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Adversarial Signal Processing



Signal Processing’s Dream
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Signal Processing’s Nightmare 
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Multimedia Forensics
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Forensic 
detector Yes/No



Steganography
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Steganalyzer Yes/No

Decoder



Watermarking

Fernando Pérez-González6

Watermark 
Removal

Yes/No Watermark 
detector



Intrusion detection
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IDS



Anti-spam filtering
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Spam 
detector ?

Yes: deliver

No: discard



Cognitive radio
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Primary signal 
detector

Yes/No

Secondary users

Primary user



Biometric identification/verification
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?Verification



Reputation systems
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Sybil detector
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It walks like a duck, 
it talks like a duck…

Talks like a 
duck

Walks like a duck 

Ducks 

Non 
ducks 

0R

1R Catversary
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It walks like a duck, 
it talks like a duck…



Metrics
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 False Positive Rate (FPR) or False Alarm Rate (FAR)

 False Negative Rate (FNR) of miss detection

 True Positive Rate (TPR): 1-FNR  [a.k.a. sensitivity or recall rate]
 True Negative Rate (TNR): 1-FNR [a.k.a. specificity]


1

)|( 0R
dHf yy


0

)|( 1R
dHf yy



Metrics
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Metrics
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Signature-based
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Supervised learning based
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Neyman-Pearson based
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Multiple/binary hypothesis based
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Rule/property based
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Increasing the dimensionality
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Adding a 
new feature



20 years of research in steganography 
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 Cat and mouse game between defender 
and adversary. 

 Methods more complicated ever: more 
features, higher-order dependences… 

 Optimality not guaranteed in any sense:
1. No Nash equilibria proven. 
2. Possible evolution due to specific paths
taken => suboptimality even if convergence. 



20 years of research in steganography 
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 Improvements by both adversaries occur at an ever slower
pace. 



Sundews (Drosera)
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Orchids
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Mimicry
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Batesian mimicry
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 Two-player game

 Set of actions for player 1: 

 Set of actions for player 2: 

 Payoff for player 1:

 Payoff for player 2:

 Zero-sum game:

 Non-sequential game.    
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A game-theoretic approach
[Barni 13]



A game-theoretic approach
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 Nash equilibrium: none of the players improves his payoff with a 
different action (if the other players also stay the same). 
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 Two players: Defender (D) and Adversary (A). Binary hypothesis
testing setup. 

 Adversary: Generates an i.i.d. sequence according to a 
distribution and modifies the samples so they look like
produced by Defender (with a distortion constraint).  

 Defender: Generates an i.i.d. sequence according to a distribution
and constructs a detector that bounds the probability of false

positive. Free to chose the decision region. 

 Payoff: The probability of false negative (for A), minus this
probability (for D). Zero-sum game.       
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The source identification game
[Barni 13]



The source identification game
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 There is a (distortion) constraint on the changes that the
adversary may do to his sequence. 

 Asymptotic version of the game             :allow any defender region          
s.t.

 And allow any attacker modification               to the sequence
generated according to

 Both       and        are known to both players. 
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 It turns out that the Nash equilibrium for the game is such that

Regardless of what the adversary does or what is !!!

 For the adversary, the optimal strategy is

 In both cases, “closeness” is measured using the Kullback-Leibler
distance:
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The source identification game
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 Two main limitations:

 Sources are i.i.d.
 Optimality is shown only in the asymptotic case. 

 But it supports the use of the Kullback-Leibler distance as a good
strategy for the Defender. 

 The Attacker, however, still needs to solve an optimization
problem: find the closest sequence (in KLD) satisfying a distortion
constraint. 

So where do we stand?
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 Kullback-Leiber distance between two (continuous) Gaussians
with different means and identical (and known) variance

 The asymptotically optimal test imposes a bound on the distance
between the means. This implies a symmetric about

 However, if it is known that is Gaussian with positive mean           
then will try to “avoid” positive sequences and will

be a non-symmetric region.  
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You better know your adversary
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 testtailed-Two
0

 testtailed-One
0

 For approximately the same Probability of false negatives, the
probability of false positive is half in the one-tailed test.

 However, asymptotically with both tests decrease the
probability of false positive at the same (exponential) rate.  

n

You better know your adversary
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 testtailed-Two
0

 testsymmetric-Non
0

 The test based on the KLD guarantees that the region
contains any other with the same asymptotic decrease (as it
happens in a non-symmetric test).   

You better know your adversary
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 In many “anomaly detection” instances, there is some statistical
property that normal data satisfy. 

 Image proc.: Generalized gaussian distribution in DCT domain

 TCP networks: Exponential interarrival time in non-congested
networks. 

