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Forensic detection of processing operator chains:
recovering the history of filtered JPEG images

Valentina Conotter, Pedro Comesafa, and Fernando Pérez-Gonzalez

Abstract—Powerful image editing software is nowadays ca-
pable of creating sophisticated and visually compelling fake
photographs, thus posing serious issues to the trustworthiness
of digital contents as a true representation of reality. Digital
image forensics has emerged to help regain some trust in digital
images by providing valuable aids in learning the history of an
image. Unfortunately, in real scenarios its application is limited,
since multiple processing operators are likely to be applied, which
alters the characteristic footprints exploited by current forensic
tools. In this work, we develop a novel forensic technique that
is able to detect chains of operators applied to an image. In
particular, we study the combination of JPEG compression and
full-frame linear filtering, and derive an accurate mathematical
framework to fully characterize the probabilistic distributions of
the Discrete Cosine Transform (DCT) coefficients of the quantized
and filtered image. We then exploit such knowledge to define a
set of features from the DCT distribution and build an effective
classifier able to jointly disclose the quality factor of the applied
compression and the filter kernel. Extensive experimental analysis
illustrates the efficiency and versatility of the proposed approach,
which effectively overcomes the state-of-the-art.

Index Terms—Full-frame linear filtering, image forensics,
JPEG compression.

I. INTRODUCTION

HE rapid growth and spread of Internet, along with

the popularity of advanced digital technologies, grants
easy access, manipulation, and distribution of digital media.
Nowadays visually compelling and sophisticated photographic
fakes pervade nearly every aspect of our society, including
media, politics, and advertisement, posing serious issues re-
garding the authenticity and reliability of digital images as a
true representation of reality. In turn, this situation creates an
urgent need for further technologies that are able to ensure the
trustworthiness of digital contents.

Although digital watermarking [1] is a valuable approach
for content protection and integrity verification problems,
it has the significant drawback of requiring the watermark
to be embedded before any (possibly illegal) processing,
thus limiting its application. For example, if the watermark
were embedded at the time of recording, especially equipped
cameras should be used. On the other hand, digital image
forensics works in absence of any watermark or special
hardware, and, therefore, has emerged as a new discipline
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that helps to solve authentication issues, and, consequently,
regain trust in photographs [2]. Digital forensics relies on the
fact that, although most forms of tampering may not leave
any obvious visual clues in the image, they may disturb some
specific properties. Over the last decade, plenty of forensic
techniques have been developed to detect such perturbations.
These techniques provide valuable solutions to the problem of
image authentication and verification, and important evidence
about the history of a content. They use, for example, statistical
patterns at the pixel level [3], specific to a compression format
(e.g., Joint Photographic Experts Group (JPEG) or Graphic
Interchange Format (GIF)) [4], [5], or introduced by the
camera lens or sensor [6], [7]; models of the interactions
between physical objects, light and the camera [8], or the
projective geometry principles of image formation [9].

One of the most extensively studied cases in digital image
forensics is JPEG compression (which in turn is an extremely
popular image format). By leveraging the characteristic foot-
prints left in the distribution of Discrete Cosine Transform
(DCT) coefficients during compression, those schemes detect,
for example, a previous JPEG compression jointly with the
used quantization table [4], [5], [10], or even disclose multiple
instances of JPEG compression [11], [12], [13].

However, a significant drawback of the many forensic tech-
niques proposed so far (including those dealing with JPEG)
is that they are designed to detect a single operation (e.g.,
region duplication, single JPEG compression, resampling, or
chromatic aberrations; see [3] for a general survey). Un-
fortunately, little attention has been paid up to now to the
forensic analysis of manipulation chains, with the exception
of double JPEG compression, where the same operator is
applied twice. Indeed, the application of multiple heterogenous
processing operators, often inevitable when creating a fake
photograph, may seriously affect the performance of existing
forensic algorithms, weakening or even erasing the specific
footprints left by previous processing and exploited by forensic
tools [14], [15]. Recalling the JPEG case, it is very likely
that an image, after being stored in JPEG format, will be
altered by a further post-processing, such as linear filtering,
either to enhance its quality (e.g., edge sharpening) or to
reduce the JPEG-compression blocking artifacts. Such post-
processing will perturb the characteristic patterns present in
the DCT distribution of JPEG images, and therefore reduce
their reliability for forensic purposes.

In this work, we study the real-practical scenario in which
a JPEG-compressed image is linearly filtered and saved in a
lossless format (e.g., TIFF). This particular operator chain (i.e.,
the combination of JPEG compression and full-frame linear
post-processing) is frequently used for quality enhancement,
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Fig. 1: Block diagram of the considered framework. Panel (a) shows the original DCT histogram for frequency (0, 1) for uncompressed
images and its curve fitting. Panel (b) depicts the corresponding histogram after JPEG quantization with stepsize go,1 = 10. Panel (c) shows
the histogram when a 3 x 3 average filter is further applied to the image, and the model derived for such distribution (red line).

noise removal, illumination correction, deblurring, or blocking
artifact reduction of JPEG images. Our analysis leverages on
modeling the effect of the complete chain on the statistical
distribution of DCT coefficients. Fig. 1 shows the block dia-
gram of the analyzed framework, in which an uncompressed
image () is JPEG compressed (yielding y), and subsequently
undergoes a linear filtering (whose output is denoted by z).
Fig. 1 also shows the histogram of the DCT coefficients of an
image before and after each processing step: panel (a) shows
the histogram before compression, panel (b) after compression,
and panel (c) after linear filtering. It becomes clear that the
quantization artifacts introduced by JPEG compression in the
DCT distribution are clearly perturbed by filtering; however,
new patterns appear in the DCT coefficients of the filtered
image. In this work, we illustrate the dependence of such
patterns on both the used JPEG compression quality factor
(JPEG-QF) and the filter kernel, and exploit them to jointly
disclose the filter kernel and the JPEG-QF that have been
applied to an image.

In order to achieve this goal, we firstly derive a statistical
model of the DCT coefficients of a JPEG image filtered with
a given kernel; this model was introduced in our preliminary
work [16]. As a by-product of this analysis, we show that
the prevalent assumption in which the image “Alternating
Current” (AC) DCT coefficients for different frequencies are
independent, and i.i.d. for any fixed frequency [1], [17], does
not hold, as neither the inter nor the intra-block redundancy of
the quantized DCT coefficients can be neglected. The proposed
statistical model will be exploited to derive a set of significant
features from the DCT histogram of the input image; these
features are fed to a linear classifier that effectively discrim-
inates among different combinations of linear filtering and
compression. The proposed forensic technique, preliminary
presented in [18], is computationally efficient and effective,
and able to jointly detect the filter kernel and the JPEG-QF
that have been applied to an image. Indeed, the proposed
forensic tool is shown to be valuable not only for disclosing the
targeted chain of operators, but as valuable byproducts is also
able to detect single operators (e.g., the applied compression

factor only), and it is robust to double compression; we will
empirically show that our detector outperforms state-of-the-art
schemes.

