in this section.
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case the nullspace of H̄u is of dimension higher than Lu) as well as to perform power allocation.

We choose Fu as the matrix containing the Lu singular vectors associated to the largest singular

values of H̃uNu, i.e., we perform uniform power allocation along the Lu stronger directions of

the equivalent channel H̃uNu. The nullspace of Nu has dimension Du , Ntx −
∑U

i=1,i 6=u Lu, so

Nu ∈ CNtx×Du , and Pu ∈ CDu×Lu . Note that if the system is fully loaded (
∑U

u=1 Lu = Ntx)

then the nullspace of H̄u will have dimension Lu and, therefore, Pu will be a square matrix.

The post-processed signal at the u-th receiver is

yu = GuBuHuFusu + wu. (7.10)

Equation (7.10) can be obtained from (7.2) just by noticing that the BD condition (7.9) is

equivalent to BuHuFi = 0 ∀u 6= i and therefore, Ĥu,i[n] = 0, ∀u 6= i. Assuming limited

feedback of CSI, as anticipated in Section 7.2, full knowledge of Hu is not possible. We now

explain how BD can be performed also with reduced information. Decompose Hu using the

SVD as

Hu =
[

Ũu Ũu,small

] [ Σu,0 0

0 Σu,1

][
Ṽ
∗
u

Ṽ
∗
u,small

]
. (7.11)

where Ũu ∈ CNrx,u×Lu , Ũu,small ∈ CNrx,u×(Nrx,u−Lu) are the matrices containing the left singular

vectors associated to the Lu largest singular values and Nrx,u − Lu smallest singular values,

respectively; Σu,0 ∈ CLu×Lu is the diagonal matrix containing the Lu largest singular values

of Hu; and Ṽ
∗
u ∈ CLu×Ntx , Ṽ

∗
u,small ∈ C(Nrx,u−Lu)×Ntx are the matrices containing the Lu right

singular vectors associated with the Lu largest singular values, and the (Nrx,u−Lu) right singular

vectors associated to the remaining nonzero singular values. Assuming that the receiver uses

Bu = Ũ
∗
u, then the equivalent channel can be written as H̃u = Σu,0Ṽ

∗
u. It can be seen that H̃u

can be available at the transmitter (with some quantization error) with the feedback scheme

described in Section 7.2 for IEEE 802.11ac, since the matrix Ṽu is the beamforming matrix for

Lu spatial streams, and the values of Σu,0 can be obtained from the SNR of each subcarrier and

spatial stream. Further, since Σu,0 is invertible, the nullspace of H̃u is the same as that of Ṽ
∗
u,

so the SNR information is not necessary to design the precoders. Consequently, the precoders

can be found by ensuring that Ṽ
∗
uFj = 0 ∀u 6= j. Therefore, the set of precoding matrices can be

obtained from the preferred beamformers Ṽu. The presence of limited feedback, however, creates

some unknown interference leakage between the different users, which has to be estimated. We

present next the quantization scheme in IEEE 802.11ac, and an analytical approximation to this

interference leakage.
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7.5.2 Quantization

The presence of limited feedback creates unknown interference leakage among the different users.

The post-processing SNR depends on the interference leakage, so this value has to be estimated.

This estimation can be easily performed at the receive side, and CSIT can be acquired by the use

of the feedback link. This procedure, however, is not desirable for various reasons. First, there

is a circular dependency between user and mode selection and interference leakage estimation.

User and mode selection requires knowing the post processing SNR and, consequently, the

interference leakage, but estimating the interference leakage is restricted to a certain user/mode

configuration. Second, the amount of overhead and training is roughly doubled with respect

to the simple message interchange in Figure 7.1. Therefore, it is desirable to estimate the

interference leakage at the transmit side, without additional feedback from the receivers.

Next we derive an approximation for the interference leakage caused by the quantization

procedure in IEEE 802.11ac. This approximation can be easily computed at the transmitter by

using a statistical characterization of the quantization error. We describe first the quantization

method used in IEEE 802.11ac, and then derive an approximation for the interference leakage.

The objective of the quantization task is to provide the transmitter with a quantized version

V̂u of matrix Ṽu, which is the preferred beamforming matrix. The quantization process proceeds

as follows. The unitary matrix Ṽ ∈ CNtx,L is decomposed by using the Givens decomposition

[136, Ch. 5] as

Ṽ =

(
L∏

`=1

D` (φ`,1 . . . φ`,Ntx−`+1)

Ntx∏

n=`+1

Gn,` (ψ`,n)

)
Ĩ (7.12)

where

D` (φ`,1 . . . φ`,Ntx−`+1) = diag
(
1`−1, e

jφ`,1 . . . ejφ`,Ntx−`+1

)
∈ CNtx×Ntx . (7.13)

Ĩ is a matrix containing the first L columns of an Ntx × Ntx identity matrix and Gn,` (ψ`,n) ∈
RNtx×Ntx is a rotation matrix operating in the ` and n coordinates:

Gn,` (ψ`,n) =




I`−1

cosψ`,n sinψ`,n

In−`−1

− sinψ`,n cosψ`,n

IN−n



. (7.14)

The feedback consists of quantized versions ψ̂`,n and φ̂`,n of the angles ψ`,n and φ`,n. The

quantization of ψ`,n and φ`,n is performed by the use of bψ and bφ bits, respectively. IEEE
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802.11ac uses a uniform quantizer. Since ψ`,n ∈ [0, π/2] and φ`,n ∈ [0, 2π] [137], the codebook

for each of the angles is

ψ̂`,n ∈
{
qψ,k ,

kπ

2bψ+1
+

π

2bψ+2
, k = 0, 1 . . . 2bψ − 1

}
(7.15)

φ̂`,n ∈
{
qφ,k ,

kπ

2bφ−1
+

π

2bφ
, k = 0, 1 . . . 2bφ − 1

}
. (7.16)

The quantization of the angles is performed by finding the minimum distance codeword

ψ̂`,n = qψ,k if ψl,n ∈ Qψ,k ,
[
kπ

2bψ+1
,
(k + 1)π

2bψ+1

]
(7.17)

φ̂`,n = qφ,k if φl,n ∈ Qφ,k ,
[
kπ

2bφ−1
,
(k + 1)π

2bφ−1

]
. (7.18)

For the sake of simplicity, we denote δ , π

2
bφ

and ε , π

2
bψ+2 , so that Qψ,k = [qψ,k − ε, qψ,k + ε]

and Qφ,k = [qφ,k − δ, qφ,k + δ]. Note that this quantization scheme is the LBG quantizer [138],

optimal in the minimum distortion sense, only if the angles are independent and the distribu-

tion of both angles is uniform, which is not the case even in the well-studied independent and

identically distributed Gaussian MIMO channel, see e.g. [139].

7.5.3 Interference estimation

Now we characterize the residual interference using only the quantized CSI. The BD precoders

are designed using the quantized beamformers V̂u to satisfy V̂∗uFj = 0 ∀u 6= j. Because the

beamformers are quantized, the interuser interference cannot be completely removed due to

the imperfect CSI, so the total interference plus noise covariance matrix (7.5) assuming BD

precoding and ZF equalizer at user u is

Ru =
∑

j∈T \{u}

Ru,j + σ2GuG
∗
u (7.19)

where Ru,j , Ĥu,jĤ
∗
u,j is the covariance matrix of the interference from the message intended to

user j. Equation (7.19) follows by assuming perfect CSI at the receiver, so that the ZF equalizer

removes all the intra-stream interference, i.e., Ĥu,u = Du,u in (7.5), and by applying the fact

that Bu is a unitary matrix. If Gu is a ZF equalizer, and the precoders and interference rejection
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matrices are designed following the BD procedure, then

Gu = (BuHuFu)−1 =
(
Σu,0Ṽ

∗
uFu

)−1
. (7.20)

Now, write Ṽ
∗
u = V̂

∗
u + Eu, where Eu is the quantization error matrix. If the quantization error

is small, (7.20) can be approximated as

Gu =
(
Σu,0V̂

∗
uFu + Σu,0EuFu

)−1
≈
(
Σu,0V̂

∗
uFu

)−1
. (7.21)

Note that for (7.21) to hold it is only necessary that the entries of Eu are negligible with respect

to the entries of V̂
∗
u.

The multiuser interference can be written as

Ru,j =
1

P
GuΣu,0Ṽ

∗
uFjF

∗
jṼuΣ

∗
u,0G

∗
u =

1

P
GuΣu,0E

∗
uFuF

∗
uEuΣ

∗
u,0G

∗
u (7.22)

where the last equality is due to the BD constraint V̂
∗
uFj = 0.

First, note that the interference covariance matrices Ru,j in (7.22) are random variables from

the transmitter’s point-of-view, since the quantization noise Eu is unknown at the transmitter.

We define a new covariance matrix by averaging over the realizations of Eu

R̄u,j , E [Ru,j ] =
1

P
GuΣu,0Cu,jΣ

∗
u,0G

∗
u (7.23)

with

Cu,j = E
[
Ṽ
∗
uFjF

∗
jṼu

]
(7.24)

and the expectation is taken over the random realization of Ṽu given the received feedback V̂u.

Note that we are implicitly averaging over Eu, but the particular structure of the quantization

method makes it easier to derive the final result when explicitly averaging over Ṽu|V̂u.