Attacks to histogram-based detectors
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 In some other cases, anomalous data have a known distribution. 
 Image proc.: Comb distribution in DCT domain after compression.

 Spiked autocorrelation in a watermarked flow to a hidden server 
in Tor. 

Attacks to histogram-based detectors
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 But the optimal asymptotic detector for i.i.d. sources is based on
the histogram!!

 In all these cases, the acceptance region for the defender       is
based on the histogram.  

 Given a distortion metric and a vector       , can we solve the
adversary’s optimization for 1D histogram-based detectors? 

Attacks to histogram-based detectors
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0R

1R

Attacks to histogram-based detectors
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 If we use a Euclidean distance, then the problem can be solved
searching along the boundary of the decision region IN THE 
HISTOGRAM DOMAIN. 
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Attacks to histogram-based detectors
[Comesaña, Pérez-González, 13]



 But we must use a different “distance” between histograms, or
better yet, between their cumulative distributions. 
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Attacks to histogram-based detectors
[Comesaña & Pérez-González 13]



 This “distance” between histograms comes from the use of 
transportation theory. We seek the histogram in      that is
“cheapest” in terms of transportation of probability masses. 
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Attacks to histogram-based detectors
[Comesaña & Pérez-González 13]
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 Describe the set        by enumeration. Find the closest representative
in chi-squared distance. Then, use transportation theory with an
adapted perceptual measure to do the pixel remapping. 
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Attacks to histogram-based detectors
[Barni et al. 12]
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What if adversary doesn’t know R0?
 Example: Spread-spectrum watermarking
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 Optimal (Neyman-Pearson) detector for Gaussian hosts is 
the cross-correlation. 

Acceptance
regionRejection

region

Spread-spectrum watermarking
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Boundary estimation attacks 
[El Choubassi & Moulin 05]

 Step1:Generate an
image close to the
boundary.

 Step 2: Find values , 
i=1,…,N using line 
search .

 Step 3: Solve the linear 
system

0
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Boundary estimation attacks (2)
[El Choubassi & Moulin 05]
 The previous attack can be extended to more 

complicated decision regions under the following 
conditions: 
 Knowledge of the detection function (but not the secret 

parameters) is required. 
 The decision statistic is twice differentiable.
 The gradient              is invertible.

 This is applicable to find out the secret parameters for 
polynomial and lp-norm-based (if the shape parameter 
p>1) detectors.

)( 0R
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Adversarial Classification Reverse Engineering
[Lowd & Meek 05]

 Use weighted cost to 
find closest point to a 
linear classifier in 
antispam filtering.  

 Assumes features are 
known and coincide with
cost coordinates. 

 First, find the sign of 
cost weights. 

 Then, do line search to 
learn the boundary.
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What if adversary doesn’t know R0?

 Example: Biometric identification

Feature 
extraction

Sensor

Comparator Decision

Feature
Database

Score
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 Indirect attacks: within the digital boundaries. 

 Spoofing attacks: at the sensor level. 

Biometric identification

Impostor

Spoofing attack

Legitimate user
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 Step1: Select a starting vector      
from known priors

 Step 2: For each canonical 
vector 
 Evaluate score at 

 Step 3: Take the maximum as  
 Step 4: If

then explore further in the
direction and 
replace if improvement. 

 Else, 
 Step 5: Go back to 2
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Hill-climbing: Hook-Jeeves algorithm
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 Step1: Select a starting vector      
from known priors

 Step 2: Generate random
perturbation vector 

 Step 3: Evaluate the gradient
in the direction

 Step 4: Update

 Step 5: Update and         
decreasingly. 

 Step 6: Go back to 2. 
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Hill-climbing: Simultaneous perturbation 
stochastic approximation [Spall 98]
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Oracle attacks
 Suitable when the detection function is unknown to the adversary

 Learning-based with unknown training set (e.g., antispam filters)
 Rule-based with unknown rules (e.g., anomaly-based detection)
 Unknown template-based (e.g., biometric identification)
 Key-dependent (e.g., watermarking) 

 Typically, require a very large number of queries

Detector
0 1/H H

Modify
Target signal

Score
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Sensitivity attacks [Cox & Linnartz 97]

 Step1:Generate an image y
close to the boundary (in the 
rejection region).

 Step 2: For the j-th dimension.
 Find          such that                 

is on the boundary.

 Step 3: Estimate the tangent.
 Step 4: Move along the 

tangent and evaluate 
perceptual quality.