The remaining of this paper is organized as follows: Sect. II
presents our framework and recalls basic JPEG and linear-
filtering concepts. Then, Sect. III presents the statistical model
of the DCT coefficients of filtered JPEG images; from this
model, a set of classification features is proposed. Those fea-
tures are fed to a Support Vector Machine (SVM) classification
scheme, whose performance is reported in Sect. IV. Finally,
conclusions are drawn in Sect. V.

A. Notation

Throughout this paper, lower case letters (e.g., x) denote im-
ages of size L1 x Lo in the spatial domain;! z(i, j) represents
the pixel of image z at position (4, j), with¢ € {0,--- , L1 —1}
and j € {0,---, Ly — 1}. Images in the 8 x 8-DCT domain
are denoted by uppercase letters (e.g., X), so XJs(i )
stands for the (', j')th DCT coefficient at the (ig, js)th block,
where i',5' € {0,---,7}, ig € {0,---,(L1/8) — 1}, and
js €{0,--+,(La/8) — 1}; similarly, x5 (', j') denotes the
(', 77)th pixel at the (ig, jg)th block. For the sake of notational
simplicity, and due to the similarity with the pixel domain
notation, we will also use X (7,j), where ¢ = i’ + 8 - ig
and j = j' + 8- jg, to denote X%J5(i’, j'). Consequently,
prime variables will denote modulo 8 reduced variables, e.g.,
7/ = imod8.

Following this notation, Fig. 1 depicts the main variables
used in this work: an uncompressed image = is JPEG-
compressed to generate y; X and Y are their 8 x 8-DCT
versions, respectively. The application of a linear filter / in
the spatial domain yields the filtered JPEG image z, whose
8 x 8-DCT coefficients are denoted by Z.

II. FRAMEWORK DESCRIPTION
As it was already mentioned, the aim of this work is to
study the footprints left in the DCT coefficients by JPEG

For the sake of simplicity, we will assume L; and Lo to be integer
multiples of 8.
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compression followed by full-frame linear filtering. Conse-
quently, we will firstly focus on JPEG compression, a standard
which is based on an 8 x 8 non-overlapping block-by-block
DCT transform. We will restrict our analysis to the luminance
channel; further improvements may be possible by resorting
to a color representation, but they are not pursued here. In
particular, an image x of size Ly X Lo, is firstly partitioned
into L, /8 x Lo /8 non-overlapping blocks of size 8 x 8. Each
block x5 (i, ) is then independently transformed from the
spatial to the frequency domain using the DCT, i.e.,

X7«8 ]8 Z j

' (1, ng)-
ny= O’I’LQ 0

cos 2m + 1 i’ | cos a1 (D)
6 6 )

where c(k) = 1/v/2 if k = 0, and c(k) = 1 otherwise.

In its most widely used version, JPEG is a lossy scheme,
implying that some information is lost during the compression
process due to the quantization of the DCT coefficients, i.e.,

o Xts:ds (3 4!
Y818 (7:/7j/) — round <M> ,
qil7j/

where Y are the indices of the quantized DCT coefficients, q is
the so-called quantization table (an 8 X 8 matrix that contains
the 64 integer-valued quantization steps), and gy j is its
element at the (¢, j')th location. The choice of the quantization
table is user-dependent, and it is critical, as it must enable a
good trade-off between visual quality and compression rate.
The quantized DCT coefficients are finally entropy-encoded
(by using Huffman coding) and stored in the JPEG file format.

Decompression is performed by applying the reverse pro-
cessing. Specifically, the (i/,j')th DCT coefficient of the
(is, js)th block of the reconstructed image Y is

o Xis:Js (! 45’
yisis (i/,j/) =qirjr - round <(Z"7)> ,
qir .5
and it is transformed from the frequency to the spatial domain
by applying the Inverse DCT (IDCT) on each 8 x 8 block,
yielding

7 7
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Since JPEG compression forces the DCT coefficients to be
integer multiples of the quantization steps, specific artifacts
are introduced in the frequency domain. In Fig. 1, panel (a)
shows the histogram of the DCT coefficients at frequency
(0,1) collected from a set of 1338 uncompressed images
[19], while panel (b) depicts the distribution of the same data
after quantization, with go; = 10. It becomes clear that the
structure of such histogram is related to the used quantization
step. Notice that the round-off and truncation errors introduced
in the pixel domain were disregarded in that plot.

This DCT domain structure produces a characteristic block-
ing effect in the pixel domain. Due to the perceptual impact of
such distortion, some post-processing is frequently applied to

(1, ka)-

the compressed image. This processing can alter the charac-
teristic artifacts left by JPEG compression, and consequently
forensic JPEG detectors might become ineffective (cf. Sect.
IV); indeed, it could be also the case that such processing is
not aimed at enhancing image quality, but removing the JPEG
artifacts, that is, with a counterforensic purpose. As it was
previously said, this work deals with the case where full-frame
linear filtering is applied to a JPEG compressed image. The
convolution between an image y and a [(2N +1) x (2N +1)]-
sized linear filter kernel A is computed as

Z Z hSl,Sg

81—7N 52—7

Panel (c) in Fig. 1 illustrates the histogram of the DCT coeffi-
cients of panel (b) after filtering the image in the pixel domain
with a 3 x 3 average filter. The footprints in the quantized
coefficient histogram are clearly perturbed. However, new
patterns emerge; in the next section we show that these patterns
depend on both the employed JPEG-QF and the filter kernel.

(1 + 51,5 + 82). €))

III. MATHEMATICAL MODEL

In order to statistically model the DCT coefficients of JPEG-
compressed and linear filtered images, the following procedure
is carried out:

1) Derive the deterministic relationship between Z and Y
(see Fig. 1).

2) Propose a statistical model for Y'; jointly with the previ-
ous step, this will give a statistical model for Z.

3) Propose a set of features, based on the previous math-
ematical model, that summarize the compression and
filtering artifacts.

A. Deterministic relationship between Z and Y

The formulas establishing the deterministic relationship
between Z and Y can be found in Appendix A. From (12),
(13) and (14), it is clear that if a filter kernel of size smaller
than or equal to 17 x 17 were used, then the coefficients of
Y contributing to the calculation of Z(i,j) would be those
from the same block of Z(i,j), jointly with those from the
8 immediate surrounding blocks; this results in a 24 x 24
coefficient neighborhood.