Let us define φ` , (φ`,1, . . . , φ`,Ntx−`+1) and φ̂` ,
(
φ̂`,1, . . . , φ̂`,Ntx−`+1

)
. With this, we

can write Ṽu following a Givens decomposition, so that the covariance matrix is

Cu,j = E

[
Ĩ
∗
(
Lu∏

`=1

Dl (φ`)

Ntx∏

n=`+1

Gn,` (ψ`,n)

)∗
FkF

∗
k

(
Lu∏

`=1

Dl (φl)

Ntx∏

n=`+1

Gn,` (ψ`,n)

)
Ĩ

]
(7.25)

where we parametrized the matrix random variable Ṽu|V̂u using the Givens parameters φ`,n|φ̂`,n
and ψ`,n|ψ̂`,n. If we assume that all the angles φ and ψ are independent, then the expected value

over all the angles can be decomposed into several expected values, each one over a different
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angle. This is a reasonable assumption for a MIMO channel with zero-mean Gaussian iid

entires [139], for example. To simplify the computation of the covariance matrix, we work with

a vectorized version of Cu,j , cu,j , vec Cu,j . Using properties of the Kronecker product [140],

we have

E [ck,i] =
(
ÎT ⊗ Î∗

)( Lu∏

`=1

RT
`

Ntx∏

n=`+1

WT
`,n

)T

vec
(
FjF

∗
j

)
(7.26)

where

R` , Eφ`|φ̂`

[
DT
` (φ`)⊗D∗` (φ`)

]
(7.27)

and

W`,n , Eψ`,n|ψ̂`,n
[
GT
n,` (ψ`,n)⊗G∗n,` (ψ`,n)

]
. (7.28)

We now proceed to approximate R` and W`,n. We resort to a well known result in high resolution

quantization theory [141] and approximate the quantization error by a uniform random variable

in the quantization bin. This approximation is exact for the quantization noise φ̂`,i−φ`,i (but not

for ψ̂`,n −ψ`,n) if Hu has Gaussian iid entries, since φ̂`,i is uniformly distributed in [0, 2π] [137].

We now calculate a closed form expression for (7.27) and (7.28) assuming uniform quanti-

zation noise. For the sake of clarity, we will omit subscripts and matrix angular arguments when

their value is clear. Using the definition in (7.13), it is possible to take the Kronecker product

and write (7.27) as

diag
(
D∗` , . . . , D∗` , e

jφ`,1D∗` , . . . e
jφ`,Ntx−`+1D∗`

)
. (7.29)

Now we compute the expectations of each term. First observe that

E[D∗` ]`+i−1,`+i−1 = E
[
e−jφ`,i

]
=

1

2ε

∫ φ̂`,i+δ

φ̂`,i−δ
e−jφdφ =

e−jφ̂`,i sin δ

δ
. (7.30)

The expectation of the other diagonal terms can be obtained similarly as

E
[
ejφ`,j [D∗` ]i,i

]
=
ejφ̂`,j sin δ

δ
, i = 1 . . . `− 1 (7.31)

and

E
[
ejφ`,j [D∗` ]`+i−1,`+i−1

]
=





1 if i = j

ej(φ̂`,j−φ̂`,i) sin2 (δ)

δ2
if i 6= j

, i = 1 . . . Ntx − `+ 1. (7.32)

Now, we proceed to obtain a closed form for (7.28) with the uniform error approximation. First,
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let us write

W`,n = E




I`−1 ⊗G∗`,n
cosψ`,nG

∗
`,n − sinψ`,nG

∗
`,n

In−`−1 ⊗G∗`,n
sinψ`,nG

∗
`,n cosψ`,nG

∗
`,n

INtx−n ⊗G∗`,n



.

(7.33)

The expectations of the different blocks of the matrix can be obtained by simple integration,

similarly to (7.31).

E
[
G∗`,n

]
=




I`−1

sin ε cos ψ̂`,n
ε

−sin ε sin ψ̂`,n
ε

In−`−1

sin ε sin ψ̂`,n
ε

sin ε cos ψ̂`,n
ε

INtx−n




(7.34)

E
[
cosψ`,nG

∗
`,n

]
=




cos ψ̂`,n sin ε
ε I`−1

J`,n
cos ψ̂`,n sin ε

ε INtx−n


 (7.35)

with

J`,n =




ε+cos ε cos 2ψ̂`,n sin ε
2ε − cos ε cos ψ̂`,n sin ε sin ψ̂`,n

ε
cos ψ̂`,n sin ε

ε In−`−1

cos ε cos ψ̂`,n sin ε sin ψ̂`,n
ε

ε+cos ε cos 2ψ̂`,n sin ε
2ε




(7.36)

and

E
[
sinψ`,nG

∗
`,n

]
=




sin ψ̂`,n sin ε
ε I`−1

S`,n
sin ψ̂`,n sin ε

ε INtx−n


 (7.37)

with

S`,n =




cos ε cos ψ̂`,n sin ε sin ψ̂`,n
ε − ε−cos ε cos 2ψ̂`,n sin ε

2ε
sin ψ̂`,n sin ε

ε In−`−1

ε−cos ε cos 2ψ̂`,n sin ε
2ε

cos ε cos ψ̂`,n sin ε sin ψ̂`,n
ε


 .

(7.38)
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Note that the complexity of obtaining the error covariance matrix is similar to the complexity

of recovering the matrix V̂ from the quantized angles. Figure 7.2 shows the accuracy of the

analytical approximation.
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Figure 7.2: Analytical and empirical interference leakage per spatial stream
(

1
Lu

tr Cu,j

)
for a

two-user scenario. The theoretical approximation is calculated using (7.26) and the closed form
expressions for the expected values (7.30) - (7.37) . The simulation interference leakage was
averaged over 100 independent MIMO channels with independent complex Gaussian entries.

7.6 MCS selection

The MCS selection block consists of a function µ that takes as input the set of post-processing

SNR values of user u and the number of spatial streams Lu, and computes the higher MCS that

meets the FER constraint for those SNR values, i.e.

µ (γu, Lu) = arg max
c∈C

η (c, Lu) subject to FER (γu, cu) ≤ p0. (7.39)

The post-processing SNR values are calculated by applying the approximations (7.21) and (7.26)

in (7.4) to incorporate the interference leakage estimate. An important observation is that in

(7.39) the rate is being maximized, not the throughput. The reason is that for small values of p0,

the feasible points meet η (c, Lu) (1− FER (γu, cu)) ≈ η (c, Lu). This approximation simplifies

the problem, since estimating the actual value of FER (γu, cu) is not required, rather it is only

necessary to discriminate whether it is above the desired threshold p0 or not.

We use a machine learning inspired approach to solve (7.39). Essentially, we classify features

derived from the channel into the highest MCS that meets the target FER constraint. The
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classifier is made up of individual classifiers that distinguish whether a certain MCS and number

of spatial streams are supported by the current channel. Note that this is slightly different from

conventional machine learning in that there is a target average error rate, whereas machine

learning usually involves avoiding classification errors altogether. We will follow a supervised

learning approach to solve this problem, which includes two separated tasks: feature extraction

and classification.

7.6.1 Feature extraction

In machine learning, the curse of dimensionality is well known: the larger the dimension of

the feature vector, the exponentially more data is required [142]. To reduce the dimensionality

of γu, we exploit insights made in [47] about performance in coded bit interleaved MIMO-

OFDM systems. In particular, it was recognized that performance was invariant to subcarrier

ordering, i.e., FER (γu, cu) = FER (Πγu, cu), with Π any permutation matrix. Therefore, the

reduced dimension feature vector should be invariant to subcarrier ordering. Similar to [47],

we use a subset of the ordered SNR values as our feature vector. Define the ordered SNR

vector γ̃u = [γ̃u,1, . . . , γ̃u,NLu ]T as a vector formed by ordering the elements in γu in ascending

order. For example, γ̃u,i denotes the i-th smallest SNR value (among all carriers and spatial

streams) of user u. We obtain our feature vector f by selecting a subset of the entries of γ̃u.

Other approaches for dimensionality reduction, like principal component analysis [143], may

alternatively be applied, but in our simulations we did not see a significant benefit.

7.6.2 Classification

The objective of the classification task is to estimate the highest MCS supported by the channel,

as characterized by the feature vector f . Following a similar approach as in [50], we use a set

of classifiers δc,L(f) to discriminate whether the current channel will support transmission with

MCS c and L spatial streams while meeting the FER constraint. More formally, given a set of

M training samples {(γi, ptr,i)}Mi=1, with ptr,i the FER of the i-th channel, the input data for

the classifier is the set {(f i, νi)}Mi=1, with

νi =

{
1 if ptr,i ≤ p0

−1 if ptr,i > p0

(7.40)

and f i the subset of the ordered SNR of the i-th channel. The classifier is a function of the

feature input vector that maps

δc,L : f → {−1, 1} . (7.41)
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There are several ways to construct a classifier; we choose the popular SVM. An SVM determines

the class of a sample by the use of linear boundaries (hyperplanes) in high dimensional spaces.