 Step 5: Go back to Step 2.
Estimation of the tangent is 
not so evident in higher 
dimensions.
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A variant of the sensitivity attack [Kalker 98]

 Step1:Generate an image at 
the boundary.

 Step 2: Add a random 
perturbation.
 If the answer is in R0, change the 

sign.

 Step 3: Average the answers.

The result is an estimate of 
the projection vector.

0
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Countermeasures
 One obvious countermeasure is to complicate the

decision region, BUT we still want good detection
performance!

 Several available solutions:
 Based on lp-norms.
 Based on polynomial functions.
 Based on “fractalizing” the boundary.

 Another solution is to “randomize” the boundary of the
decision región. 
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lp-norm based detection 
[Hernandez & Pérez-González 98]

 Arises naturally from considering the host image following a 
generalized-gaussian distribution with shape parameter p. 

 Can be implemented privately. 

p=2.  Gaussian p=1/2 p=1. Laplacian
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Polymial detectors [Furon et. al 02]

 JANIS: Just Another N-order Side-Informed Scheme.
 Based on the following detection function

where the indices ij,k denote a pseudorandom ordering
(also key-dependent). 

 The watermark is obtained as 
 For n=1, the classical correlation detector is recovered.
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Fractal-boundary detectors
 Perturb the decision boundary by a Peano curve, which is 

kept secret. 
 Then, the watermarked signal is also perturbed to preserve 

the distance to the decision boundary. This adds some 
degradation. 

Taken form A.H. Tewfik and M.F. Mansour, 
“Secure Watermark detection with 
nonparametric decision boundaries”, 
ICASSP 2002. © IEEE
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Randomized-boundary detectors

 Idea: provide less 
information at the boundary 
by randomizing it.

 Rule:

0
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region

Rejection
region

Randomized region 
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Score quantization
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The Blind-Newton Sensitivity Attack
[Comesaña et al. 05]

 In many cases, the “security by obscurity” principle applies: we don’t 
know what is in the black box.

 The principles of the sensitivity attack can be extended to devise a 
blind descent algorithm (Newton-like).

 The objective function to be minimized is the Euclidean distance to 
the available watermarked image y, i.e., we seek the perturbation t
such that f(t)=||(y+t)-y||2 is minimum and yield H0.

 This is done by moving along the boundary of the decision region.

P. Comesaña, L. Pérez-Freire, F. Pérez-González, “The return of the sensitivity 
attack”, IWDW’05.
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Blind-Newton Sensitivity Attack
[Comesaña et al. 05]

0

y
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 Step1: Get perturbation s and 
find a such that y+as is on the
boundary.

 Step 2: Numerically evaluate
gradient of ||s||2 and possibly
Hessian on the boundary. 

 Step 3: Update

where f is the objective function
defined ONLY on the boundary. 

 Step 4: Go back to 1.
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BNSA Against Spread Spectrum 

Negative detection: 
additive noise

Negative detection: 
BNSA, 1 iteration

Positive 
detection
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BNSA Against JANIS 

Negative detection: 
additive noise

Negative detection: 
BNSA, 1 iteration

Positive 
detection
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BNSA attack power vs. iterations
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Metadetection
 Detect anamalous behavior in the set of queries. 
 Most Oracle-based attacks induce distinctive patterns that

can be (meta)detected. 
 In large-dimensional spaces normal queries will look 

random; targeted attacks will not.  

DetectorModify
Target signal

Score

Metadetector
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Closeness to the boundary detector 
[Tondi et al. 14]

0

Acceptance
region

Rejection
region

Metadetection region 

 Idea: measure whether the
attacker is sending queries
that are close to the
boundary. 

 Even if attack queries are 
disguised among normal 
ones, they can be 
statistically detected. 

 In fact, as long as the
number of malicious queries
increases as the log of the
number of dimensions, the
attack can be detected. 
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Line-search detector 
[Tondi et al. 14]

0

Acceptance
region

Rejection
region

 Most attacks do binary
searches to locate points on
the boundary. 

 The idea is to detect queries
forming a line. 

 In a large dimensional 
space, the likelihood that
even three queries are close
to a line is very small. 



Fernando Pérez-González72

Conclusion

 It’s hard to avoid the cat and mouse game. 
 In some specific cases game-theory can provide (Nash) 

equilibria. Can we enlarge the subset of problems where
solutions are known?

 Can we at least detect that there is a catversary?... 
However, doesn’t this lead to a metadetection game? 

 How about setting traps to the adversary? Some of the
existing ones seem to be effective…

 Adversaries can partially influence the learning process
(aversarial machine learning).

 How do we factor in bounded computational resources
for the parties.
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Conclusion
 And adversarial detection is just the beginning….
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