Finally, (15) gives the contribution of DCT coefficient
Y (i,7) to Z(i,7), summarized next,

Z(Zaj) :’VZ’J’Y(LJ) +R(7’7])7 (4)

where 7y, j+, R(i,7) € R are a frequency dependent scaling
factor and a noise term, respectively, accounting for the
contribution of all the neighboring coefficients of Y (4, j). Note
that, differently from the effect of the circular convolution on
DFT coefficients, the resulting relationship between Y (4, j)
and Z (i, j) is not purely multiplicative.

B. Probability distribution

Given the derived deterministic expression of Z(7,j) in
(12), we can exploit the knowledge about the distribution of
the quantized coefficients Y (i, j) to study the distribution of
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Fig. 2: Histogram of DCT coefficients at frequency (0, 1), for go,1 =
10 and 3 x 3 average filter. The red bars are located at the integer
multiples of 70,1qo,1, while the yellow ones correspond to ¥ 1qo,1-

the DCT coefficients of the filtered image z. Usually, the
probability distribution of 8 x 8 block-DCT coefficients in
natural images for a particular coefficient (¢, ) is modeled
as a zero-mean Generalized Gaussian Distribution (GGD) [4],
ie.,

P () = — 2" Jexp(— ]/ ), 9

2a¢/’j/1“(1/ﬁi/,j,
where we have explicitly considered that all the coefficients
corresponding to a particular frequency (i.e., those (i,7)
such that (¢ mod 8,7 mod 8) = (¢,5')) are identically
distributed, I" denotes the gamma function, and c j and B/ j/
are the scale and the shape parameters, respectively.

Due to quantization, the probability mass function (pmf) of
Y'(z,7), given that the quantization step g;/ ;: is used, is [4]

> 0(r = kaw j ) Lir yo(kgi y0),  (6)
k

(k+%)q:7 ;1

/ fx

(k—%)qw,j/
with k € Z. Therefore, it becomes evident that the pmf of
each frequency coefficient of a JPEG image presents specific
artifacts, whose structure is related to the quantization step. In
particular, the DCT coefficients corresponding to the (', j')th
frequency will be located at multiples of the applied quanti-
zation step gy j/, as illustrated in Fig. 1(b).

Returning to (4), it is clear that the distribution of Z (3, j)
will depend on the distribution of R(i,j). The prevalent
statistical models for DCT coefficients [1], [17], [20], regard
different frequency components as mutually independent, and
coefficients at a given frequency as i.i.d; consequently, one
would expect R(7,7) to follow a symmetric zero-mean dis-
tribution independent of Y'(4,j). Nevertheless, if one plots
the histogram for a particular frequency of the DCT of the
compressed and filtered image, it is evident that its peaks
are not located at v, ;Y (¢,7) (.e., vir jrkqy jo); see Fig. 2
for an example. We can conclude that common models for
DCT coefficients are not appropriate enough for our particular
problem. In other words, for our analysis we cannot assume
the different DCT coefficients to be mutually independent.
In turn, we will model the noise component R(i,j) as a
GGD random variable, whose parameters (mean, variance, and
shaping) depend on the value of Y'(3, j).

fY(i,j)|qi/7j/ (1) =
where
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Fig. 3: Inter- and intra-block spatial redundancy affecting X (i, j),
in panel (a) (i,7) = (0,1) and in panel (b) (i,5) = (1,0))
over the entire image dataset. The total mean of the noise com-
ponent E{R(i,)|Y (4,7)} (red curve) is plotted as a function of
~vir,;#Y (i, 7). The blue curve represents the contribution of a set of
coefficients (depicted in blue in the grid) and the black curve corre-
sponds to the contribution of the complementary subset coefficients.

To elaborate, in Fig. 3 we plot in red E{R(4,7)|Y (4,7)}
as a function of ~; ;7Y (4,7) when a 3 x 3 average filter
is applied, showing an approximately linear relationship; a
similar behavior has been verified for different filter kernels
and frequencies. Subsequently, we have identified the subset of
DCT coefficients from the aforementioned 24 x 24 neighbor-
hood with the largest contribution to E{R(4,j)|Y (i,7)}; for
each DCT frequency this subset of coefficients was determined
by comparing their contribution to E{R(, 7)|Y (¢, j) }, in abso-
lute value, with an empirically determined threshold. The grid
in the upper left part of Figs. 3 (a)-(b) shows the resulting
coefficient subsets for the AC coefficients (0,1) and (1,0),
where the blue dots correspond to the relevant coefficients. The
blue curve in Figs. 3 (a)-(b) represents the contribution to the
mean of the coefficients in that subset, while the black curve
represents the contribution of the complementary subset. From
these empirical observations it is reasonable to modify the
model in (4) so as to consider the linear relationship between
E{R(i,7)|Y (¢,5)} and Y (i, j). The model then becomes

where 72’-,’ j+ 18 the slope of the linear regression of the points
(kqir ;o B{Z(i,§)|[Y (i,5) = kqij}), k € Z, that is, we
exploit the linear dependence between kgq;/ ;» and the sample
mean (denoted by E{-}) of Z(i, j) for those (', j')-frequency
coefficients such that the corresponding DCT coefficient of the
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JPEG compressed image is equal to kg;/ ;. Note that

E{Z(i,§)|Y (3,7) = kqi j}
= i jrkqir j + B{R(i, ))|Y (4, 5) = kqgir j: }
Yir ki g+ B{R (4, 5)[Y (i, 7) = kqir jo} = Vi jikaw g7,

where the first equality follows from (4), the second equality is
a consequence of (8), and for the third we have considered that
E{R'(3,7)|Y (4,7) = kqir jo} = 0, as R'(4, j) is the linear esti-
mation residual error, and consequently it is uncorrelated with
Y (i,j). Consequently, Fig. 3 illustrates that v, ;, # vir,j,
as the slope of E{R'(7,7)|Y (4,5) = kq,» j»} with respect to
Y'(i,j) is non-null. Additionally, v, ;, may be larger than
1 and/or negative, meaning that the considered frequency is
amplified and/or phase-inverted, respectively.

Similarly, Fig. 2 shows that the peaks of the histogram of
DCT coefficients from JPEG-compressed and filtered images
corresponding to a particular frequency are indeed centered at
the integer multiples of ~;, ;,qir ;. This reflects the fact that
both the inter- and intra- block redundancy of the quantized
DCT coefficients must be taken into account when construct-
ing an accurate statistical model for the distribution of the
DCT coefficients of filtered JPEG images.

