

MMFORWILD 2020

MultiMedia FORensics in the WILD (MMForWILD) 2020

A Walk on the Wild Side of Camera Attribution

Fernando Pérez-González

AtlanTTic Research Center

University of Vigo - Spain

Camera attribution with the PRNU

- Practically all (CMOS, CCD, etc.) have an intrinsic noise pattern:
 PRNU (Photo Response Non Uniformity)
 - → PRNU properties: robustness, stability, universality
 - + Can be used for forensic camera attribution due to its uniqueness.

Forensic uses (e.g. fight against child abuse)

Social Network Analysis for Law Enforcement

Digital onboarding

Biometric proof-of-life

Insurance damage reporting

Universida_{de}Vigo

The two fundamental hypotheses in camera attribution

1 The PRNU is a sort of mutliplicative noise:

Output pixel
$$\longrightarrow y(i,j) \Leftrightarrow x(i,j) + x(i,j) + n(i,j) + n(i,j)$$
Pristine image

or

$$\mathbf{Y} \approx (\mathbf{1} + \mathbf{K}) \circ \mathbf{X} + \mathbf{N},$$

 $oxed{2}$ The PRNU is unique, i.e., for any two devices with PRNUs ${f K}_1, {f K}_2$

$$\langle \mathbf{K}_1, \mathbf{K}_2 \rangle_F \ll ||\mathbf{K}_1||_F; \quad \langle \mathbf{K}_1, \mathbf{K}_2 \rangle_F \ll ||\mathbf{K}_2||_F$$

Sir, may I know what are your hypotheses?

noise

Additional hypothesis

The PRNU is zero-mean, Gaussian and nearly-white, i.e., for lags outside a small neighborhood of the origin \mathcal{L} (s.t. $|\mathcal{L}| \ll N_1 \times N_2$) the autocorrelation is almost zero.

Estimated autocorrelation of the PRNU for a Nikon D60 camera

MMForWILD2020 12

Camera attribution workflow

Residual computation [Lukás06]

Many options for the denoising

- ◆ [Mihcak99] wavelet-based (4-level 8-tap Daubechies QMF).
- ◆ [Kang I4] 8-neighbour context-adaptive interpolation (CAI).
- ◆ [Al-Ani I 5] similar-pixel opposite-sign PRNU in a neighborhood.
- ◆ [Hel3] content-adaptive guided filtering (CAGI).
- ◆ [Perona90] anisotropic diffusion.
- [Rudin94] total variation filtering.
- [Dabov 07] block-matching and 3D filtering (BM3D).
- [Alparone06] MMSE for multiplicative noise in the wavelet domain.

\ldot ...

15

And several comparisons

- ◆ [Amerini09], [Cortiana II], [Al-Ani I7]...
- Main conclusion: BM3D perfoms best but is computationally very expensive; Mihcak's is the most popular, but CAGI is worth exploring further.

	TPR @ 1e- 03	EER	CPU time (ms)
BM3D	83.9%	4.9%	4273
Mihcak	70.9%	7.3%	1105
CAGI	70.5%	9.5%	138
TV	58.9%	8.0%	22
Similar pixel	51.2%	13.7%	920
CAI	24.3%	14.8%	4074

My wife says that you check for asymmetric attention bias!

A note on asymmetric attention bias

"Asymmetric attention to detail. Sometimes known as disconfirmation bias, this happens when we give expected results a relatively free pass, but we rigorously check non-intuitive results."