Operating in a high dimensional space is enabled by the use of a Kernel function K(x1,x2) that

maps x1 and x2 to vectors φ(x1) and φ(x2) lying in a Hilbert space, and performs the inner

product in that space 〈φ(x1), φ(x2)〉. The Kernel function K(x1,x2) has a very simple form for

properly chosen φ. In many cases, perfect separation by a hyperplane is not possible (or not

desirable, since it would lead to non-smooth boundaries) and a penalization term is introduced

to take into account the misclassified training samples. Formally, the classifier is

δc,L(x) = sign

(
M∑

i=1

αiνiK (x, f i) + b

)
(7.42)

where αi is obtained as the result of the optimization problem

minimize 1
2

∑M
i=1

∑M
j=1 αiαjK (f i, f j)−

∑M
i=1 αi

subject to
∑M

i=1 νiαi = 0

0 ≤ αi ≤ C, i = 1, . . . , M

(7.43)

and b can be obtained by solving δc,L(f i)νi = 1 for any training sample f i such that 0 < αi < C

[53]. The parameter C has to be adjusted to trade off smoothness and training misclassification

rate. High values of C result in very irregular boundaries caused by very small training errors,

and low values of C result in large training errors caused by smooth boundaries. We use the

radial basis function kernel

K(x1,x2) = exp

(
−‖x1 − x2‖2

ρ2

)
, (7.44)

where parameter ρ2 is used to tradeoff bias and variance: small values of ρ tend to take into

account only the nearby training points, leading to high variance classifiers, and large values

of ρ result in biased results. The parameters ρ and C are selected using a cross-validation

approach [53].

For a given number of streams Lu, the overall classifier chooses the MCS with a higher rate

among those predicted to meet the FER constraint. The MCS selection function µ (7.39) is

implemented as

µ (γu, Lu) = arg max
c∈C
{η (c, Lu)} s.t. δc,L(γu) = 1. (7.45)
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7.7 User and mode Selection

Performing optimal user and mode selection requires an exhaustive search over all possible

combinations of users and number of streams per user. To overcome this challenge, we propose

a greedy approach, similar to [128–130], where the streams are added one by one until the utility

function ν (t) does not increase. In each iteration, one spatial stream is added to the user whose

increment in the number of spatial streams led to a higher throughput. The algorithm continues

until the maximum number of spatial streams is reached, or when an increment in the number

of spatial streams lead to a lower sum rate.

An important observation is that the greedy algorithm is not fair, in the sense that a

user could be assigned all the spatial streams if it led to a a higher objective function, in our

case the sum rate. The objective function, however, could be modified to encourage fairness.

For example, metrics that are concave in the rates would give more utility to assigning spatial

streams to unscheduled users. This change in the objective function does not require any other

change in the user selection algorithm, or the other pieces of our link adaptation procedure. The

entire proposed link adaptation algorithm is summarized in Algorithm 2.

Algorithm 2: Link Adaptation Algorithm

Lu = 0 ∀u
R ← 0
while

∑U
u=1 Lu < Ntx do

for Each user u with Lu < Nrx,u do
Calculate matrices Fv[n], Gv[n], Bv[n] for all users v, for the spatial streams set
{L1, L2, . . . , Lu + 1, . . . , LK} following the procedure in Section 7.5.
Calculate interference leakage Ru,j as in (7.23).
Calculate post-processing SNR values γv∀v as in (7.4).
cv ← µ (γv, Lv)∀v. {Calculate optimum MCS for all users}
tv ← η (cv, Lv) ∀v {Calculate the corresponding rate}
Ru ← ν (t) {Utility metric if we incremented Lu by 1}

end for
j ← arg maxu {Ru} {User whose increment in Lu leads to a higher rate}
if Rj ≥ R then
Lj ← Lj + 1
R ← Rj

else
Stop algorithm.

end if
end while
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Table 7.1: MCS in IEEE 802.11ac with the corresponding data rates in 20MHz channels [62].

MCS Data Rate (Mb/s)

BPSK 1/2 6.5

QPSK 1/2 13

QPSK 3/4 19.5

16-QAM 1/2 26

16-QAM 3/4 39

MCS Data Rate (Mb/s)

64-QAM 2/3 52

64-QAM 3/4 58.5

64-QAM 5/6 65

256-QAM 3/4 78

7.8 Simulation results

To validate the performance of the proposed link adaptation method, we performed simulations

using parameters from the physical layer of IEEE 802.11ac. The studied scenario comprises

a 4-antenna transmitter communicating with three 2-antenna receivers over a 20MHz channel

(52 OFDM carriers) with an 800ns guard interval. The frame length was set to 128 bytes.

Perfect CSI was assumed at the receiver and different levels of CSI at the transmitter. The FER

constraint for the link adaptation problem was set to p0 = 0.1. The set of MCS for optimization

with the associated data rate for one spatial stream is shown in Table 7.1.

The training of the classifiers δc,L was performed as follows. The training set was generated

in a single user setting with perfect CSI by simulating different channels for all MCS and NSS

values. For each of the channels, the complete transmit-receive chain was simulated, e.g. coding,

interleaving, equalization, decoding. The resulting SNR γ̃i values and FER ptr,i were stored for

each of the channels. The channels were generated in the time domain with a 4-tap MIMO

channel with iid Gaussian entries with 30 different noise levels, corresponding to SNR values

between 5 and 50 dB. For each training sample, the feature vector f consisted on 4 equispaced

SNR values (including the first and last ones) from the ordered SNR vector γ̃i. The class νi of

each training sample was adjusted to −1 if the measured FER was above the desired threshold,

i.e., ptr,i > p0, and 1 otherwise. We do not consider multiuser or limited feedback CSI in the

training set, since we assumed that the SNR information γ̃i was enough to predict the FER

performance, regardless of whether the SNR values are the result of performing limited feedback

BD precoding or not.

The parameters ρ and C of the SVM classifier were chosen before training the system. We

followed the usual K-fold cross validation procedure [53] (with K = 4) to select these parameters.

The SVM was implemented with the LIBSVM software package [144].

We compare the performance of the SVM classifier with an average SNR and an exponential

effective SNR classifier. The training and the test sets were generated independently, each
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one containing 6000 samples. For each sample, the FER was estimated by simulating the

transmission of 103 frames for each of the generated channels, so a small part of the classification

errors may be caused by an imperfect FER estimation. This error, however, is expected to affect

all the classifiers in the same way. The average SNR classifier discriminates the class using a

threshold γth on the average SNR, designed to minimize the training set error. Formally, the

average SNR classifier is

δAv. SNR
c,L (γ) = sign

(
1

NLu

Lu∑

l=1

N∑

n=1

γl [n]− γth

)
. (7.46)

The exponential effective SNR consists on a generalized mean of the SNR values

γeff = − 1

β
log

(
1

NLu

Lu∑

l=1

N∑

n=1

exp (−βγl [n])

)
(7.47)

that is compared with a threshold γeff, th, designed to minimize the training set error. The

parameter β depends on the MCS, and is also selected to minimize the training set error. We

can write the effective SNR classifier as

δEff. SNR
c,L (γ) = sign (γeff − γeff,th) . (7.48)

In Table 7.2 we show the accuracy results for the tested classifiers. We can see that the SVM

classifier outperforms the average and effective SNR classifiers, and in many cases the classifi-

cation error is below 1%. For example, for 16-QAM 1/2, L = 1, the SVM classifier misclassifies

around 1 sample out of 200 (0.417%), whereas the average SNR classifier makes approximately 20

times more errors (9.73%). In that case, the error rate of the effective SNR classifier is 1.51%, ap-

proximately 4 times more than the SVM classifier. The classification gain with respect to the Av.

/ Eff. SNR classifier is calculated as
(

ErrorAv. / Eff. SNR − ErrorSVM

)
/ErrorAv. / Eff. SNR,

and in the 16-QAM 1/2 case for the Av. SNR classifier is approximately 20−1
20 ≈ 0.95. This

classification gain reflects the percentage of errors made by the average or effective SNR clas-

sifier that would be corrected by the SVM. For example, a classification gain of 100% means

that the SVM classifier is perfect, and a classification gain of 0% means that the SVM has the

same accuracy as the average SNR classifier. We can see that in some MCS the Eff. SNR

classifier outperforms the SVM classifier, but in average the SVM performs 22.34% better than

the Eff. SNR classifier. The average gain with respect to the Av. SNR classifier is much higher,

above 67%. This result confirms that SVM-based link adaptation algorithms outperform state-

of-the-art effective SNR classifiers, currently used widely in LTE, among other communication
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Table 7.2: Classification errors and accuracy gain of the SVM classifier with respect to an
Average and Effective SNR classifier (all in %).

SVM Av. SNR Gain Av. SNR Eff. SNR Gain Eff. SNR

L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4

BPSK 1/2 0.45 1.33 1.05 0.88 9.4 2.9 1.78 2.82 95.2 54.0 41.1 68.6 0.866 1.2 1.08 1.46 48.1 -11.1 3.08 39.8

QPSK 1/2 0.433 1.12 1 0.683 3.92 7.87 2.33 3.32 95.2 54.0 41.1 68.6 1.1 1.35 1.18 0.9 60.6 17.3 15.5 24.0

QPSK 3/4 1.43 3.57 4.78 2.08 9.22 6.38 6.7 3.78 84.4 44.1 28.6 44.9 2.75 1.4 3.35 2.83 47.9 -154 -42.8 26.5

16-QAM 1/2 0.417 0.6 1.22 0.8 9.73 4.11 1.97 2.45 95.7 85.4 38.1 67.3 1.51 1.58 1.68 1.8 72.5 62.0 27.7 55.6

16-QAM 3/4 1.58 3.87 3.63 1.9 7.63 7.15 4.92 3.28 79.3 45.9 26.1 42.1 3.07 3.63 3.1 2.7 48.4 -6.42 -17.2 29.6

64 QAM 2/3 0.433 1.5 1.66 1.15 4.5 5.11 3.31 2.36 90.3 70.6 49.7 51.4 1.72 2.52 2.33 2.87 74.8 40.4 28.6 59.9

64 QAM 3/4 1.03 2.68 3.05 2.05 6.53 6.1 5.47 3.12 84.2 56.0 44.2 34.2 2.57 3.28 3.08 4.13 59.7 18.3 1.08 50.4

64-QAM 5/6 0.783 1.85 1.57 2.33 7.87 6.38 2.82 5.67 90.0 71.0 44.3 58.8 2.57 3.03 1.88 3.01 69.5 39.0 16.8 22.6

Average 1.65 5.03 67.2 2.24 26.3

systems [145].