We remark that ' strongly depends on the applied filter
kernel and the correlation among DCT coefficients, which in
turn is modified by the applied compression factor. In order
to illustrate this, Fig. 4 graphically reports the obtained 'y{,j
matrices for the cases where QF= 40 and filter no. 1 are
used (denoted by (7/)*); QF= 90 and filter no. 1 (denoted
by (7/)"), and QF= 40 and filter no. 11 (denoted by (v')¢).2
These examples clearly show that in general ' # 1 and that
~'" depends on the applied JPEG-QF, and, more significantly,
on the considered filter.

In order to quantify the goodness of the proposed model,
we have computed the sample Pearson correlation coefficient,
defined for input points (X;,Y;), 1 <i < n, as

b Y (Xi = X) (v, - Y)
VI (- 07T, (- )

b

where X and Y are the sample means. Note that p? is the
proportion of the variance in Y that is explained by a linear
function of X. Consequently, the closer |p| is to 1, the better
the proposed linear model will be. Noticing that for those fre-
quencies with small values of |'| the variance of R’(z, 7) will
be large in comparison with (v, ;Y (4, j ))2, and consequently
the proportion of the variance of Z (i, j) explained by the latter
is expected to be small, we computed the average values of
|p(i’, j")| for those frequencies with |7/| > 0.05 in the three
considered examples, giving p% = 0.9936, p* = 0.9913, and
p¢ = 0.9974; these results confirm again the excellent fit of
the proposed model.

s4dly, |

(a)

64cly, |

(b)

(©

Fig. 4: Graphical representation of: (a) (v")* (QF= 40 and filter no.
1); () (v')° (QF= 90 and filter no. 1); (c) (v')¢ (QF= 40 and filter
no. 11);

C. Statistical features for classification

The model derived in the previous section is now exploited
to propose a set of features that characterize the JPEG

2In order to replicate the real scenario, the filtered images where converted
to 8-bit unsigned integer values, i.e. they are in {0, 1,...,255}; therefore,
the reported results consider both the clipping and rounding effects of such
conversion.
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Fig. 5: DCT coefficient histograms at frequency (0, 1) collected from
100 UCID images: (a) compressed with QF = 40 and linearly filtered
with a 5 x 5 average filter; (b) compressed with QF = 50 and linearly
filtered with a 3 x 3 average filter; (c) compressed with QF = 70
and linearly filtered with a 3 x 3 Gaussian filter with 0% =0.5 (d)
compressed with QF = 80 and linearly filtered with a 3 x 3 high-pass
filter. The corresponding derived theoretical models are overlaid onto
the histograms (red line).

40 -4 30 -2 -10 ] 10 20 30 40

compression and full-frame linear filtering. In particular, we
consider the distribution of Z(i,j) which, as we have just
shown, has characteristic peaks located at integer multiples of
a scaled version of the corresponding quantization step. Fig. 5
shows four examples of histograms of DCT coefficients for
the frequency (0,1) collected from 100 UCID images that
have been processed with different combinations of JPEG
compression and filtering. In particular, panel (a) depicts
the DCT coefficient histogram of images compressed with a
JPEG-QF = 40 and processed with a 5 x 5 average filter;
panel (b) shows the histogram for images compressed with
JPEG-QF = 50 and processed with a 3 x 3 average filter;
panel (c) corresponds to images compressed with a JPEG-
QF = 70 and linearly filtered with a 3 x 3 Gaussian filter
with a% = 0.5; finally, panel (d) contains the histogram for
images compressed with JPEG-QF = 80 and processed with a
3 x 3 high-pass filter. On each plot, the probability distribution
derived in the previous section is overlaid to the corresponding
histogram, showing a good accuracy.

Fig. 5 graphically illustrates a fact that can be inferred from
(8): both the location and the shape of the peaks present in
the DCT distribution of filtered JPEG images strongly depend
on the applied compression factor and the kernel used to
filter the image; such dependence will be exploited by our
forensic detector. Specifically, it is obvious the dependence
of the peak location with %{/,j/ in (8); additionally, for a
given 7;, ./, the larger Var{R'(i,j)}, the smoother the result-
ing histogram. Consequently, our set of features will try to
summarize the information on the peak location and shape, as
well as the variance of the DCT coefficients. In order to do

/peak:
[
peak
/
°
0 ° AP ~A/2 0 A2
(a) (b)

Fig. 6: (a) Histogram of DCT coefficients at frequency (0, 1) of an
image that has been compressed with go,1 = 10 and linearly filtered
with a 3 x 3 average filter; the black dot indicates the first peak in
the histogram, located at Ag,;. (b) Modulo-Ag,; reduced version of
the histogram in (a).

so, we will find it useful to denote by Y (i, ;') the vector
containing the coefficients for the (i’,;')th frequency and
whose kth element is Y 188/ L2lk=L2I8k/La] (37 57y H (w, )
denotes the histogram of an arbitrary vector w with bin width
d; H(w, ¢, k) represents its value for the kth bin, and, finally,
Ay ;> 0 denotes the location of the characteristic peaks in
H(|Y(,4')],6i ). Note that the peak location depends on
the (i, j')th DCT coefficient (besides the JPEG-QF and the
kernel filter). For the sake of notational simplicity, whenever
it is clear from the context, we will avoid to make explicit
reference to the frequency index of both the histogram and
peak location (i.e., indices (i, j') will be dropped).

1) Peak location feature: A variety of peak detection al-
gorithms have been proposed in the literature, many of which
may be used to construct this feature. Here we propose to look
for those points with neighbors, both on the left and the right,
that are smaller than the point of interest by, at least, a given
threshold 7" (in particular, we set " = 0.05). Those points form
a candidate set. Noticing the typical monotonically decreasing
nature of the distribution of the DCT coefficients away from
the origin, we select that point from the candidate set with the
largest histogram value (excluding the origin). Formally,

S {keN*H(Y|,6,k) > H(Y|,0,k+1) +T,
H([Y|,6.k) > H([Y|6,k — 1) + T},
dargmax H(|Y], 6, k),

A:

where |Y| denotes the component-wise absolute value oper-
ator. This algorithm has been shown to be computationally
efficient and reliable. For the sake of illustration, Fig. 6(a)
shows the detected peak (black dot) at location A, in the
histogram of the (0,1) DCT coefficients of an image that has
been quantized with go 1 = 10 and post-processed with a 3 x 3
average filter.