PRNU estimation [Chen08]

◆ After the denoising the standard model goes like this:

$$\mathbf{W}^{(i)} = \mathbf{K} \circ \mathbf{X}^{(i)} + \mathbf{N}^{(i)}$$

lacktriangle And if the noise is i.i.d. Gaussian, uncorrelated with ${f X}^{(i)}$ and ${f K}$ the Maximum Likelihood Estimator is

$$\hat{\mathbf{K}} = \frac{\sum_{i=1}^{L} \mathbf{W}^{(i)} \circ \hat{\mathbf{X}}^{(i)}}{\sum_{i=1}^{L} \hat{\mathbf{X}}^{(i)} \circ \hat{\mathbf{X}}^{(i)}} \qquad \begin{array}{c} \text{Sample-wise} \\ \text{division} \end{array}$$

lacktriangle For residuals with different noise variances $\{\sigma_i^2\}_{i=1}^L$

$$\hat{\mathbf{K}} = \frac{\sum_{i=1}^{L} \mathbf{W}^{(i)} \circ \hat{\mathbf{X}}^{(i)} / \sigma_i^2}{\sum_{i=1}^{L} \hat{\mathbf{X}}^{(i)} \circ \hat{\mathbf{X}}^{(i)} / \sigma_i^2}$$

But something

PRNU estimation

Why then the simple averaging of residuals [Lukás06]

$$\hat{\mathbf{K}} = \frac{1}{L} \sum_{i=1}^{L} \mathbf{W}^{(i)}$$

is almost as good an estimate?

$$\mathbf{W}^{(i)} = \mathbf{K} \circ \mathbf{X}^{(i)} + \alpha (\mathbf{X}^{(i)} - \mathbb{E}\{\mathbf{X}^{(i)}\}) + \mathbf{N}^{(i)}$$

lacktriangle Notice that multiplying by $\mathbf{X}^{(i)}$ also increases the 'noise' part.

PRNU detection [Goljan08], [Kang I 2]

lacktriangle By far, the most popular detector is based on the PCE. Formally, given the test-image residual \mathbf{W}_t and the estimated fingerprint $\hat{\mathbf{X}}_t \circ \hat{\mathbf{K}}$ it first computes the NCC PCE: Peak to Correlation Energy

$$\rho(i,j) \doteq \frac{\langle \Delta_{i,j}(\mathbf{W}_t) - \mathbb{E}\{\mathbf{W}_t\}, \hat{\mathbf{X}}_t \circ \hat{\mathbf{K}} - \mathbb{E}\{\hat{\mathbf{X}}_t \circ \hat{\mathbf{K}}\} \rangle_F}{||\mathbf{W}_t - \mathbb{E}\{\mathbf{W}_t\}||_F \cdot ||\hat{\mathbf{X}}_t \circ \hat{\mathbf{K}} - \mathbb{E}\{\hat{\mathbf{X}}_t \circ \hat{\mathbf{K}}\}||_F}$$

with $\Delta_{i,j}$ the operator cyclic shift by (i,j).

◆ Then, the Signed PCE (SPCE) is

$$SPCE(\mathbf{W}_t, \hat{\mathbf{X}}_t \circ \hat{\mathbf{K}}) = \frac{\rho(0, 0)}{\left(\frac{1}{N_1 \times N_2 - |\mathcal{L}|} \sum_{(i, j) \notin \mathcal{L}} \rho^2(i, j)\right)^{1/2}}$$

So why the NCC alone works so well?

Simplifications

◆ The denominator of the SPCE estimates the std under H_0 . But since $\Delta_{i,j}(\mathbf{W}_t) - \mathbb{E}\{\mathbf{W}_t\}$ and $\hat{\mathbf{X}}_t \circ \hat{\mathbf{K}} - \mathbb{E}\{\hat{\mathbf{X}}_t \circ \hat{\mathbf{K}}\}$ are uncorrelated for $(i,j) \notin \mathcal{L}$, we can approximate

$$\left(\frac{1}{N_1\times N_2-|\mathcal{L}|}\sum_{(i,j)\notin\mathcal{L}}\rho^2(i,j)\right)^{1/2}\approx 1$$
 If $N_1\times N_2-|\mathcal{L}|\gg 1$

◆ Thus

SPCE
$$\approx \rho(0,0)$$

The importance of signal contamination

• Assume zero-mean residual and PRNU. In detection we must compute $\langle \mathbf{W}_t, \hat{\mathbf{X}}_t \circ \hat{\mathbf{K}} \rangle_F$. Remembering the new model proposed for the wild case:

$$\mathbf{W}_t = \mathbf{K} \circ \mathbf{X}_t + \alpha(\mathbf{X}_t - \mathbb{E}\{\mathbf{X}_t\}) + \mathbf{N}_t$$