Complete system simulations were run for three different CSI levels at the transmitter:

perfect CSI and limited feedback CSI with (bψ = 5, bφ = 7) and (bψ = 4, bφ = 6). Simulations

were also run for the (bψ = 6, bφ = 8) case, the higher rate available in IEEE 802.11ac, but the

results are not shown as they are indistinguishable from the perfect CSI ones. In all cases a MU

feedback was assumed (i.e., including SNR information of all carriers), even for (bψ = 4, bφ = 6),

which is only available for SU mode in IEEE 802.11ac. The misclassified samples, i.e., the cases

where the selected MCS led to a FER value over the predefined threshold, were penalized and

computed as zero throughput. This penalization is set to remove the advantage of selecting an

MCS with a higher throughput, but without meeting the outage constraint, and is a common

procedure when evaluating link adaptation algorithms [47,146]. The channels were generated in-

dependently from the training samples, but with the same statistical distribution. The channels

for the three receivers were generated independently and with the same distribution, so fairness

is automatically induced in this scenario. In other scenarios with users with different average

received power, fairness can be introduced by changing the objective function, as explained in

Section 7.4.

Figure 7.3a illustrates the sum throughput as a function of the noise variance. As expected,

in the perfect CSI case, the throughput increases with the SNR, as the interuser interference

is completely avoided in this setting, and lower noise levels enable the use of higher rate MCS.

For the limited feedback CSI we study two different cases. The first case, represented by solid

lines, is the result of following the complete link adaptation algorithm, including the interfer-

ence estimation procedure. The second case, in dashed lines, does not include the interference

estimation block (i.e., assumes Cu,j = 0), thus is overestimating the actual SNR. For the inter-

ference estimation case, we see that (bψ = 5, bφ = 7) follows the trend of the perfect CSI curve

with a slightly lower throughput until an SNR value of around 35dB, and then flattens with

a maximum throughput around 220Mb/s. Performance loss is more significant with the lower

rate feedback (bψ = 4, bφ = 6) for moderate SNR values, reaching an error floor around 190Mb/s
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Figure 7.3: Simulation results for different feedback rates, with and without interference esti-
mation. 4-tap Gaussian channel model.

in the interference limited regime. We can see that the perfect CSI curve flattens at 312Mb/s,

which is the throughput of 4 streams using 256-QAM 3/4, the maximum rate MCS in Table 7.1.

If the interference estimation is not performed (the curves tagged as No Est) then the results are

dramatically different. At low SNR values, the evolution of these curves is similar to the more

sophisticated algorithm, as in this region the system is noise limited rather than interference

limited. As the SNR increases, there is a huge degradation with respect to the perfect CSI case.

Performance is penalized at high SNR where throughput decreases dramatically. This unex-

pected behavior is caused by the overestimation of the SNR due to the interuser interference

that is not taken into account, which causes the classifier to choose an MCS with a higher rate

than the channel can support. This leads to misclassified samples, leading to high FER values

that drive the throughput towards zero. From a learning perspective, the feature set does not

contain enough information to perform the adaptation. This information is implicitly included

in the SNR values when performing interference estimation.

In Figure 7.3b, we plot the evolution of the FER with the average SNR. We can see that

in the perfect CSI case as well as in the cases where the interference is estimated, the FER

constraint of 0.1 is always met. This result shows the robustness of the proposed approach

even with limited feedback. If the interference is not estimated, then the FER grows up to 1

due to the mismatch between the selected MCS and the actual SNR values, which causes the

throughput to decrease, as previously explained. The classifier is able to correctly perform MCS

selection in a multiuser setting despite being trained in a single user scenario, thus showing also
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the robustness of the classifiers against changes on the channel distribution. This plot shows

the importance of performing the interference estimation procedure.
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Figure 7.4: Evolution of the frequency of the different MCS with the average SNR for the perfect
CSI case and limited feedback with interference estimation.

In Figure 7.4, we plot the fraction of the selected MCS for different SNR values, for both

perfect CSI and limited feedback. In the perfect CSI case, the number of scheduled users is usu-

ally low for low SNR values (the No Transmission frequency, representing the case where a user

is not scheduled for transmission, is quite high) and the MCS are robust, while for higher SNR

the No Transmission frequency decreases and higher rate MCS are employed for transmission.

In the limited feedback case the behavior is similar to perfect CSI for low SNR values, but for

higher SNR the interuser interference forces to use more robust MCS and approximately one

third of the time the No Transmission MCS is selected.

Now we study the frequency of a given number of users being selected in Figure 7.5. In

the perfect CSI case the number of users grows up to three (i.e., all users are scheduled most

of the time), while in the limited feedback case transmits to only two users most of the time.

The reason is that in the limited feedback case the interuser interference increases with the

scheduled number of users, which is the limiting factor in the high SNR regime. The user

selection algorithm is able to identify the suboptimality of an aggressive multiuser transmission

by estimating the residual interuser interference. The effect of scheduling only two users out of

three was also observed in Figure 7.4, where for high SNR values the No transmission MCS is

selected 33% of the time. This partial scheduling of the users can lead to unfair scenarios where

the maximization of the sum rate causes one user not to be scheduled. This behavior can be

corrected by changing the objective function of the LA problem, as explained in Section 7.4.
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Figure 7.5: Evolution of the frequency of the number of users scheduled for MU transmission
with the average SNR for the perfect CSI case and limited feedback with interference estimation.

We also run simulations using TGac channel model B [147] to show the robustness of the

proposed approach against changes in the environment or channel model. The classifier is the

same as in the previous section, i.e., is trained with 4-tap MIMO channels with iid Gaussian

entries. The 802.11 channel model B presents realistic characteristics not present in the 4-tap

channel, such as delay taps with different power, and correlation among antennas. The objective

of this experiment is to show if the ordered SNR feature vector suffices to characterize the

performance of the system even in the presence of a change in the environment. The throughput

and frame error rate results are shown in Figure 7.6. We can see that the link adaptation

algorithm is able to keep the FER under the required threshold. Once again, interference

estimation is shown to be necessary to correctly select the number of users and MCS.

We compared the performance of the proposed adaptation procedure with the same al-

gorithm, but using an effective SNR and average SNR classifier instead of SVM. We run the

simulations under TGac channel model B, and assuming perfect CSI at the transmitter. The re-

sults are shown in Figure 7.7. The average SNR classifier offers a bad performance, as predicted

by the results in Table 7.2. The effective SNR has a slightly worse performance than SVM, es-

pecially at low SNR values. At moderate SNR values (around 20dB), SVM offers approximately

a 20% gain in throughput.
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Figure 7.6: Simulation results for different feedback rates, with and without interference esti-
mation. TGac channel model B. Classifier trained with Gaussian channel model.
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7.9 Conclusions

In this chapter we presented a framework for link adaptation in multiuser MIMO-OFDM net-

works with limited feedback information. The link adaptation problem is formulated as a max-

imization of the sum rate subject to a FER constraint. Focusing on the multiuser capabilities

in IEEE 802.11ac, we developed a data-driven algorithm that performs user selection, mode

selection, MCS selection and takes into account limited feedback information. We showed that

estimating the interference due to imperfect CSI is crucial to achieve a good performance in the

multiuser MIMO setting. Depending on the feedback rate, and by estimating the residual in-

terference, the transmitter is able to identify the error floor caused by multiuser transmission in

the high SNR regime. We conclude that machine learning classifiers can be used in a multiuser

setting, even in limited feedback scenarios. Performing interference estimation, however, is cru-

cial for the algorithm performance. The machine learning classifier is also shown to be robust

to changes in the statistical distribution of the channel. For example, the information acquired

in an open environment can be used to effectively perform adaptation in an office setting, where

more frequency selectivity is expected.

The content of this chapter is the result of a research stay in UT Austin under the super-

vision of Prof. Robert W. Heath Jr., and was partially presented in EUSIPCO 2013 [148] and

accepted for publication in IEEE Transactions on Wireless Communications [149]
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8.1 Introduction

In the previous chapter we solved the problem of link adaptation in MIMO-OFDM by resorting

to the use of machine learning techniques. The modulation and coding schemes (MCS) were

selected based on machine learning classifiers. These classifiers used as input the signal to

noise ratio (SNR) information, obtained from the received feedback information and from the

analytical interference estimation.
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One of the problems of the approach of Chapter 7 is the impossibility to incorporate practi-

cal impairments or different transmission parameters (like codeword length or noise distribution)

into the frame error rate (FER) prediction. In IEEE 802.11ac [62], for example, the frames have

variable length, which is going to affect the performance of the system. For a constant channel

state, longer packets will experience higher FER values [43]. Also, different noise distributions

will lead to different FER values, even with the same SNR value. Although the assumption of

Gaussian noise is common in system design, a generalized Gaussian distribution can model more

accurately some communication scenarios with Laplacian noise [150] or tropospheric impulse

noise [151]. Learning-based approaches were developed to overcome these problems [47, 50, 52].

Within the learning framework, the FER prediction is based on observed FER samples, so the

effect of impairments is already captured in these measurements. In this setting, the effect of

having FER samples with different codeword length or different noise distribution has not been

studied.