2) Peak shape feature: Given the detected peak location
A, we now aim at computing a measure of the peakiness of
the histogram of Y around the integer multiples of A. To
this end, we formalize the modulo-A reduced version of Y;
specifically, we define

Y £ YmodA,

which returns values in (—A/2, A/2]F152/64; Fig. 6(b) illus-
trates the modulo-A reduced version of the histogram in Fig.
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’ feature ‘ description
A peak location
B8 peak shape
|Z]| zero-quantized DCT coefficients
O'%, DCT coefficient variance

TABLE I: Classification features, extracted from the histogram of
the DCT coefficients for each DCT frequency (i', ).

6(a). Then, we compute the empirical variance of Y as
Li/8—1Ly/8-1

X ()

k1=0 ko=0

64
LyLy

2 _
O'?—

Recall that Y*'%2 actually represents Y*1:h2(i/ j') =
Ykuk2 (i 5 YmodAy j. Furthermore, we have assumed Y to
be zero-mean, according to the symmetry of X with respect
to the origin.

Given 0%,, the peakiness of the histogram of Y is quantified

as
o2

g = AZ- 9
Clearly, if the values in Y are clustered around integer
multiples of A, then the values in Y, with range (—A /2, A /2],
will be clustered around the origin; therefore, the empirical
variance of the latter will be small in comparison with A2,
and, consequently, a low value of 5 will be a clue of a peaky
histogram of Y. On the other hand, if the values in Y are
uniformly distributed in (—A/2, A/2] (i.e., if there is no peak
at all), then 8 will be close to 1/12, hinting at a smooth
histogram of Y.

3) Zero-quantized DCT coefficients feature: Typically, in
JPEG compression, large quantization steps are used for
high-frequency DCT coefficients, since they have little visual
significance. Moreover, it is well known that the larger the
number of zero-quantized DCT coefficients, the larger the
compression rate [21]. As a consequence, in some images all
the high-frequency DCT coefficient values will be quantized
to zero, so no peaks would be detected in this case. It could
also be the case that the image just does not contain high
frequencies, because it was, for example, low-pass filtered.
In order to quantify these properties, let us define Z; ;7 =
{ig,js : Y®JIs(i’ j') = 0} as the set of indices of zero-
quantized coefficients for the (¢’,j’)th DCT frequency. We
compute the cardinality |2, ;| of such a set and take it as
another significative feature to characterize the behavior of
DCT coefficients at high frequencies.

4) DCT coefficient variance feature: Similarly, we compute
the empirical variance of Y to take into account the general
behavior of each (i, ;') frequency, and in particular to deal
with those frequencies where most of DCT coefficients are
zero-quantized. Specifically,

L1/8—1Ly/8—1

Z Z (Ykl,kg (iI’j/))Q .

k1=0 k2=0

Oy (ir,j7) = LiLo

This value will depend on the nature of the image itself, the
applied compression, and the post-processing filter.

Group 1
1. LP Average (3 x 3]
2. LP Average [5 X 5]
4. LP Gaussian [3 x 3], 02 =1
6. LP Gaussian [5 x 5], 0% =1

Group 4

9. LP Laplacian, oo = 0.2

10. LP Laplacian, o = 0.7

Group 2
3. LP Gaussian [3 X 3], 02 = 0.5
5. LP Gaussian [5 x 5], 0% = 0.5

Group 5
11. HP Average [3 X 3]
12. HP Average [5 X 5]

Group 3
7. HP Laplacian, oo = 0.2
8. HP Laplacian, o = 0.7

Group 6

13. Identity filter

Tab. II: Filters in the filter dictionary, grouped according to the
similarity of their frequency responses.

These features (which are summarized in Table I) were
proposed for the first time in [18]. They are extracted for
each AC 8 x 8-DCT frequency and are expected to provide
a complete and proper summary of the properties of the
considered histogram.

IV. EXPERIMENTAL ANALYSIS

In a previous work [16], we have shown that, when the
JPEG-QF is assumed to be known, the model in Sect. III
can be exploited when finding out the applied filter kernel.
To this aim, we have employed a distinguishability metric
(i.e., the x? histogram distance) to quantify the difference
between the statistical model (as parameterized by the filter
kernel) and the corresponding histogram of the image under
test. Through experimental analysis, the derived scheme was
shown to be effective in characterizing the distribution of the
DCT coefficients of a filtered JPEG image.

Here, we relax such strong assumption regarding the knowl-
edge of the JPEG-QF. Specifically, the forensic detector used
in the current work (and preliminarily introduced in [18]) is
able to disclose both the applied JPEG-QF and the applied
linear filter kernel. The basic idea behind this forensic scheme
is to feed a linear classifier, precisely a linear kernel SVM
[22], with the features described in the previous section
corresponding to all the AC DCT coefficients; this produces
an SVM input vector of dimensionality 4 x 63 = 252. In this
section, we show that this technique results to be a simple yet
very effective forensic tool which is able to jointly detect the
filter kernel and the JPEG-QF that have been applied to an
image, so as to uncover the processing history of the content.

In order to verify the effectiveness and versatility of the
proposed forensic technique, an extensive experimental anal-
ysis is conducted here. The performance of the algorithm is
evaluated in terms of the classification accuracy achieved by
the proposed classifier.

A. Dataset definition

Unless it were otherwise specified, we consider a subset of
600 uncompressed images, randomly selected from the UCID
dataset [19]. Each image was compressed using different
JPEG-QFs = 40,50, 60, 70, 80,90, subsequently convolved
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with a filter kernel chosen from a dictionary of linear filters
and finally saved in a lossless format (e.g., TIFF).

Note that we only consider a small subset of possible JPEG-
QFs as representatives of the full range of QFs. Interest-
ingly, our experiments, not reported here, show that images
compressed with intermediate QFs are classified with a very
large probability as compressed with either of the two closest
representatives. For instance, when the true QF is 46, images
are classified with a very large probability as compressed with
either QF= 40 (17.1%) or QF= 50 (82.2%). Consequently,
our classifier is actually performing a coarse estimation of the
JPEG-QF, which is sufficient for most practical purposes.

The filter set contains both low-pass (LP) and high-pass
(HP) filters (e.g., average, Gaussian, Laplacian), each of them
parameterized by different settings (e.g., window size, variance
o2 for the Gaussian filters, or shape parameter « for the
Laplacian ones). Table II enumerates the filters included in our
dictionary; for example, filter no. 1 is an average filter with
window size 3 x 3, while filter no. 3 is a low-pass Gaussian
filter with a% = 0.5 and the same size, and filter no. 7 is a
high-pass Laplacian filter with o = 0.2. Notice that filter no.
13 is the identity, so as to include in the analysis also the case
in which no filter is used (that is, only JPEG compression is
applied).