- lacktriangle The variance of the pure noise terms $\langle {f N}_t, {f X}_t \circ \hat{f K}
 angle_F$ depends on $\mathbb{E}\{X_t^2\}$
- lacktriangle But the variance of the leakage terms $\langle \alpha(\mathbf{X}_t \mathbb{E}\{\mathbf{X}_t\}), \mathbf{X}_t \circ \hat{\mathbf{K}} \rangle_F$ depends on $\mathbb{E}\{X_t^4\} + \mathbb{E}^2\{X_t\}\mathbb{E}\{X_t^2\}$

A takeaway

- lacktriangle An optimal denoiser (e.g., in MMSE sense) is not necessarily optimal for PRNU detection! (correlation of residual with X_t also counts)
- May explain why state-of-the-art DNN denoisers give no apparent advantage w.r.t. BM3D in this scenario [Kirchner I 9].
- ◆ And may explain the excellent performance of the SP-CNN denoiser in [Kirchner I 9] (albeit not suitable for wild scenarios):

I. The multiplicative dependence [Chen08]

The gamma-response lemma [Pérez-González21]

- Let y=h(x) be the (monotonic) camera response function. If the input is of the form (1+k)x with $k \ll 1$, then the output is of the form y(1+ck) for some constant c if and only if $h(x)=c_1x^{\gamma}$, with c_1, γ constants.
- ◆ In other words: (I+PRNU) is multiplicative if and only if the camera response function is a pure gamma correction.
- lacktriangle Therefore, in general there is a function $g(\cdot)$ such that

$$Y(i,j) = X(i,j) + k(i,j) \cdot g(X(i,j)) + N(i,j)$$

Camera response functions

Nikon

Sony NEX-5

Function g(.)

Extraction with g(.)

2. The Snowflake Hypothesis

Universida_{de}Vigo

Sprinkle some §

DRIVER'S SEAT

Forget Fingerprints: Car Seat IDs Driver's Rear End

By Yoree Koh

Jan 18, 2012 1:00 pm ET

Literally.

VI

Are FINGERprints really unique?

- ◆ US lawyer, Brandon Mayfield, mistakenly detained by FBI in connection with Madrid bombings (March 2004).
- An FBI supercomputer positively identified one of the Madrid fingerprints on a bag of detonators as Mayfield's.
- FBI maintained its certainty despite Spanish authorities denied the match.
- ◆ Actually, the fingerprints corresponded to an Algerian man.

Boy, it's terrible!

Is the PRNU a Snowflake?

- ◆ [Goljan09] large-scale analysis with flickr images.
- ◆ Database in the wild: possibly several cameras from same user; images with digital zoom...
- ♦ Images per camera in interval [60,200] x ~7,000 cameras.
- A few cameras found to be identical.

Study in [Iuliani 20]

- ◆ VISION dataset: 35 devices, 11 brands + Control dataset: 23 smartphones, 17 different models + Flickr dataset: same models as Ctrl dataset and 31 additional models.
- No collisions reported on VISION, but on fingerprints with Ctrl dataset (PRNUs estimated with 5 flat images), yes:

			C01		0.6	0.2	27 0	0.2	0.2	0.8	0	0.6	0.3	-0.2	-0.2	4.1	-1	-0.1	-1.5	1.3	-0.6	1.2 1	1.5	-0.5 0.1				
			C02	-	_	_	1.2 -1.5	0	0	1.6	0.8	-0.2	4.8	-3.3	0.5	-0.4	-3.5	1.2	0.5	0.4	0.2	-4.1	0.3	-23 -03	2	0.1	0.0	
			C03	-	-1.1	_	+05 3.3e+0	5 -2.4	-0.2	2.8	-6.5	-1	1.9	1.2	0.1	0	1	0	-0.8	0.2	0			-1	_	-0.1	-0.9	
			C04		-0.2 3.2 -1.5 3.3	_	3.4610	0 1.1	-0.2	-0.1	-0.1	-0.5	0	-0.4	0.3	-0.1	-0.2	-0.1	22	3.6	-0.0		+					
	-1.1	-0.2	-1.5	- 1	_	_	.1 0.1		-6.7	0	0	-0.2	-0.5	0.9		4.1	0.1	0.5	0.5	1.2	-0.7					4.005	4.005	
	-1.1	-0.2	-1.5		0	_	12 0	-6.7		-0.5	-6.3	0.3	0.1	1.8	0.2	-0.6	0	0	-0.1	0	-0.1	-0.1			0.1	1.3e+05	1.2e+05	
					1.6	2.8 0	.1 -0.1	0	-0.5		0.2	3.4	1.6	0.4	5	-4.1	0	-0.1	0.1	0.4	0							
					0.8	6.5	0.1 -5.3	0	-6.3	0.2		0	-0.2	-0.8	-1.7	0	-0.8	1	0.5	0.7	-0.4							
	I	3.2e+05	3 30105		-0.2	-1 0	.1 -0.5	-0.2	0.3	3.4	0		0	-0.1	-0.2	-0.9	-0.2	-0.7	0.1	2.2	2.8	•		0.1		0	0.1	_
	I	3.26+03	3.3 E +03		-4.8	0.4 1	.9 0	-0.5	0.1	1.6	-0.2	0		0	-1.2	-6.4	0.9	0.6	0.3	0	-0.1	•					J.,	
					-3.3	1.2	1.4 0.1	0.9	1.8	0.4		-0.1	0	_	0.9	0.9	0.1	2.7	3.4	1	-0.1							
	.2e+05	3.4e+05		-0.4	2.1	0.3	0.1	-0.6	5	-	_	_	0.9		-1	0.1	-0.1 1.3e+05 1	-0.9	1.5	-1.1	4	1	1.3e+05	0		5.9e+05		
2 0				-3.5	4 4	12 -0.1	0.1	-0.6	4.1	-0.0	_	0.9	0.9	-1	0.1	0.1	_	0.1	-1.5	2.2	. 1		1.36+05	U		5.96+05		
3.2	2e+05		3.46703	٠	1.2	0 4	0.1 0	0.5	0	-0.1	1	-0.7	0.6	2.7	-0.1	1.3e+05	0	_	5.90+05	-1	1.2		_					
					0.5	0.8	0 22	0.5	-0.1	0.1	0.5	0.1	0.3	3.4	-0.9 1	1.2e+05	0.1	5.9e+05		-1.9	0	_	١.					
				Т-	0.4	0.2	7 3.6	1.2	0	0.4	0.7	2.2	0	1	1.5	0	-1.5	-1	-1.9		1.7	.9	1	1.2e+05	0.1	5.9e+05		-
2 3	3~10年	3.4e+05			0.2	0 4	1.5 -0.9	-0.7	-0.1	0	-0.4	2.8	-0.1	-0.1	0.5	-1.1	2.2	1.2	0	1.7								
3.0	setus			-	-4.1 -	1.9	0.9	-1.7	0.2	2.9	-0.4	-2.2	0.7	-0.2	1.5	0.4	2.4	0.6	1.3	-4	-0.2			0				
					0.3	29 2	7 0.1	0	0	0	0	-0.3	0.1	-0.7	0	0.1	-0.1	0	0	-5.1	6.2	5			-1.5	-1	-1.9	
					_	0.2 -4	12 -4	-0.2	-0.2	-1.9	-1.1	_	0.5	0.3	-0.9	0.5	-2.5	0.6	0	0	-0.1	_		_		'	1.0	
	24	4.4	0.4	-	-0.3	0 4	0.1 -0.5	0.1	0.1	0	0	1.3	-0.4	8.4	0	0	-1.5	-0.4	0.4	0	1.9	1 0	0.5	2.3 NaN				
	-/4		11 1	1	C02 C	03 C	04 C05	C06	C07	C08	C09	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20 C	021	C22 C23				

Figure 2: PCE statistics computed among different camera fingerprints in the Control dataset.