Previous work [40, 42, 47] focused on predicting the FER from SNR information, without

taking into account possible changes in the noise distribution or frame length.

In this chapter, we design FER predictors that are able to capture the effect of these prac-

tical impairments. In Section 8.2, we design a machine learning regressor, similarly to the one

developed in Chapter 7, but that includes parameters regarding the practical impairments. In

Section 8.3 we develop an analytical approach to FER estimation with different codeword length.

This approach is based on a maximum likelihood estimation problem, and a parametrization of

the FER that depends on the codeword length.

8.2 Learning-based FER estimation

8.2.1 Introduction

In this section, we design machine learning FER predictors that include the effect of different

codeword length and different noise distributions. We review effective SNR metrics (ESM) and

machine learning FER predictors, and propose modifications to include additional parameters in

the prediction. We design a new semi-parametric FER predictor by combining ideas from ESM

and machine learning. The results show that ESM loses accuracy when practical impairments

are present, and that the proposed methods can be used to overcome this problem.
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8.2.2 System model

Consider a point to point communication multiple input multiple output (MIMO) orthogonal

frequency division multiplexing (OFDM) system where a transmitter, equipped with T antennas,

communicates with a receiver, equipped with R antennas. Communication takes place over an

N -carrier OFDM physical layer. For every carrier n = 1, . . . , N we denote by Hn ∈ CR×T the

MIMO channel, by nn ∈ CR the received noise vector, and by xn ∈ CT the transmit signal. The

received signal yn ∈ CR is

yn = Hnxn + vn n = 1, . . . , N. (8.1)

We restrict our analysis to transmitters using linear precoders Fn ∈ CT×M to spatially conform

the transmit symbols sn ∈ CM and receive equalizers Gn ∈ CM×R. The number of spatial

streams (NSS), also called the mode, is denoted by M .

We assume perfect channel state information at both transmit and receive ends. Therefore,

we can apply singular value decomposition (SVD) precoding so

rn = GnHnFnsn + Gnvn = Λnsn + wn n = 1, . . . , N (8.2)

where Λn is a diagonal matrix including the first M singular values of matrix Hn, and wn ,

Gnvn . Design of power allocation is out of the scope of this work, and is assumed to be included

in Λn. The effect of SVD precoding is the decomposition of the MIMO channel in a set of M

scalar channels, each one with an input-output relationship described by

rn,i = λn,isn,i + wn,i. (8.3)

Therefore, each symbol sn,i passes through a flat fading channel with an SNR value of γn,i =
|λn,i|2
σ2 . We define the SNR vector γ as

γ = [γ1,1, . . . , γN,1, . . . , γN,M ]T . (8.4)

In this section, we consider zero-mean generalized complex Gaussian noise [152]. This generalized

model allows to treat Laplacian and Gaussian noise as special cases. The probability density

function of the real and imaginary parts of the noise is

f (x) =
ρ

2βΓ (1/ρ)
exp

(
−
∣∣∣∣
x

β

∣∣∣∣
ρ)

(8.5)

with β the scale parameter, and ρ the shape parameter. Roughly speaking, the parameter ρ

changes the rate of decay of the tails of the probability distribution, and β changes the variance
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for a fixed ρ. For example, if ρ = 1 the noise is Laplacian, and if ρ = 2 the noise is Gaussian.

The variance of the complex noise is

σ2 =
β2

2

Γ (3/ρ)

Γ (1/ρ)
. (8.6)

The transmitted symbols sm,i are the result of processing blocks of bits. Every block of bits

is independently processed, and constitutes a frame. The size L of the frame is variable, and

depends on the size of higher layer protocol data units. The frame is constituted after perform-

ing forward error correction (FEC) coding over blocks of bits, interleaving, and constellation

mapping. The transmitter selects the MCS from a discrete set C = {c1, . . . , cC}.

The problem we address in this section is how to estimate the FER associated to a channel

state, MCS, ρ and L. Particularly, for each MCS value, we are interested in a function

η (γ, ρ, L) (8.7)

that maps the set of SNR values γ, the frame length L and the shape parameter ρ to a FER

value. We focus first on the case of Gaussian noise and fixed codeword length L to illustrate

two different approaches to FER prediction. We extend these metrics in Section 8.2.4 to deal

with practical impairments.

8.2.3 FER prediction techniques

The involved structure of practical coding schemes makes the analytical study of the FER

function complicated. In this section, we classify the FER prediction approaches into parametric

and non-parametric. Although both approaches need to use empirical FER results, the main

difference is that the parametric approaches require adjusting some parameters following a mean

square error (MSE) fitting, for example, while non-parametric methods require adjusting the

actual model, usually by cross-validation techniques. In this section, we review ESM and learning

FER predictors.

Parametric FER prediction

Parametric techniques assume some functional relationship between the SNR values and the

FER, with some parameters to be adjusted according to empirical measurements. This func-

tional relationship is usually expressed as the composition of two different mappings, λ and
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γeff [40]

η (γ) = λ (γeff (γ)) . (8.8)

The first one is a mapping from the SNR vector γ to an ESM γeff, defined as the SNR value of

an additive white Gaussian noise (AWGN) channel with the same FER as the fading channel

under study. This mapping is as a generalized mean that maps the SNR values to a quality

domain, averages the quality measurements, and maps the value back to the SNR domain. If

we denote by Θ (·) the quality mapping, γeff is defined as

γeff (γ) = Θ−1


 1

M

1

N

N∑

i=1

M∑

j=1

Θ (γi,j)


 . (8.9)

In this section, we consider the Exponential Effective SNR metric (EESM) due to its analytical

tractability and good accuracy. For example, the WiMAX forum recommended the EESM as

the default method for FER prediction [45] in IEEE 802.16e. In EESM, the quality mapping is

Θ (x) = e−βx (8.10)

with β the parameter to be adjusted with empirical information.

The second mapping is a function from the SNR domain to the FER domain. More precisely,

λ (x) is the FER of an AWGN channel with SNR x. This mapping is usually performed by the

use of look-up tables (LUT) containing simulation results for the AWGN channel. To make

a fair comparison with the non-parametric approach, which does not assume any prior FER

information in AWGN, in this Section we consider a functional relationship between SNR and

FER in AWGN. Particularly, we consider a generalized sigmoid function

λ (x) =
1

(1 + exp (b (x−m)))1/ν
(8.11)

with ν, b and m to be fitted to empirical measurements. We verified by simulations that the

performance of the FER predictor with the sigmoid function (8.11) and a LUT is similar.

Non-parametric FER prediction

We follow some ideas from [47], and propose to use learning-inspired methods to perform FER

prediction. Based on some past samples (the training data), a regressor tries to estimate the

function value (the FER in our case) in a different set of samples (the test data). Note that

our approach differs from [47, 50], where the objective was to discriminate whether the FER is
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above or below a certain threshold, instead of predicting the FER value.

If we assume ideal interleaving, the FER is going to be invariant to permutations in γ, so

the ordered SNR vector γ̂ = Pγ suffices to obtain the FER performance. P is a permutation

matrix such that [γ̂]i ≥ [γ̂]i+1 ∀i.

The regression problem exploits the information in a set of training data {(γ̂i, yi)}Si=1,

consisting of pairs of SNR of different channel realizations γ̂i and its associated FER value

yi. The objective of the regression function is to obtain the FER y0 associated to a different

channel realization γ̂0. This regression problem involves two steps: dimensionality reduction

and regression.

We select a reduced dimension feature vector f i from the data γ̂i to avoid the curse of

dimensionality [142]. We restrict our study to affine operations, so f i = R (γ̂i − r) , with R a

dimensionality reduction matrix, and f i ∈ RD. We study the following dimensionality reduction

techniques:

1. Subset selection This method simply selects some entries of vector γ̂i. Thus, r = 0 and

R is a sparse matrix with D rows taken from of the canonical base of RNM . Although the

subset of selected entries could be optimized to gain some performance, in this Section we

reduce our analysis to matrices R selecting equidistant SNR positions, including the first

and last ones.

2. Subset selection with feature scaling This method selects some entries of the vector

γ̂i, but performs first an affine transformation to make the different entries of γ̂i zero mean

and unit variance. We define the empirical mean and variance of the entries of {γ̂i}Si=1 as

µk ,
1
S

∑S
i=1 [γ̂i]k and σ2

k ,
1
S

∑S
i=1 |µk − [γ̂i]k|2. The dimensionality reduction operation

is

f i = RΣ (γ̂i − µ) (8.12)

with Σ a diagonal matrix with entries [Σ]k,k = 1√
σ2
k

, µ = [µ1, . . . , µNM ]T , and R a

selection matrix.

3. Principal component analysis Principal component analysis (PCA) estimates the mean

and covariance matrix of the samples as µ = 1
S

∑S
i=1 γ̂i, C = 1

S

∑S
i=1 (γ̂i − µ) (γ̂i − µ)T .

The feature set is obtained by projecting the training set onto the dominant eigenmodes:

let C = UΛUT be the eigendecomposition of C with the eigenvalues sorted in decreasing

order, and let Ũ be the matrix containing the first D columns of U. The dimensionality

reduction operation is f i = Ũ
T

(γi − µ) .

After dimensionality reduction is performed, we build a regression function based on the
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reduced dimension training data. The reduced dimension training data is the set {(f i, yi)}Si=1.

Although there are a wide variety of non-parametric regression methods, we choose local linear

regression (LLR) for its simplicity. LLR approximates the function around a point f0 by a linear

model.