Obviously, the filter dictionary could contain a larger num-
ber of filters, but we consider that the chosen ones are
sufficiently representative of the possible postprocessing a
compressed image can go through. Furthermore, as it was
already reported in [16], some of the filters in the dictionary
may share a similar frequency response, thus being it difficult
to distinguish between them; this issue is not specific of
the present technique, but an inherent limitation. Therefore,
the filters are grouped according to the similarity of their
frequency responses; Table II shows those groups. In any case,
from the point of view of the forensic application, in most
instances it will suffice to decide which group the filter belongs
to.

Since we consider 6 JPEG-QFs and 13 linear filters, the
constructed image dataset contains 600 x 13 x 6 = 46800
images. Then, this dataset is split in halves, in order to generate
the SVM training and test sets. It is worth mentioning that all
the 78 versions of a given original image are always placed in
the same set, so as to avoid biases in the training or the test
stages. Next, the set of forensic features in Table I is extracted
for each image, and the SVM is trained with those images in
the training test.

The performance of the proposed algorithm is quantified in
terms of the classification accuracy averaged over the test set.

B. Joint JPEG-QF and filter classification

As a first experiment, we considered the simplest case,
where 78 classes must be discriminated by the SVM classifier,
corresponding to each possible pair of the 6 JPEG-QFs and
the 13 filters in the dictionary. The overall accuracy is 74.5%
(Application Scenario 1 in Table III); this is a rather low
accuracy, which is likely due to the similarity in the frequency

100

b w«/
N /\/ \/ i

Accuracy

50

40 QF 40 QF 50 QF 60
QF70 & QF80 © QF90

30

1 2 3 4 5 6 7 8 9 o 1112 13
filters
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Fig. 7: Panel (a) shows the classification accuracy for each combina-
tion of selected filter and JPEG compression, while panel (b) reports
results for the classification accuracy when 6 groups are considered
for representing the filters.

response of the filters that misleads the classifier. Panel (a)
in Fig. 7 shows the classification accuracy achieved for each
possible pair of JPEG-QF and filter.

To verify the influence of the similarity between filters on
the classification, we considered the 6 filter groups described
above, so the number of classes is reduced to 36 (6 groups
of filters and 6 different compression factors). The average
accuracy obtained is now 89.2%, which indicates that the
proposed method is quite effective in jointly disclosing the
applied JPEG-QF and linear filter group (Application Scenario
2 in Table III). Panel (b) in Fig. 7 shows the classification
accuracy achieved for each possible pair of JPEG-QF and
the 13 filters in the dictionary, when the 6 filter groups
are considered for classification (i.e., 36 different classes are
taken into account, but the reported results are disaggregated
depending on which of the 13 filters was actually applied).
It becomes clear that in this case the accuracy averaged over
all the combinations of JPEG-QF and filter is increased with
respect to the classification without grouping the filters, shown
in panel (a). For instance, the achieved accuracy for classifying
images compressed with JPEG-QF= 90 and processed with
filter no. 3 is 54.7% without considering the filter groups;
however, it significantly improves to 96.3% when filter group
classification is taken into account (see Table II), thus exploit-
ing the filter similarity.

In order to verify the effectiveness of the proposed method
in different practical scenarios, we performed an additional
test by including in the dataset some images coming from
different sources. Indeed, in practice prior knowledge of the
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App. Scenario Detect group filters # filters ‘ QF range ‘ # classes SVM | Accuracy
1. F + QF no 13 {40, ...,90} 78 74.5%
2. F + QF yes 13 {40, ...,90} 36 89.2%
3. only QF no 13 {40, ...,90} 89.4%
4. QF (no filtering) no 1 (= dentity filer) | {30, ..., 100} 99.1%
5. F + QF (double compressed with QF2 = 90) yes 13 {40, ...,90} 36 88.6%
6. single/double compression no 1(= Identity filter)y | {40, ...,90} 2 99.6%
7. single/double compression yes 13 {40, ...,90} 2 99.9%

Tab. III: Experimental results in terms of classification accuracy obtained in different application scenarios.

image source will not be available. Therefore, a more realistic
strategy for forensic analysis would be to train the detector
by using a pool of different source images. In particular,
we included an additional set of 45 raw images coming
from two mobile phones. We partitioned such set into two
subsets: 24 images for training, and 21 for testing. Each image
was compressed using JPEG-QFs = 40, 50, 60, 70, 80, 90, and
subsequently convolved with a filter kernel chosen from the
dictionary, for a total of 45 x 13 x 6 = 3510 new images,
which were integrated in the existing dataset, yielding a
total of 25272 images for training and 25038 for testing.
This dataset was used for training a SVM for Application
Scenario 1, where the JPEG-QF and the filter kernel are jointly
disclosed. Experiments confirm the good performance of the
proposed algorithm in this practical scenario, where images
from different sources are taken into account. Specifically,
we obtained an accuracy equal to 73.25% when only UCID
images were considered for testing, and 84.67% when the test
only used images from mobile phones; the overall accuracy
was 74%, which is just slightly smaller than the result reported
for the original dataset (i.e., 74.5%).

We must remark that since there are no previous works in
the literature addressing the problem of joint JPEG-QF and
filter classification, we cannot compare the performance of
our schemes with other approaches.

C. JPEG-QF classification

The proposed forensic scheme can also be used to estimate
only the applied JPEG-QF, i.e., in this application scenario
we will not take into account the filter classification. In
this case, the number of classes to be discriminated by
the classifier is 6, corresponding to the considered JPEG-
QFs (those mentioned in the previous section, i.e., JPEG-QF
€ {40, 50, 60,70,80,90}). A newly trained SVM with only
6 classes yielding an average accuracy of 89.4% (Application
Scenario 3 in Table III) was used here. It is worth noticing
that the obtained accuracy is very close to the one achieved
in Application Scenario 2. Indeed, the marginalization of the
classification with respect to the filter group provides only a
minor accuracy increase, as the SVM trained for Application
Scenario 2 seems to be already exploiting adequately the
footprints left by both the JPEG-QF and the filter kernel.

Although no forensic techniques exist in the current lit-
erature dealing with the detection of JPEG filtered images,
there are a number of algorithms that try to estimate the

JPEG-QF applied to an image, in absence of any post-
processing [4]. Therefore, in order to provide a fair com-
parison, we will now focus on the case where the input
images were only compressed, i.e., where the identity fil-
ter (i.e., no filter) was used. To this end, the 600 original
images in the dataset are compressed with different JPEG-
QFs = 30, 40, 50, 60, 70, 80, 90, 100, and the features in Table
I are extracted; therefore, an 8-class SVM is considered.
The average accuracy obtained by our proposal is 99.1%
(Application Scenario 4 in Table III); this result well illustrates
the versatility of our scheme.