Study in [Iuliani 20]

- Standard artifacts are removed (by Zero-meaning and Wiener filtering)
- "For the widely adopted PCE threshold of 60, false positive rates larger than 1% were observed for popular devices belonging to Huawei, Samsung, Nokia, and Xiaomi."
- ◆ [Gloe 12] had found diagonal artifacts not entirely removable with Wiener filtering for a Nikon CoolPix S710 cameras (Dresden dataset)

Xcorrs of an image from c1;s710 with PRNUs of other s710's

Our own experience: Matchinger

Talking
about Wild?
The future is

Wilder!

MMForWILD2020

The future is wilder

- Images and videos are more and more subject to really wild conditions:
- ♦ (Strong) compressions.
- Cropping and scaling.
- Digital zooming.
- High dynamic range imaging.
- Camera stabilization.
- ◆ In-camera/software lens distortion correction.
- Photo effects.
- Multicamera imaging.
- **•** ...

Quasi-homomorphic transformations

◆ If

 $\mathcal{T}_{m{ heta}}(\mathbf{X}_t)$

Does

$$\mathcal{T}_{\boldsymbol{\theta}}(\mathbf{X}_t + \mathbf{X}_t \circ \mathbf{K}) \approx \mathcal{T}_{\boldsymbol{\theta}}(\mathbf{X}_t) + \mathcal{T}_{\boldsymbol{\theta}}(\mathbf{X}_t) \circ \mathcal{T}_{\boldsymbol{\theta}}(\mathbf{K})$$
 ?

Direct approach

lacktriangle If so, given $\hat{\mathbf{K}}$, the detection statistic (GLRT) becomes:

lacktriangle The main challenge is to find efficient algorithms for searching the parameter space. Almost whiteness in ${f K}$ complicates things.

Inverse approach

Based on the inverse transformation (provided it exists):

◆ This approach requires I) $\mathcal{T}_{\boldsymbol{\theta}}^{-1}(\cdot)$ to be quasi-homomorphic, and 2) if $\mathbf{Y}_t = \mathbf{W}_t + \hat{\mathbf{X}}_t$, then the denoising of $\mathcal{T}_{\boldsymbol{\theta}}^{-1}(\mathbf{Y}_t)$ yields $\mathcal{T}_{\boldsymbol{\theta}}^{-1}(\hat{\mathbf{X}}_t)$ and $\mathcal{T}_{\boldsymbol{\theta}}^{-1}(\mathbf{W}_t)$.

Non-homomorphic case

◆ In this case, it is much more effective (and expensive) to compute the PRNU from the residuals of transformed images

MMForWILD2020

Example: Non-stabilized video, mixed-media

For a conjectured camera this transformation is known, so no exhaustive search is needed!

Universida_{de}Vigo

Example: Stabilized video

Stabilized video

- [Chuang I I]: Use the B frames.(not just I and P)
- ◆ [Taspinar | 6] proposed a pure brute-force approach.
- [Iuliani I 9]: Use still image PRNU as reference and find θ for each frame. Apply $\mathcal{T}_{\theta}^{-1}$ to register the frame. Use registered frames (with a minimum PRNU strength) to estimate video PRNU.
- [Mandelli20]: Find best frame for reference PRNU.
- ◆ [Taspinar20]: Integrate several consecutive frames to speed up calculations.

But mind the AUC!

◆ AUC does not reflect what happens for low FPRs.

Fig. 12. ROC curves for 4-minute stabilized videos taken from VISION dataset.

Final thoughts

- We need to deepen our understanding and strengthen our hypotheses.
- ◆ Forensic ← Forensis ← Forum.
- We need more unbiased (meta)analyses, large-scale tests, and up-to-date databases.
- We need fresh approaches to address the curse of dimensionality, e.g., reinforcement learning.
- We need... to beat the future.

Thank you!