ŷ0 = α+ βT f0. (8.13)

The parameters α and β are obtained from weighted least squares (WLS) fitting. The weights

of the WLS problem depend on the distance between f0 and the different training samples f i.

The WLS problem is

min
α,β

S∑

i=1

Kλ (f0, f i)
∥∥α+ βT f i − yi

∥∥2
(8.14)

where Kλ is a kernel function parametrized by the value λ.We use the radial basis function

kernel:

Kλ (x,y) = exp

(
−‖x− y‖2

λ

)
. (8.15)

The value of λ determines a point in the bias vs variance tradeoff [53].

8.2.4 Inclusion of practical impairments

The methods described in the previous section perform FER prediction based only on SNR

information. In real systems, however, there are other factors that impact the performance of

a receiver. In this section we describe how to include practical impairments in parametric and

non-parametric techniques, and present a new semi-parametric approach.

Parametric FER prediction

Parametric approaches are difficult to adapt to include practical impairments, as a functional

relationship between the FER and the practical impairment has to be obtained or approximated.

In the case of variable frame length, for example, previous work assumed the availability of

a different FER predictor for every length [40, 43]. In this Section, we assume only one FER

predictor for every MCS, so the parametric FER predictors do not take into account the practical

impairments.

Non-parametric FER prediction

The non-parametric FER prediction techniques offer a flexible way to deal with practical impair-

ments, since they do not assume any functional relationship between the FER and the channel
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state. Thus, we can define an extended channel state that includes the practical impairment as

part of the channel state. Assume that we have a training set where each sample is associated to

a channel state vector and to a practical impairment vector. Denote pi , [pi,1, . . . , pi,P ]T as the

practical impairment vector of the i-th sample. The training set is a set of tuples {γ̂i,pi, yi}Si=1.

The extended channel state vector is defined as ei =
[
γ̂Ti ,p

T
i

]T
. With this definition, we can re-

define our training set as {ei, yi}Si=1 and apply the dimensionality reduction methods in Section

8.2.3.

The inclusion of practical impairments in the channel state vector increases the dimen-

sionality of the problem and, therefore, makes the use of dimensionality reduction even more

important. In the following section, we design a semi-parametric approach that combines ideas

from ESM and machine learning approaches to avoid the problem of dimensionality reduction.

Semi-parametric FER prediction

Parametric and non-parametric methods have some advantages and drawbacks. On the one

hand, parametric methods use simple functional relationships between FER and SNR, work

with a relatively low number of empirical samples, but are not flexible to accommodate practical

impairments. On the other hand, non-parametric methods can deal with practical impairments

in a straightforward manner, but need a large number of training samples to include additional

features.

One key observation is that ESMs are designed to be good dimensionality reduction tech-

niques, i.e., ideally the effective SNR γeff (γ̂) is a sufficient statistic for FER estimation. Thus,

we propose to use an alternative extended channel state vector, defined as

ei =
[
γeff (γ̂i) ,p

T
i

]T
. (8.16)

The estimation process involves two steps. In the first one, the optimum ESM parameter β is

obtained from the training samples without taking into account the practical impairments. In

the second one, the value of β is used to build the extended channel state vector (8.16), and

an LLR estimator is trained following the procedure in 8.2.3. Dimensionality reduction is not

performed (the number of practical impairments is expected to be small, and we have already

reduced the size of the SNR vector to one), but feature scaling might be necessary.
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8.2.5 Simulation results

We evaluated the described FER prediction methods for a MIMO-OFDM system with a 4-

antenna transmitter-receiver pair and 52 carriers, emulating the PHY of IEEE 802.11ac [62].

The MCS and its associated rates can be found in Table 7.1.

We performed different experiments to compare the performance of the FER prediction

methods. First, we compared parametric and non-parametric methods when no practical im-

pairments are present. We generated 6000 different realizations with SNR values between 0 and

30dB, and a 4-tap MIMO channel with Gaussian entries in the time domain. The frame length

was set to L = 1024, and the noise distribution was Gaussian. We simulated the transmission

over the channel with QPSK modulation, rate 3/4 convolutional code, and 4 spatial streams.

We divided the 6000 data points into two different parts: the training data, comprising 80%

of the points, and the test data, with 20% of the points. We trained our regressor with the

4800 samples, and tested it against the remaining 1200. We compared the ESM FER predic-

tor with LLR with the 3 different types of dimensionality reduction: LLR-PCA (dimensionality

reduction with PCA), LLR-SS (dimensionality reduction with subset selection), LLR-SS-SC (di-

mensionality reduction with subset selection and feature scaling). Also, we evaluated LLR-SS

and LLR-SS-SC with the SNR values in decibels instead of natural units.

We selected the kernel parameter λ following a K-fold cross-validation approach [53], with

K=4. This implies that every iteration in this cross-validation used 3600 samples to train the

regressor and 1200 to test it. After selecting the value of λ, the complete training set was used

to train the LLR.

In Figure 8.1 we show a plot of the FER estimation MSE as a function of the dimension

of the feature vectors f i. ESM MSE is plot as a constant for comparison. We see that LLR-SS

with SNR in dB outperforms ESM for number of features above 8. LLR-SS with SNR values in

linear scale performs worse than ESM, and PCA offers a poor performance.

We performed similar experiments introducing practical impairments in the system. In

all the cases, the division of the available samples into training, test and cross validation sets

was the same as in the no-impairments case. In Figure 8.2 we show the results for different

frame length. We generated 9000 realizations with the same channel and SNR distribution as

before, Gaussian noise, but now varying the frame length between L = 128 and L = 16386. In

this case, the estimation accuracy of ESM is hindered by the lack of information of the frame

size. The inclusion of practical impairments reduces the accuracy of ESM in almost one order

of magnitude. LLR with SNR in dB with L as a feature outperforms ESM, and the proposed

semi-parametric approach (LLR-ESM(dB)) offers the best performance. The semi-parametric
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Figure 8.1: FER prediction without practical impairments.

approach is built as a 2-feature LLR, with the ESM in dB, i.e., 10 log10 (γeff (γ)) with γ in

natural units.
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Figure 8.2: FER prediction with variable frame length.

A similar behavior is shown for the generalized Gaussian distribution in Figure 8.3. We

generated 12000 channel realizations with a constant frame length of L = 1024 but varying the

ρ parameter of the generalized Gaussian distribution between 0.1 and 4. In this case, the feature

vector contains the ρ value of the corresponding channel.

In Figure 8.4 we show the result of applying parametric and semi-parametric approaches to
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Figure 8.3: FER prediction with different noise distribution.

the problem of link adaptation with variable codeword length. A FER predictor was built for

every MCS, and the MCS with a higher throughput meeting a FER constraint of p0 = 0.1 was

selected. The frame length was randomly selected between 128 and 13684 bits. The proposed

semi-parametric approach offers up to 11% throughput gain for moderate SNR values. Also, it

was observed that ESM did not meet the FER constraint in some cases due to the FER prediction

inaccuracy. This results shows the advantage of taking into account practical impairments in

link adaptation.
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Figure 8.4: Link adaptation throughtput for variable frame length.
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8.3 Maximum Likelihood FER estimation

8.3.1 Introduction

In the previous section we presented a method to perform link adaptation in the presence of

practical impairments. These practical impairments are added as new features in the machine

learning regression problem. Thus, we do not exploit any prior information between the FER

and the different practical impairments. In this section we present an estimation theoretic

method to perform FER estimation for codewords of variable length. As opposed to [40,43], we

assume the availability of a limited number of FER predictors, calibrated to estimate the FER

of a small number of codeword sizes. Unlike [31, 46, 58, 59], we account for the FER prediction

error of the different codeword sizes. The proposed FER estimator is derived under a binary

symmetric channel (BSC) assumption, where the FER estimation is imperfect as a result of

having a finite observation window. We extend the result to coded systems under frequency and

space selective channels by the use of effective SNR FER predictors. The use of the proposed

estimation method enables accurate FER prediction for a wide range of codeword lengths while

keeping a low computational complexity.

8.3.2 FER estimation for uncoded systems

Consider a transmitter-receiver pair communicating through a noisy channel. The transmitter

builds blocks of bits [b1, . . . , bL] of variable length L, with bi ∈ {0, 1}, and the receiver observes[
b̂1, . . . b̂L

]
at the output of the channel, with b̂i ∈ {0, 1}. The channel is memoryless and

symmetric with error probability p, i.e., p , P
[
b̂i = 1|bi = 0

]
= P

[
b̂i = 0|bi = 1

]
. We assume

that the transmitted block of bits contains an error detection code such that the receiver is able

to identify the received blocks with at least one erroneous bit. We also assume that the error

detection code is designed to make the missed detection probability negligible. If we denote by

θL the probability of receiving an erroneous block of length L, we have that

θL = 1− P

[
L⋂

i=1

(
bi = b̂i

)]
= 1− (1− p)L . (8.17)

It can be seen from (8.17) that if the FER for a frame length L is known perfectly, we can

obtain the FER for a different frame length L̃ as

θL̃ = 1− (1− θL)L̃/L . (8.18)
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In a realistic scenario, however, it is very unlikely that an exact estimate of the FER is

available for any length. In general, the available FER estimate is going to be the result of

observing the success and failures of frames of a certain length during a time period. Moreover,

observations of frames of different length may improve our FER estimate. In the following, we

formalize the problem of estimating the FER from observations of frames of different size.