Interestingly, the obtained accuracy is comparable to the
performance achieved by the state-of-the-art forensic tech-
nique in [4], although our proposal is much simpler and
more computationally efficient. In [4] the authors introduce
a statistical model to characterize the JPEG-induced near-
periodic structures in the DCT distribution of compressed
images; this model is exploited to retrieve the applied quan-
tization table (information that could be used, for example,
for recompression purposes). Table IV (case a) reports the
comparison of our algorithm with [4] in terms of classification
accuracy on detecting the JPEG-QF when no filter is applied;
we consider that there is a classification error in [4] whenever
the quantization step for any DCT frequency is not correctly
estimated. According to this criterion, in Application Scenario
4 the method proposed in [4] yields an average accuracy
of 83%; this fact highlights how our proposal improves the
state-of-the-art. It is worth mentioning that the lower accuracy
achieved by [4] is due to errors in some particular positions of
the extracted quantization table; indeed, as stated in [4], those
errors have a negligible impact on the targeted application,
which is recompression. Furthermore, it is fair to mention that
the estimate in [4] works componentwise, while the current
approach exploits the dependences among the quantization
steps of different DCT-coefficients, as it deals with the JPEG-
QF estimate; consequently, the current approach is more robust
against errors in particular positions of the estimated quantiza-
tion table (at the price of assuming that the quantization table
belongs to a QF-indexed set).

Moreover, we checked how the performance of the JPEG-
QF estimation schemes in the literature degrades when the
JPEG compressed image is filtered. In particular, the tech-
nique proposed in [4] dramatically decreases its classification
accuracy to only 9.3% when the JPEG images are further
processed with a linear filter (case b in Table IV); recall that
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the accuracy of our method for Application Scenario 3 is
89.4%. Furthermore, note that in the tests run with the method
introduced in [4] we excluded the high-pass filters (numbers
7,8,11,12 in Table II), since the implementation provided by
the authors reported some errors.>

D. JPEG + filtering + JPEG: joint JPEG-QF and filter
classification under double compression

As a further experiment, we analyzed the effectiveness
of the proposed approach when the filtered JPEG images
goes through a second JPEG compression, with quality factor
JPEG-QF., that is, we tested the robustness of our technique
under double compression (Application Scenario 5). Such
a processing chain has a great practical interest; in fact,
a plethora of forensic methods already exist for detecting
double JPEG compression [11], [12], [13]. In such scenario, it
makes perfect sense to use a linear filter as a counterforensic
measure in order to conceal the footprints left by the first
(and generally, lower quality) JPEG compression. To the best
of our knowledge, this scenario in which a linear filter is
placed between the two compressions has not been considered
previously in the literature.

In order to test our algorithm in this application scenario, we
took the previously created dataset (600 images compressed
with JPEG-QFs = 40, 50, 60, 70, 80, 90, and 13 filters) and
further compressed them by using a JPEG-QFs = 90. Again,
the features in Table I were extracted and fed to the SVM.
The average accuracy of the system is 88.6% (see Table III,
Application Scenario 5), showing the effectiveness of the
proposed forensic technique also under recompression.

As a representative of the state-of-the-art schemes for this
framework, we selected the method described in [15], which
deals with the detection of the primary JPEG-QF in case of
double-compression by relying on the integer periodicity of the
blockwise DCT coefficients. For this comparison we consid-
ered 300 images (i.e., the number of original images in our test
set) that were compressed with JPEG-QFs = 40, 50, 60, 70, 80,
and then recompressed with JPEG-QFy; = 90 (case c¢ in
Table IV). In order not to penalize the results provided by
the method proposed in [15], no filtering was applied; in
such framework, the latter method yields an outstanding 100%
average accuracy. On the other hand, for our algorithm, we
used the SVM trained for Application Scenario 5, where only
the identity filter and JPEG-QFs in {40, 50, 60, 70,80} were
considered, thus producing 5 classes. The average accuracy
for our scheme is 97%, which is close to that given by
the method in [15] (see Table IV), which, unlike ours, is
specifically tailored to the problem at hand. In fact, when some
linear filtering is applied between the two compressions, the
performance of [15] dramatically decreases to 14.2%, while
our algorithm still reports an accuracy of 90.2% (case d in
Table IV).

E. Single vs Double JPEG compression classification

As a last experiment, we adapted our method to de-
tect whether an input image was singly or doubly JPEG

3Code is available at: http://dsp.rice.edu/software/jpeg-chest.

Case Study Detect Filters Accuracy
ours | [ | ns)
a QF no 99.1% 83%
b QF yes 89.4% | 9.3% -
c QF (with QF; = 90) no 97.0% 100%
d QF (with QFy = 90) yes 90.2% 14.2%

Tab. IV: Comparison with the state-of-the-art in terms of classifica-
tion accuracy in different application scenarios.

compressed. These results are particularly helpful in several
practical applications where a customer wishes to learn if
a compressed image that he/she is interested in buying was
not previously compressed with a lower quality. In this case,
the training set was generated from 300 original images; the
single compression class was produced by compressing each
of those images with JPEG-QF = 90, while for the double
compression class the same set of images were compressed
with JPEG-QF in {40, 50, 60, 70, 80,90}, and subsequently a
second quantization with JPEG-QF,; = 90 was applied. A
similar procedure, but using 300 different original images,
was used for creating the test set. No filtering was applied
at this stage. Please note that in those experiments the sample
sizes of the two classes are extremely disparate. This is a
common issue in classification problems, where the number
of available training data in each class might be unbalanced.
According to [22], this problem can be overcome by using
different penalty parameters for each class in the SVM setup.
Nevertheless, experimental results obtained by using weights
inversely proportional to the number of elements of each class
in the training set show no significant performance differences
(specifically, around £0.001% accuracy difference).

The average accuracy of our classifier was as large as 99.6%
(Application Scenario 6 in Table III). Next, we considered the
same problem, i.e., single vs double compression, but where
a filter is now placed between both quantizers (in case there
is double compression). As we mentioned above, the filter
removes some of the footprints, thus making the classification
more difficult. A new SVM that considers all the 13 filters in
Table IT and 300 original images is trained in this setup. The
obtained average accuracy (averaged over a dataset generated
from the remaining 300 images and the 13 filters) is now
99.9% (Application Scenario 7 in Table III). Furthermore,
since in this case we are dealing with a binary classification
problem, it is also useful to provide the Area Under Curve
(AUC), which in the application scenarios described above is
0.982 and 0.998, respectively.