Fernando Pérez-González fperez@gts.uvigo.es

References

- [Mihcak99] M. K. Mihcak, I. Kozintsev, and K. Ramchandran, "Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising," in *ICASSP 99*.
- ◆ [Kang 14] X. Kang, J. Chen, K. Lin, and A. Peng, "A context-adaptive SPN predictor for trustworthy source camera identification," *EURASIP J. Image Video Process.*, 2014.
- ◆ [Al-Ani I 5] M. Al-Ani, F. Khelifi, A. Lawgaly, and A. Bouridane, "A novel image filtering approach for sensor fingerprint estimation in source camera identification," in *Proc. IEEE Conf. Adv. Video Signal Based Surveill. (AVSS)*, 2015.
- ◆ [Perona 90] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, pp. 629–639, Jul. 1990.
- [Rudin 94] L. I. Rudin and S. Osher, "Total variation based image restoration with free local constraints," in *ICIP 94*.
- ◆ [Dabov07] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering," IEEE TIP 2007.
- ◆ [Alparone06] L.Alparone, F.Argenti and G.Torricelli, "MMSE filter-ing of generalised signal-dependent noise in spatial andshift-invariant wavelet domain, "Signal Processing Journal", 2006.

- ◆ [Amerini09] I. Amerini, R. Caldelli, V. Cappellini, F. Picchioni, A. Piva, "Analysis of denoising filters for photoresponse non uniformity noise extraction in source camera identification", in International Conference on Digital Signal Processing, 2009.
- ◆ [Cortiana II] A. Cortiana, V. Conotter, G. Boato, and F. G. B. De Natale, "Performance comparison of denoising filters for source camera identification," Proc. SPIE, vol. 7880, p. 778007, Jan. 2011.
- [Al-Ani I 7] M. Al-Ani and F. Khelifi, On the SPN Estimation in Image Forensics: A Systematic Empirical Evaluation, IEEE TIFS 2017.
- [HeI3] K. He, J. Sun, and X. Tang, "Guided image filtering," IEEE Trans. Pattern Anal. Mach. Intell., 2013.
- ◆ [Kang 12] X. Kang, Y. Li, Z. Qu, and J. Huang, "Enhancing source camera identification performance with a camera reference phase sensor pattern noise," IEEE TIFS, 2012.
- [Iuliani 19] M. Iuliani, M. Fontani, D. Shullani, and A. Piva. "A hybrid approach to video source identification", Sensors, 2019.
- [Taspinar I 6] S. Taspinar, M. Mohanty, and N. Memon, "PRNU based source attribution with a collection of seam-carved images," in Proc. ICIP 2016.

- [Chuang II] W.-H. Chuang, H. Su, and M. Wu, "Exploring compression effects for improved source camera identification using strongly compressed video," in Proc. ICIP 2011.
- [Mandelli20] S. Mandelli, P. Bestagini, L. Verdoliva, and S. Tubaro, "Facing device attribution problem for stabilized video sequences," IEEE Trans. Inf. Forensics Security, 2020.
- ◆ [Gloe12]: T. Gloe, S. Pfenning, M. Kirchner, "Unexpected Artefacts in PRNU-Based Camera Identification: A 'Dresden Image Database' Case-Study", MMSec 2012.
- [Iuliani20]: M. Iuliani, M. Fontani, and A. Piva, "A leak in PRNU based source identification? Questioning fingerprint uniqueness", ArXiv 2020.
- [Goljan08] M. Goljan and J. Fridrich, "Camera identification from cropped and scaled images".
 In Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, SPIE 2008
- [Lukás06] J. Lukás, J. Fridrich, and M. Goljan, "Digital camera identification from sensor pattern noise," IEEE Trans. Inf. Forensics Security, 2006.
- ◆ [Nuzzo15] R. Nuzzo, "How scientists fool themselves—and how they can stop". Nature 2015.
- [Goljan09] M. Goljan, J. Fridrich, and T. Filler, "Large scale test of sensor fingerprint camera identification," Proc. SPIE, 2009.