Consider a communication system with ` different frame sizes L1, . . . , L`. During an ob-

servation period, a receiver observes ni transmissions of size Li, out of which mi are received

with errors. mi is binomially distributed with parameters ni and θLi , i.e.

p (mi; θLi) =

(
ni
mi

)
θmiLi (1− θLi)ni−mi . (8.19)

The maximum likelihood estimate (MLE) of θLi given the observation mi is the measured FER,

i.e., θ̂Li = mi
ni
. The MLE is unbiased with variance

σ2
i , E

[(
θLi − θ̂Li

)2
]

=
(1− θLi) θLi

ni
. (8.20)

If there are observations from only one length (i.e., ` = 1), we can relate the MLE of θL1

and θL̃ by using the invariance property [102] and (8.18) as θ̂L̃ = 1−
(

1− θ̂L1

)L̃/L1

.

If ` > 1, however, the derivation of the MLE of θL̃ is more involved. For a vector of observed

errors m , [m1, . . . , m`]
T , the probability mass function of m parametrized by the FER θL̃ can

be easily obtained just by assuming independent observations and by applying (8.18) as

p
(
m; θL̃

)
=
∏̀

i=1

(
ni
mi

)(
1−

(
1− θL̃

)Li/L̃)mi (8.21)

×
(
1− θL̃

)(ni−mi)Li/L̃ .

It is possible to calculate the Fisher information matrix from (8.21) and conclude that a

minimum variance unbiased estimator of θL̃ does not exist [102]. The MLE seems also difficult to

calculate, since the likelihood function is nonconcave in θL̃ and, therefore, maximizing it would

require a grid search. We propose a simple and computationally efficient approach consisting on

a linear combination of ` MLE of θL̃, each one obtained from the observations from a different

length. First, let us denote as θ̂L̃ (Li) , 1−
(

1− θ̂Li
)L̃/Li

the MLE of θL̃ from the measurements



210 Chapter 8. FER Prediction under Practical Impairments

of length Li. We propose to estimate θL̃ by a linear combination of θ̂L̃ (L1) , . . . , θ̂L̃ (L`):

θ̂L̃ =
∑̀

i=1

βiθ̂L̃ (Li) (8.22)

with {βi} a set of weights to be designed. Figure 8.5 contains a diagram of the proposed

estimation scheme. Some simple direct values of βi will serve as our baseline for comparison:

• Average: βi = 1/` ∀i.

• Closest: βi =

{
1 if i = arg min

∣∣∣Li − L̃
∣∣∣

0 otherwise
.

x

x

x

+

Figure 8.5: Proposed linear estimation scheme: the estimated FER is obtained as the linear
combination of ` MLE.

Obtaining the optimum weights βi is quite involved as the MLEs θ̂L̃ (Li) are biased in general

(even when the MLEs θ̂Li are not). Also, the variance of θ̂L̃ (Li) depends on the parameter to

estimate. In the following, we derive a value for the βi by assuming a sufficiently large number

of observations ni.

If we have a sufficiently large number of observations ni, the distribution of the MLE θ̂Li
can be approximated as [102] θ̂Li ∼ N

(
θLi , σ

2
i

)
, so we can write

θ̂L̃ (Li) = 1− (1− θLi + wi)
αi (8.23)

with αi = L̃/Li and wi ∼ N
(
0, σ2

i

)
. As we are using a small variance approximation, we

approximate θ̂L̃ (Li) by the first order Taylor expansion series around wi = 0 as

θ̂L̃ (Li) ≈ θL̃ + wiαi
(
1− θL̃

)αi−1

αi . (8.24)
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From (8.24) we can see that the MLE θ̂L̃ (Li) is unbiased for large ni, as predicted by the

asymptotic properties of any MLE. The variance of the estimator θ̂L̃ (Li) is

ξ2
i , E

[(
θ̂L̃ (Li)− θL̃

)2
]

= σ2
i α

2
i

(
1− θL̃

)2αi−1

αi (8.25)

=
α2
i

(
1−

(
1− θL̃

)1/αi) (1− θL̃
) 2αi−1

αi

ni
.

From the values ξ2
i , the linear fusion weights which minimize the variance of θ̂L̃ in (8.22) are

βi =
1/ξ2

i∑`
i=1 1/ξ2

i

. (8.26)

Note that the MSE ξi depends on θL̃, which is the parameter to be estimated. Thus, the

parameters βi cannot be obtained directly. It is expected, however, that the parameters βi are

not very sensitive to small changes in θL̃. We propose a two-step estimation. First, obtain an

initial estimate θ̂L̃,0 of θL̃ by averaging the MLEs θ̂L̃ (Li) with weights βi = 1/`. Second, use

θ̂L̃,0 as the true value of θL̃ to calculate the ξi and then obtain the optimum weights βi according

to (8.26).
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Figure 8.6: Linear combination weights βi as a function of the error probability. We see that, in
general, αi = 1 (same length) is not a maximum. Low α values have more weight for low FER
values.

In Figure 8.6 we show the evolution of βi with αi for different θL̃, and a constant ni. It

can be seen that the maximum weight is not given to the samples with similar Li (i.e., α ≈ 1),

and depends on the operating regime. For example, in low FER values (θL̃ = 0.01) more weight
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is given to samples from longer packets (small α), since in those packets the error probability

is going to be larger and, therefore, more error events can be observed. The opposite behavior

is observed in the high FER region (θL̃ = 0.99), where shorter packets provide better error

estimates.

We evaluated the performance of the proposed estimation approach in a BSC with er-

ror probability p. In this setting, the FER is exactly θL = 1 − (1 − p)L, so we can com-

pare the obtained result with the exact FER value. We set ` = 5, with L = [L1, . . . , L`] =

[100, 1000, 5000, 8000, 10000] and ni = N ∀i, with N = 10, 100, 1000. Our objective is to

estimate the FER with L̃ = 2000. We compare the results with the two simpler estimation ap-

proaches already mentioned. The results are shown in Figure 8.7, where the figure of merit is the

normalized mean squared error (NMSE), defined as NMSE(dB) = 10 log10

(
1
K

∑K
i=1

(θ̂L̃,i−θL̃)
2

θ2
L̃,i

)

with θ̂L̃,i the FER estimate from the i-th realization of the observations. We averaged the re-

sults over K = 104 realizations of the observations. We can see that the proposed approach

outperforms the more naive estimates for almost all values of p and N . The gain is especially

noticeable when the number of observations is high (N = 100, 1000), and can be as large as

10dB. From the figure, we can observe that the effect in NMSE reduction when applying the

proposed method is approximately the same as multiplying the number of observations by a

factor of 10, especially for low p values.
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Figure 8.7: NMSE of FER prediction with different estimation methods as a function of p.
Different colors are used for different codeword lengths: N = 10 (blue), N = 100 (red), N = 1000
(black).

We also compared the proposed method against a scenario where all the observations are

of the desired length. For example, for N = 10, our method observes 10 frames of each length in
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L = [100, 1000, 5000, 8000, 10000], and we compare it against the case of observing 50 frames

of length 2000. In the latter case, the MLE of the FER is simply the observed FER, and

its variance is given by (8.20). We show the results in Figure 8.8. The proposed method with

observations of different lengths outperforms the MLE with observations of frames of the desired

length, especially for low p and large N values.
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Figure 8.8: NMSE of FER prediction compared with observations of the desired length, for
different p and N values.

8.3.3 FER estimation for coded systems

We exploit the insights obtained for the BSC to perform FER prediction with different codeword

length in coded systems under frequency and space selective channels. Although in general it is

difficult to obtain a good approximation for the FER in coded systems, the relationship between

the FER and CBER pcoded can be approximated as θL = 1 − (1− pcoded)L/D , where D is a

parameter that depends on the code. For example, D is the minimum distance of the code in

the case of convolutional codes, and the number of coded bits in the case of LDPC codes [59].

The relationship between FER of two different lengths is given by (8.18), thus not depending

on the actual value of D.

We perform FER prediction by the use of the exponential effective SNR metric (EESM).

Prediction is performed in two steps. First, the set of post-processing SNR values γ1, . . . , γK ,



214 Chapter 8. FER Prediction under Practical Impairments

are mapped to a single SNR value as

γeff = − 1

β
log

(
1

K

K∑

i=1

e−βγk

)
(8.27)

where β is a calibration parameter to be fitted according to empirical results. Second, the

FER estimate for a certain length L is obtained as θ̂L = FERAWGN,L (γeff) with FERAWGN,L an

empirically obtained function mapping an SNR value to the FER in AWGN for a codeword length

L. Note that both the calibration parameter β and the FER in AWGN are going to depend on

L. Also, if FER prediction is performed for different modulation and coding schemes, a different

β and FER function has to be obtained for each case.

We evaluated the proposed estimation procedure for FER prediction under the IEEE

802.11ac standard [62]. We selected MCS QPSK 3/4 with two spatial streams, a transmitter-

receiver pair with 2 antennas each, and SVD precoding. We obtained FER samples for codewords

with length L =
[
27, . . . , 214

]
, i.e., codeword lengths between 128 and 16384 bits. We trained

8 EESM estimators (one for each length) with 500 FER samples for different SNR values and

Rayleigh channel model. The SNR values were selected between 0 and 30 dB, so FER values

between 0 and 1 had to be estimated. For each of the 8 length values, we estimated the FER

using the other 7 FER predictors (with the 3 proposed linear fusion rules), and compared the

result with the FER prediction from the EESM estimator of codewords of the same length.