The latter SVM (trained by considering the 13 filters
in the dictionary) is also used for testing the performance
of our scheme for each of the 13 filters. In order to do
so, 13 test datasets were created: for the double compres-
sion class 300 images were compressed with JPEG-QFs =
40, 50, 60, 70, 80, 90, then filtered with one of the 13 filters in
the filter dictionary, and recompressed with JPEG-QF; = 90,
while for the single compression class they were compressed
only once with JPEG-QF = 90. The orange bars in Fig. 8
report the AUC for each tested dataset. Its average value over
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Fig. 8: Performance comparison in terms of AUC for binary classi-
fication of single vs double compression.

all filters is AUC = 0.98.

In order to compare with state-of-the-art, we focused on the
algorithm described in [12], which detects double compres-
sion in JPEG images, and especially aims at steganographic
applications. Therein, a SVM classifier is fed with a vector of
features composed by the histograms of low-frequency DCT
coefficients. This algorithm was implemented in its native
design, i.e., by two classes; the training set for the first one
is composed of 300 images compressed with JPEG-QF = 90,
while the training set for the second one contains the same 300
images compressed with JPEG-QFs = 40, 50, 60, 70, 80, 90
and recompressed with JPEG-QF; = 90. The test set was built
by following the same procedure, but considering 300 different
original images. A grid search for the optimal parameters of
the Gaussian kernel SVM was performed, which gives an AUC
=0.92, with c =3 and v = —5.

Finally, we analyzed the performance of the algorithm
in [12] when the double compression case includes a filter
between the two quantizers; to this end, we used the SVM
that is trained as described in the previous paragraph. 13
different test datasets, each of them corresponding to a filter
in the dictionary, were built from the same 300 images used
for testing in the previous paragraph. Figure 8 shows the
AUC obtained for each dataset by our proposal (orange bars),
and by the algorithm introduced in [12] (gray bars); it is
clear that our method outperforms that in [12]. This is to
be expected for filtered images, as [12] does not consider
the possibility of using any kind of JPEG-artifact removal
between the two JPEG compressions; in fact, when filtering
is introduced, the performance of [12] significantly decreases
(average AUC = 0.87), while our method still provides a very
good performance (average AUC = 0.98). But notice that even
when the applied filter is the identity (filter no. 13), i.e., the
scenario for which the method in [12] was originally designed,
the results of our scheme (which considers filtered images in
the training set, that in turn could mislead the decisions in this
case) are better than those given by the algorithm in [12].

Interestingly, for some filters, e.g., filter no. 9, the AUC
achieved by the method described in [12] is larger than that
obtained by the same method for the identity filter. In order to
learn the rationale for this behavior, we trained the 2-classes
SVM used by [12] by including in the training set 300 single-
compressed images (QF = 90) for the first class, while for the

second class we compressed those 300 images with JPEG-
QFs = 40,50,60,70,80,90, and then recompressed them
with JPEG-QF; = 90, where filter no. 9 was used after the
first compression. The test set was built by using the same
procedure, but considering 300 different original images. The
obtained AUC is 0.997 (without filtering AUC = 0.98 was
obtained). The same SVM yields an AUC = 0.916 when
no filter is applied (i.e., filter no. 13), which is only slightly
smaller than the AUC = 0.917 obtained by the SVM built
without considering any filters. Consequently, it seems that
the effect of some filters, such as no. 9, does not significantly
perturb, and even improves, the classification features used in
[12].

V. CONCLUSIONS

A large number of works in the literature have addressed
the footprints left by JPEG compression, and studied how
those footprints can be exploited to get insight into the
image history (quantization table estimation, estimation of the
primary quantization table in double compression, single vs
double JPEG-compression, etc.). In sharp contrast, very few
works (to the best of our knowledge just [11], [15]) consider
the scenario where some post-processing is in place (in the
cited cases, shifting that produces misalignment, and resizing,
respectively) which complicates the operation of any forensic
tool, often quite dramatically. We analyzed the impact of a
commonly used postprocessing for JPEG images, namely, full-
frame linear filtering, on the JPEG compression footprints.
Our main target was to exploit the altered footprints for
recovering the processing history of an image. To this end,
we have modeled the probability distribution of the DCT
coefficients of filtered JPEG images, proving the dependence
of the corresponding distribution with respect to both the
JPEG-QF and the applied filter. Based on this analysis, a set
of features, that capture such dependence, is proposed. These
features are then input to a linear SVM that uncovers the
desired information about the compression quality factor and
the filter kernel.

Extensive experimental results show the effectiveness and
robustness of the proposed forensic scheme. Interestingly, our
method extends very well to other originally unforseen practi-
cal cases. We have tested it in a number of different application
scenarios, and compared with state-of-the-art schemes natively
conceived for those scenarios. In all cases the proposed scheme
has shown excellent results, both in the absence and presence
of filtering postprocessing.

The previous discussion should not lead to conclude that our
detector will be robust against any kind of attack [23]. Indeed,
ad-hoc counterforensic attacks can be designed in order to fool
the current detector; for example, one might use the optimal
counterforensic method against histogram-based detectors with
non-convex detection regions (as those used in the current
work), which was recently introduced in [24].

Future work will be devoted to enlarging the used filter
dictionary, and investigating the application of other linear and
non-linear filters.
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APPENDIX A
RELATIONSHIP BETWEEN Z AND Y

The target of this appendix is to establish the relationship
between Z and Y. Specifically, (10) computes Z as the 8 x 8
block-DCT of z, where Zkth indicates the double summa-
tion over k; and ko, with (K1, k2) € {0,...,7}. Inturn, z is the
convolution of the quantized signal y and the filter kernel h, a
fact which is reflected in (11), where Z I is the double sum-
mation over [y and lo, with (I1,13) € { N ..,N}. On the
other hand, taking into account that y is the 8 x 8 block-IDCT
of Y, then (12) is obtained, where Zm m is the double sum-
mation over m; and ms, with (mq, mg) € {0,...,7}. Finally,
we quantify the contribution of Y+ (', j') on Zisids i, 3.
In order to do so, we separately consider in (12) those sum
indices such that b; = ig, by = jg, m1 = 4/, and mo = j’,
yielding (15), where ©y = {0,...,7} N {ly,...,l; + 7} and
0 =€ {0,...,7}N{la,...,la + 7}. Moreover, Rs:Js(i/, j)
denotes the contribution from other coefficients of Y, and the
term within the brackets is denoted by ~;/ ;.

Please note that in this analysis we have neglected the effect
of clipping and quantization noise that appears when the pixels
are quantized by using a fixed number of bits (typically 8).
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