Formally, the proposed FER estimator is

θ̂L̃ =
∑̀

i=1,Li 6=L̃

βi (1− (1− FERAWGN,Li (γeff))αi) . (8.28)

In Figure 8.9 we show a diagram of the proposed estimation scheme.

x

x

x

+

Figure 8.9: FER estimation from linear fusion of ESM estimates.

We obtained the designed weights βi by assuming a constant ni in (8.25). We show the
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results in Figure 8.10. We can see that the proposed estimator outperforms the other linear

fusion approaches for all cases, except for the higher length case, where it attains approximately

the same NMSE as the Closest combining. Also, for 6 of the 8 lengths, the proposed estimator

outperforms the EESM FER prediction trained with samples of the same length. In some cases,

like L̃ = 210, the NMSE gain with respect to the same length FER predictor is in the order of

4dB.
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Figure 8.10: NMSE of FER prediction for different frame sizes in IEEE 802.11ac, QPSK 3/4.

8.4 Conclusions

In this chapter we presented an approach to perform FER estimation in communication sys-

tems using codewords of different length and different noise statistics. Machine learning FER

estimators can incorporate the practical impairments as additional features, while traditional

parametric approaches are less flexible.

Classical ESM without further modifications loses accuracy in the presence of different

frame length or noise distribution. We proposed first a semi-parametric approach that combines

the good properties of both parametric and non-parametric methods.

Finally, we developed an estimation theoretic approach to FER estimation with observations

of codewords of different length, and a simple way to combine them. The proposed estimator

with the designed linear combination is shown to outperform other simpler estimation methods.

We also show that a MLE with samples of the desired length can perform worse that the proposed

estimator.
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The results of both sections show the importance of incorporating practical impairments

into the FER predictors.

The content of this chapter was partially published in Asilomar 2013 [153] and ICASSP

2014 [154], co-authored by Prof. Robert W. Heath Jr. and Prof. Carlos Mosquera.
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9.1 Conclusions

This thesis focuses on techniques to increase the spectral efficiency of wireless networks. Par-

ticularly, methods based on cognitive radio and link adaptation are proposed. These two lines

of research cover two different approaches to the improvement of spectral efficiency: cognitive

radio-based techniques provide spectral efficiency gains by the use of novel spectrum access

techniques, while the use of advanced link adaptation techniques can increase the efficiency of

currently deployed wireless systems with little or none modifications on the standards.

Focusing on the cognitive radio contributions, we analyzed different scenarios under the

overlay paradigm. Under this paradigm, a secondary transmitter, which is trying to access the

spectrum owned by a primary transmitter, knows the message to be conveyed by the latter. We

focused on the problems that arise when channel state information (CSI) is not available at the

transmitter, and analyzed both point to point and broadcast scenarios.

In Chapters 2, 3 and 5 we studied the effect of a cooperative secondary transmitter without

CSI when the primary transmitter uses orthogonal frequency division multiplexing (OFDM). In

Chapters 2 and 3 the primary receiver was assumed to be a broadcaster, so CSI acquisition was

not possible. The insertion of a cooperative secondary transmitter creates an artificial multipath
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that degrades the quality of service of the primary receivers, even when the received signal to

noise ratio (SNR) is increased. We presented an analytical approach to quantify the effect

of the secondary echoes, based on effective SNR metrics, and develop transmission techniques

to alleviate the degradation caused by the artificial multipath. In this scenario, interference

cancellation can be performed at the receivers if the primary message is decodable. The results

of these chapters can be useful to design overlay cognitive radio networks and for broadcast

network planning with single frequency operation.

In Chapter 5 the primary system was point to point, and a simple and inexpensive CSI

acquisition scheme was proposed. Under this setting, we obtained the optimum signals for CSI

acquisition, and the optimum power allocation to maximize the primary rate. We extended a

previous CSI acquisition technique, which was designed for the single antenna time invariant

channel, to the multiple input multiple output (MIMO) and time varying case. The results in this

chapter offer new insights on the design of cognitive radio systems without CSI at the transmitter,

and show how a simple CSI acquisition scheme can be used to increase the performance of the

system.

Chapter 4 analyzes the problem of designing a secondary system that works under heavy

interference of the primary system. If the transmitter does not have access to CSI, then it cannot

exploit the knowledge of the primary signal to perform interference cancellation. In such a case,

the optimum power allocation at the secondary transmitter can extend the coverage area of the

primary system, which results in a coexistence that is beneficial for both primary and secondary

users.

Link adaptation is analyzed under mobile satellite and MIMO-OFDM scenarios in Chapters

6 to 8. The satellite scenario is challenging due to the large propagation delay, which makes

timely CSI difficult to acquire. In Chapter 6 we proposed adaptation techniques for the forward

and return links of mobile satellite channels. In the forward link we designed two different

methods, based on the use of retransmissions and multilayer coding, that rely on statistical CSI

only. For the return link, we developed a novel technique that exploits both open loop and

closed loop CSI. These techniques can be applied to increase the spectral efficiency of mobile

satellite systems while keeping a good reliability.

The difficulty of the MIMO-OFDM system resides on the large dimensionality of CSI, and

on the errors induced by the acquisition of CSI by means of a limited feedback channel. This

last problem is especially challenging in systems using space division multiplexing, where CSI

errors are critical. In Chapter 7 we developed an algorithm to perform multiuser transmission

with limited feedback information. The algorithm includes a machine learning classifier to select

the modulation and coding scheme, and a novel interference estimation technique that allows
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obtaining the multiuser interference without knowing the actual values of the channel. Chapter 8

dealt with a different aspect of link adaptation, namely the effect of practical impairments such as

different codeword length and noise distribution. We developed a learning-based approximation

to frame error rate prediction with general practical impairments, and an estimation theoretic

solution that focuses on different codeword lengths. The results in these two chapters can be

applied to link adaptation in IEEE 802.11-like systems to improve performance, especially in

scenarios with practical impairments and multiuser capabilities.

In a whole, the work in this thesis is based on the analysis of previously developed ideas

under realistic settings. For example, ideas like the degradation of single frequency networks

due to echoes and the multiuser estimation interference are novel to the best of our knowledge.

These ideas may help achieving the needed spectral efficiency to accommodate the growth in

data demand.

9.2 Future work

This thesis proposes some ideas that need further refinements before their real-world application.

We present now some possible extensions to our work.

9.2.1 Overlay cognitive radio

• In Chapters 2 and 4 the analysis is focused on the performance of primary receivers, and

no practical waveform or coding scheme is proposed for the insertion of the secondary

message. Also, it is assumed that secondary users that are placed next to primary users

have similar channels. This is not the case in practical scenarios, as primary users use

rooftop antennas and secondary users can be mobile receivers, for example. In this thesis

we restricted our analysis to the downlink of cognitive radio systems. The design of the

uplink could also be a future line of work, taking into account that the terminals do not

have access to the primary signal.

• Chapter 3 analyzes the performance of single frequency network (SFN) deployments under

different models of fading channels. Throughout the chapter, it is assumed that the number

of carriers is large enough to make the variance close to zero (or, equivalently, that the

effective SNR converges to its expected value). In some cases, especially in channels with

a small delay spread, this is not the case, and an analysis of variance could be able to

model the effective SNR more precisely.
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• The analysis in Chapters 2-4 relies on accurate information on the magnitude of the wireless

channel, although not on its phase and delay. In practice, perfect magnitude information

is impossible, so a sensitivity analysis could show the robustness of the proposed method

against small changes in the parameters. Also, the optimization problem could be recast

in a robust way to incorporate this parameter uncertainty.

• The power allocation problem in Chapter 5 is stated as an optimization problem with

perfect CSI. The method is afterwards evaluated under partial CSI, acquired from the

primary feedback. An alternative optimization problem, stated in a robust way, might

increase the spectral efficiency of the secondary system when CSI is inaccurate.

9.2.2 Link adaptation

• In the forward link analysis of Chapter 6, the multi-layer coding scheme relies on statistical

knowledge of the channel to select the modulation and coding scheme (MCS) and power

weighting. In practice, however, it might not be possible to obtain prior knowledge on

the distribution of the channel. Statistical knowledge of the channel can be obtained by

mere channel observation, although it is not clear how this estimation scheme may affect

the performance of link adaptation. A different approach could be to adapt the MCS and

power weighting from the ACK/NAK interchange in an online manner, similarly to the

method presented in Section 6.5.

• In Chapter 7, the interference analysis in the multiuser MIMO scenario is based on the

assumption of a zero-forcing receiver. In practice, different manufacturers may implement

receivers of different complexity, and the interference estimation should be different for

each of them. For example, the analysis could be repeated for the widely used minimum

mean squared error (MMSE) receiver. A different problem is how to acquire knowledge at

the transmitter of the detection algorithm the receiver is implementing.

• The algorithm in Chapter 7 does not take into account the degradation due to channel

estimation. Although the learning algorithm should be able to incorporate this degradation

implicitly for the point to point case, when multiuser transmission is used the degradation

is expected to be higher because of the appearance of undesired interference. One possible

way to overcome this problem is to include channel estimation error in the interference

estimation formulation.

• The MCS selection method of Chapter 7 makes use of pairs of observations containing

frame error rate (FER) and SNR values. In a practical setting, however, an accurate
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FER estimate is not available for every observed channel. If channel variation is fast,

for example, every transmitted packet will undergo a different realization, and averaging

different transmissions for FER estimation might not be possible. In such a case, the FER

estimates will be FER = 0 or FER = 1, so a different approximation to incorporate the

FER constraint is needed.
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